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A bioinformatics approach 
to the identification of novel 
deleterious mutations of human 
TPMT through validated screening 
and molecular dynamics
Sidharth Saxena1, T. P. Krishna Murthy  1*, C. R. Chandrashekhar1, Lavan S. Patil1, 
Abhinav Aditya1, Rohit Shukla2, Arvind Kumar Yadav2, Tiratha Raj Singh2, 
Mahesh Samantaray3 & Amutha Ramaswamy3

Polymorphisms of Thiopurine S-methyltransferase (TPMT) are known to be associated with leukemia, 
inflammatory bowel diseases, and more. The objective of the present study was to identify novel 
deleterious missense SNPs of TPMT through a comprehensive in silico protocol. The initial SNP 
screening protocol used to identify deleterious SNPs from the pool of all TPMT SNPs in the dbSNP 
database yielded an accuracy of 83.33% in identifying extremely dangerous variants. Five novel 
deleterious missense SNPs (W33G, W78R, V89E, W150G, and L182P) of TPMT were identified 
through the aforementioned screening protocol. These 5 SNPs were then subjected to conservation 
analysis, interaction analysis, oncogenic and phenotypic analysis, structural analysis, PTM analysis, 
and molecular dynamics simulations (MDS) analysis to further assess and analyze their deleterious 
nature. Oncogenic analysis revealed that all five SNPs are oncogenic. MDS analysis revealed that all 
SNPs are deleterious due to the alterations they cause in the binding energy of the wild-type protein. 
Plasticity-induced instability caused by most of the mutations as indicated by the MDS results has 
been hypothesized to be the reason for this alteration. While in vivo or in vitro protocols are more 
conclusive, they are often more challenging and expensive. Hence, future research endeavors targeted 
at TPMT polymorphisms and/or their consequences in relevant disease progressions or treatments, 
through in vitro or in vivo means can give a higher priority to these SNPs rather than considering the 
massive pool of all SNPs of TPMT.

Human Thiopurine S-methyltransferase (TPMT) is a protein-coding gene on chromosome 6p22.3 that codes 
for the enzyme Thiopurine S-methyltransferase. It is a monomer that belongs to the class I-like SAM-binding 
methyltransferase superfamily and is composed of 245 amino acid residues. This cytosolic enzyme catalyzes the 
S-methylation of thiopurines such as azathioprine, 6-thioguanine, 6-mercaptopurine, etc. Thiopurines were 
originally developed in the 1950s for the treatment of acute myeloid leukemia in children by Gertrude Elion and 
George Hitchings1, which eventually won them the Nobel Prize in Physiology or Medicine in 1988. These thiopu-
rine drugs are antimetabolites and immunomodulators and are used extensively as anticancer and immunosup-
pressive agents in the treatment of rheumatoid arthritis, inflammatory bowel diseases (IBD) including Crohn’s 
disease and ulcerative colitis, acute lymphoblastic leukemia (ALL), and other autoimmune disorders. Although 
about two-third of patients do not suffer from any notable side effects throughout their treatments, the rest often 
cannot continue their treatments or have their treatments greatly modified due to cytotoxic side effects and an 
increased risk of malignancies. Most patients with thiopurine-induced hepatotoxicity have a high concentration 
of 6-methylmercaptopurine ribonucleotide or 6-MMPR (formed by TPMT) one week after treatment initia-
tion. There is also evidence that elevated levels of 6-methylmercaptopurine or 6-MMP (formed by TPMT) are 
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correlated with hepatotoxicity2. To address these side effects, improved drug delivery mechanisms such as nano-
formulations and delayed-release tablets are in development, none of which are currently in clinical practice3.

Akin to many immunosuppressants, the mechanism of action of thiopurines involves the inactivation of 
critical T-cell processes leading to inflammation. Unfortunately, the exact mechanism of action of thiopurines 
and their effects are not yet comprehensively understood. A combination of many different factors has been 
proposed for their cytotoxicities, such as the inhibition of de novo purine synthesis (DNPS), alterations in DNA 
methylation state, disruption of guanosine-triphosphate (GTP) signaling, and the incorporation of thioguanine 
nucleotides (TGN) as bases into DNA. The incorporation of thioguanine nucleotides into DNA causes the 
induction of apoptosis4.

Around 99.9% of the DNA sequence is identical between any two human genomes selected at random. The 
variation in 0.1% of the DNA sequence comprises genetic alterations known as polymorphisms. One such form 
of these polymorphisms involves the alteration of one nucleotide and is aptly referred to as a single nucleotide 
polymorphism (SNP). Nearly 90% of all human DNA polymorphisms are attributed to SNPs and hence, they are 
by far the most common form of genetic variation that occurs in the human genome5. In fact, an SNP occurs once 
every 300 base pairs on average in the human genome6. SNPs can result in a change of the encoded amino acids 
if they are non-synonymous or can be silent if they are synonymous or simply occur in the non-coding regions 
without consequence. Non-synonymous SNPs (nsSNPs) can alter the function of the protein products of genes 
if they occur in the coding regions, which can be especially dangerous if the gene holds biological significance7.

One of the major reasons for the cytotoxic side effects of thiopurine drugs is TPMT deficiency in patients 
and most TPMT polymorphisms often reduce TPMT activity8. Furthermore, it has already been established that 
several alleles of TPMT are in fact, disease-associated with respect to leukemia9–13, IBD14–19, and more. Such 
polymorphisms can also severely affect protein stability20 and cause adverse drug reactions21. Therefore, SNPs 
of TPMT can be crucial in the disease progression and treatments associated with leukemia, IBD, and more. 
This warrants the identification of novel SNPs of TPMT which are deleterious in nature. While the conduction 
of in vitro and/or in vivo methods for the identification of novel deleterious nsSNPs from the massive pool of 
all nsSNPs is more conclusive than in silico methods, they are often challenging and expensive protocols. As a 
result, the present work is focused on the identification of novel deleterious missense mutations of TPMT through 
in silico means. These SNPs can later be given a higher priority by future researchers interested in identifying 
TPMT variants and their potential consequences through in vitro and/or in vivo means. Although to validate 
the initial in silico screening process, deleterious SNPs of TPMT identified through in vitro or in vivo means 
were also subjected to this screening process. The screening process was able to accurately identify a significant 
percentage of these pre-identified SNPs, as discussed in “Screening of nsSNPs” section.

Similar in silico studies have been conducted for several genes in the past to understand the molecular mecha-
nisms of disease-causing mutations22–28. In fact, an in silico study for TPMT was also carried out in the past29, but 
that study only considered a few established mutations and did not aim to find novel deleterious SNPs of TPMT. 
It also considered far fewer tools for the in silico protocol than the present study. Meanwhile, the present study 
aimed at identifying novel deleterious missense nsSNPs by screening all missense nsSNPs of TPMT listed in the 
dbSNP database in an attempt to identify those SNPs from the database that are extremely deleterious to both 
the structure and the natural functioning of the protein. The usage of computational tools for the classification 
of variants is at the heart of an in silico based approach for the identification of novel deleterious mutations. The 
tools chosen for this study were based on the variety of techniques used by the various screening tools in order to 
arrive at an unbiased consensus-based result with respect to the classification of deleterious TPMT variants. The 
screened SNPs were then subjected to further in silico analyses such as conservation analysis, interaction analysis, 
oncogenic analysis, phenotypic analysis, structural analysis, and post-translational modification (PTM) analysis.

Molecular dynamics simulations (MDS) simulate the motions of every single atom in a protein or any other 
molecular system over time-based on the classical equations of motion governing interatomic interactions. 
Several important biomolecular processes, such as protein folding, ligand binding, and conformational change 
can be studied through MDS. Most importantly, they can simulate how a particular biomolecule will respond 
to mutations30,31. Hence, MDS was also performed in order to assess the impact of the mutations with respect 
to the wild-type protein at an atomic level and from a dynamic perspective as opposed to the static protocol of 
other structural analysis tools. Several of the aforementioned in silico studies have also employed MDS to gain a 
greater understanding of the deleterious nature of the screened mutations. Finally, a consensus-based result was 
obtained which is at the heart of the in silico pipeline of the present study. Apart from this, two other factors make 
the present study unique. Firstly, the utilization of a consensus-based approach for the screening of deleterious 
mutations is based on a lot of different computational tools that possess different pipelines to predict the nature 
of SNPs. Secondly, the validation of this in silico screening pipeline by applying it to the SNPs associated with 
TPMT alleles that have already been proven to be deleterious by experimental methods in prior research efforts 
and assessing how many of them are redetected through this pipeline. Results showed that five novel mutations, 
namely W33G, W78R, V89E, W150G, and L182P can have a deleterious effect on TPMT and that W33G is the 
most deleterious among them.

Materials and methods.  Collection of data.  The NCBI dbSNP database was utilized to obtain the mis-
sense nsSNPs of the human TPMT gene (access date: July 26, 2021)32. dbSNP database contains more than 650 
million human SNPs (Build 152, November 2018) and includes clinically relevant SNPs from the ClinVar data-
base as well. The UniProt database was used to obtain the sequence for the same (UniProt ID: P51580)33. The 
structure of the TPMT protein with PDB ID 2H1134 was obtained through the Protein Data Bank. The overall 
protocol followed in the present study has been visually presented in Fig. 1.
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Screening of SNPs through sequence‑based tools.  12 sequence-based tools were utilized to ana-
lyze the functional consequences of the missense nsSNPs of TPMT, including Protein Variation Effect Analyzer 
(PROVEAN)35, Protein Analysis Through Evolutionary Relationships (PANTHER)36, Polymorphism Phenotyp-
ing v2 (PolyPhen-2)37, Mutation Assessor38 and Sorting Intolerant From Tolerant (SIFT)39. Apart from these 
tools, consensus-based tools such as Meta-SNP40 and PredictSNP141 were utilized in the screening process 
as well. Furthermore, SuSPect42, PMut43, SNAP244, PhD-SNP45 and SNPs&GO46 were used as well during the 
screening process.

Screening of SNPs through structure‑based tools.  The stability changes imparted on the protein 
structure as a consequence of the nsSNPs identified to be dangerous (by at least nine out of the 12 aforementioned 
sequence-based tools), were assessed using structure-based tools. Eight structure-based tools were used, includ-
ing CUPSAT47, DUET48, I-Mutant 3.049, MUpro50, INPS-MD51, PoPMuSiC52, HoTMuSiC53 and SNPMuSiC54. 
The melting point of TPMT was inputted as 319.95 K for HoTMuSiC55. Furthermore, for the screening pro-
cess, an SNP was considered deleterious by the three MuSiC tools only if the SNP was predicted to “Strongly 
Decrease” the stability of the protein (A prediction score close to or greater than 4, close to or lesser than -10 and 
close to or greater than 1 for PoPMuSiC, HoTMuSiC and SNPMuSiC, respectively imply that the particular SNP 

Figure 1.   Visual representation of the methodology followed in the present study (The rectangle on the top 
right represents the pool of all TPMT SNPs. Please refer to Figure S1 for more details).



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:18872  | https://doi.org/10.1038/s41598-022-23488-z

www.nature.com/scientificreports/

will “Strongly Decrease” the protein stability). This was done in order to identify the most deleterious missense 
SNPs among all of the missense SNPs.

Validation of the screening pipeline.  Many SNPs of TPMT have already been proven to be deleterious 
by prior research efforts through experimental means. To validate and assess the in silico screening pipeline uti-
lized in this study, the same screening methodology was applied for these pre-identified SNPs as well, albeit with 
one small difference. The difference is that the SNPs predicted to “Decrease” protein stability by the three MuSiC 
tools were considered deleterious, as opposed to the ones predicted to “Strongly Decrease” the protein stability. 
This was done because, in the validation phase, SNPs already proven to be deleterious were to be re-identified 
rather than finding the most deleterious SNPs among them.

Conservation analysis.  The evolutionary conservation analysis of TPMT residues was conducted through 
the ConSurf server56. Furthermore, multiple sequence alignment (MSA) was performed through various tools 
including Clustal Omega, Kalign, MUSCLE, T-Coffee and MAFFT57 for TPMT sequences belonging to different 
species including Homo sapiens (P51580), Gorilla gorilla gorilla (Q3BCR3), Pan troglodytes (Q3BCR8), Pongo 
abelii (A0A0B4J2I0), Rhinopithecus bieti (A0A2K6KP23), Chlorocebus sabaeus (A0A0D9R5L7), Macaca mulatta 
(F6TPF9), Callithrix jacchus (F6PNF2), Vicugna pacos (A0A6I9HY34) and Panthera tigris (Q3BCR2). Apart 
from MSA tools and ConSurf, NLM’s (National Library of Medicine) CDD (Conserved Domain Database)58 was 
also considered. The “Type Selection” parameter was chosen as “the most diverse members” which identifies the 
most dissimilar TPMT sequences, as determined from the domain model MSA.

Interaction analysis.  The STRING database59 was used to conduct the interaction analysis for TPMT. 
Interaction analysis is important as it sheds light on the consequences of TPMT mutants on the biological pro-
cesses that involve the interaction network of TPMT. This is because, in the presence of highly deleterious muta-
tions, the structure and function of TPMT will be impaired. Since all proteins in the interaction network must 
function appropriately for the associated biological processes to occur in the desired manner, a dysfunctional 
TPMT may very well hinder or cause a lot of problems for said biological processes.

Oncogenic analysis and phenotypic analysis.  To assess the oncogenicity of the five missense SNPs, 
CScape60, CScape-somatic61, and Dr Cancer62 were utilized. The phenotypic consequences of the five mutations 
were predicted using the FATHMM (Functional Analysis through Hidden Markov Models) tool63. The “Inher-
ited Disease” section of the tool was utilized, where the weighted algorithm was used as the prediction algorithm. 
Furthermore, the “Phenotypic Associations” parameter was selected as “Human Phenotype Ontology”.

Modelling of TPMT mutants and assessing the structural effects of mutations.  Modeling of the 
TPMT mutants (W33G, W78R, V89E, W150G, and L182P) was performed by using the PyMol software64. The 
HOPE (Have Your Protein Explained) server65 was used to visualize the mutations and also to gain some insight 
into the structural consequences caused by the mutations. NetSurfP-2.066 was used to identify alterations in the 
secondary structure of the protein that are caused by the five deleterious mutations. It utilized the amino acid 
sequences of the wild-type protein and mutant proteins to generate the results. Furthermore, the alterations 
caused to the binding pockets of the wild-type protein were identified using the CASTp 3.0 server67. AmylPred 
268 was also used for identifying amyloid-forming regions that may be associated with several conformational 
diseases, called amyloidoses. Furthermore, MDS analysis was performed to validate and expand upon the struc-
tural analysis.

Post‑translational modification analysis.  The Group-based Prediction System (GPS) 5.0 software69 
was used for PTM analysis which can predict the PTM sites within a protein. This software was used to predict 
the tyrosine kinase phosphorylation sites along with the serine/threonine kinase phosphorylation sites of TPMT.

Molecular dynamics simulations.  The crystal structure of human TPMT (2H11) was subjected to MDS 
through GROMACS version 2019.470. The GROMOS9653a6 force field was used for the generation of the pro-
tein parameters. The gmx editconf tool was used to build the cubic simulation box. The steepest descent algo-
rithm was used to vacuum minimize the processed setup for 1500 steps. The simple point-charge (SPC) water 
model was used to perform solvation by using the gmx solvate tool. The system was electro-neutralized through 
the gmx genion tool, following which the steric clashes were removed. After this, energy minimization was 
performed to optimize the structure. System equilibration was performed through NVT equilibration and NPT 
ensemble. 1 ns of NVT equilibration was performed where the system was heated up to 300 K, to stabilize the 
temperature of the system. Furthermore, 1 ns of NPT ensemble was performed to stabilize the pressure and 
density of the system. After system equilibration, each structure was subjected to MDS over a simulation time 
of 100 ns.

As mentioned in the introduction section, MDS can be used to analyze the consequences of mutations at 
an atomic level through dynamic simulations of protein structure alterations. The MDS parameters including 
Root-mean-square deviation (RMSD), Root-mean-square fluctuations (RMSF), radius of gyration (Rg), solvent-
accessible surface area (SASA) and intramolecular hydrogen bonding help us understand various aspects of 
protein structure alterations such as structural alterations in flexibility, rigidity, compactness and more. Trajectory 
analysis of the wild-type protein and the five mutant proteins was done using various GROMACS analysis tools. 
RMSD, RMSF, Rg, SASA and intramolecular hydrogen bonding, were calculated using the gmx rms, gmx rmsf, 
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gmx gyrate, gmx sasa and gmx hbond tools, respectively. Secondary structure analysis (SSA) was performed 
through the do_dssp tool. Principal component analysis (PCA) was performed using the gmx anaeig and gmx 
covar tools. The Molecular Mechanics Poisson–Boltzmann Surface Area (MM-PBSA) method was utilised to 
calculate the binding energy and its components including van der Waals, electrostatic energy, polar solvation 
energy and SASA energy using the g_mmpbsa tool71. The relevance and interpretation of all of the aforemen-
tioned MDS parameters have been discussed in  “Molecular dynamics simulations analysis” section.

Results and discussion
SNP distribution.  In all, 10,305 SNPs of TPMT were obtained from dbSNP. SNPs in the intronic region 
made up 83.55% (8610) of all SNPs. 7.64% (787) and 3.86% (398) of the SNPs were present in the 3’UTR and 
5’UTR regions, respectively. Furthermore, all forms of coding SNPs accounted for merely 3.06% of all SNPs. 
Among coding SNPs missense SNPs, synonymous SNPs, frameshift SNPs and nonsense SNPs accounted for 
2.07% (213), 0.69% (71), 0.19% (20) and 0.11% (11), respectively. Other SNPs accounted for the remaining 
1.89% (195). The present study has considered only missense SNPs of TPMT. The distribution of TPMT SNPs 
is shown in Figure S1.

Screening of nsSNPs.  All missense SNPs of TPMT present in the dbSNP database were screened using 
sequence-based and structure-based tools to identify the most deleterious ones among them. Prediction results 
of all missense SNPs are provided in Table S1 and S2.

For sequence-based screening, the aforementioned 12 sequence-based tools were used, and SNPs found to 
be deleterious by at least nine out of the 12 tools were considered for further analysis. 53 such SNPs were found, 
which are reported in Table 1. These 53 missense SNPs were then subjected to structure-based screening using 
eight structure-based tools. Missense SNPs identified as deleterious by at least six of these tools were considered 
for further analysis. Six such SNPs were identified including W33G, W78R, V89E, W150G, L182P, and Y240S. 
However, owing to the fact that Y240S has already been proven to be deleterious9,19,20, it was not considered 
for further analyses. Hence, five novel extremely deleterious missense SNPs of human TPMT were identified 
at the end of the screening process which was then subjected to further analyses. The results of the structure-
based screening are presented in Table 2. The rationale behind considering the deleterious prediction of any 
9 sequence-based tools and any 8 structure-based tools, many of which have varying approaches for variant 
classification is to get an unbiased result. If an SNP is predicted to be deleterious by 9 different sequence-based 
tools and 8 different structure-based tools, several of which have varying approaches, then the probability of it 
being dangerous is high.

Validation of the screening pipeline.  It is a well-known fact that in silico predictions and analyses are 
not 100% accurate and are not as conclusive as in vitro or in vivo experiments. However, that does not mean 
that in silico predictions should be completely disregarded. In order to validate the in silico methodology uti-
lized in this study, other human TPMT missense SNPs already identified as deleterious through experimental 
means were subjected to the same screening pipeline, with a minor difference as highlighted in “Validation of 
the screening pipeline” section. The results of the screening process on missense SNPs of TPMT, pre-identified 
as deleterious experimentally in other studies9,11,15,20,72–92 are summarised in Table 3 and are presented more 
comprehensively in Table S3.

13 out of the 17 (76.47%) very dangerous mutations, excluding M1V, were re-detected using the screening 
pipeline. M1V was not considered as that residue is not present in the structure of TPMT (2H11) and hence, 
structure-based screening could not be performed for M1V. Furthermore, with respect to extremely deleterious 
mutations which were proven to be very dangerous by one or more studies and/or dangerous by multiple stud-
ies, 10 out of 12 (83.33%) of them were re-detected. Figure 2 visually represents the accuracy of the screening 
pipeline.

ConSurf, which was used for evolutionary conservation analysis, predicts colour scores for residues that can 
range between 1 and 9 and are a measure of the conservation level of that particular residue. A residue can be con-
sidered as extremely variable if it has a score of “1” and conversely, it can be considered as extremely conserved 
if it has a score of “9”. It was observed that while high conservation of the residues which are predicted to harbor 
SNPs provides further validation of their deleterious nature, it is not completely conclusive. This is due to the fact 
that in the case of five SNPs (C132Y, G144R, C212R, Y240C and Y240S) pre-identified as extremely deleterious 
and also redetected by the screening pipeline, the color scores predicted by ConSurf were lower than or equal to 
5. However, nine SNPs pre-identified as extremely dangerous (L49S, L69V, G71R, A80P, Y107D, A154T, R163C, 
R163P and Y166C) and also re-detected using the screening pipeline did have color scores predicted as greater 
than or equal to 6. Hence, while conservation analysis is good as a secondary form of validation of the deleteri-
ous nature of screened SNPs, it is not guaranteed that if an SNP is at a relatively less conserved residue it will 
be benign in nature. In fact, in a similar study on the GOT1 gene, an SNP (L345P) was predicted to be highly 
deleterious despite having a color score (predicted by ConSurf) of 1 and its deleterious nature was reflected in 
further in silico analyses of that study93.

Conservation analysis.  The level of conservation of the amino acid residues provides a rough estimate 
regarding the level of damage that dangerous mutations can cause to the functioning of the protein and its 
structure. As mentioned before, they are not completely conclusive but do provide a good form of secondary 
validation of the deleterious nature of the SNP in question. The Bayesian method was used to obtain the Con-
Surf results, and the protein structure (2H11) was given as the input. 10 sequences of TPMT including human 
TPMT (P51580) were considered for MSA, and scores ranging from 1 to 10 were assigned based on how many 
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Variant ID SNP PROVEAN PANTHER Polyphen-2
Mutation 
Assessor

Meta-
SNP PMut PredictSNP1 SNAP2 SuSPect SNPs&GO

PhD-
SNP SIFT

rs72552741 W33G Deleterious Probably 
damaging

Probably 
damaging High Disease Disease Deleterious Effect Deleteri-

ous Disease Disease Deleteri-
ous

rs200695400 F40S Deleterious Probably 
damaging

Probably 
damaging High Disease Disease Deleterious Effect Deleteri-

ous Disease Disease Deleteri-
ous

rs1446592306 F40L Deleterious Probably 
damaging

Probably 
damaging High Disease Disease Deleterious Effect Deleteri-

ous Disease Disease Deleteri-
ous

rs757081801 H41R Deleterious Probably 
damaging

Possibly 
damaging High Disease Disease Deleterious Effect Deleteri-

ous Disease Disease Deleteri-
ous

rs762702707 H46R Deleterious Probably 
damaging

Probably 
damaging Medium Neutral Disease Deleterious Effect Deleteri-

ous Disease Disease Deleteri-
ous

rs72552740 L49S Deleterious Probably 
damaging

Probably 
damaging High Disease Disease Deleterious Effect Deleteri-

ous Disease Disease Deleteri-
ous

rs757971326 H52D Deleterious Possibly 
damaging

Possibly 
damaging Medium Disease Disease Deleterious Effect Deleteri-

ous Disease Disease Deleteri-
ous

rs1236222449 F66I Deleterious Probably 
damaging

Probably 
damaging High Disease Disease Deleterious Effect Neutral Neutral Disease Neutral

rs1368439131 P68L Deleterious Probably 
damaging

Probably 
damaging High Disease Disease Deleterious Effect Deleteri-

ous Disease Disease Deleteri-
ous

rs1784276391 P68S Deleterious Probably 
damaging

Probably 
damaging High Disease Disease Deleterious Effect Deleteri-

ous Disease Disease Deleteri-
ous

rs200591577 L69V Deleterious Probably 
damaging

Probably 
damaging High Disease Disease Deleterious Effect Deleteri-

ous Disease Disease Deleteri-
ous

rs200591577 L69F Deleterious Probably 
damaging

Probably 
damaging High Disease Disease Deleterious Effect Deleteri-

ous Disease Disease Deleteri-
ous

rs777686348 G71R Deleterious Probably 
damaging

Probably 
damaging High Disease Disease Deleterious Effect Deleteri-

ous Disease Disease Deleteri-
ous

rs778578091 E75K Deleterious Possibly 
damaging

Probably 
damaging Medium Disease Disease Deleterious Effect Deleteri-

ous Disease Disease Deleteri-
ous

rs1200214781 M76K Deleterious Probably 
damaging

Probably 
damaging High Disease Disease Deleterious Effect Deleteri-

ous Disease Disease Deleteri-
ous

rs1256618794 W78C Deleterious Probably 
damaging

Probably 
damaging High Disease Disease Deleterious Effect Deleteri-

ous Disease Disease Deleteri-
ous

rs753277177 W78R Deleterious Probably 
damaging

Probably 
damaging High Disease Disease Deleterious Effect Deleteri-

ous Disease Disease Deleteri-
ous

rs1800462 A80P Deleterious Probably 
damaging

Probably 
damaging High Disease Disease Deleterious Effect Deleteri-

ous Disease Disease Deleteri-
ous

rs111901354 R82G Deleterious Probably 
benign

Probably 
damaging Medium Disease Disease Deleterious Effect Neutral Disease Disease Deleteri-

ous

rs111901354 R82W Deleterious Probably 
benign

Probably 
damaging Medium Disease Neutral Deleterious Effect Deleteri-

ous Disease Disease Deleteri-
ous

rs1293957844 G83V Deleterious Probably 
damaging

Probably 
damaging High Disease Disease Deleterious Effect Deleteri-

ous Disease Disease Deleteri-
ous

rs1235431245 H84D Deleterious Probably 
damaging

Probably 
damaging High Disease Neutral Deleterious Effect Deleteri-

ous Disease Disease Deleteri-
ous

rs1582044292 H84L Deleterious Probably 
damaging

Probably 
damaging Medium Disease Neutral Deleterious Effect Deleteri-

ous Disease Disease Neutral

rs753545734 G88S Deleterious Probably 
damaging

Probably 
damaging High Disease Disease Deleterious Effect Deleteri-

ous Disease Disease Deleteri-
ous

rs753545734 G88C Deleterious Probably 
damaging

Probably 
damaging High Disease Disease Deleterious Effect Deleteri-

ous Disease Disease Deleteri-
ous

rs1784191846 V89E Deleterious Probably 
damaging

Probably 
damaging High Disease Disease Deleterious Effect Deleteri-

ous Disease Disease Deleteri-
ous

rs1681788109 E90V Deleterious Possibly 
damaging

Probably 
damaging High Disease Disease Deleterious Effect Deleteri-

ous Disease Disease Deleteri-
ous

rs1474060016 L105R Deleterious Possibly 
damaging

Probably 
damaging High Disease Disease Deleterious Effect Neutral Disease Disease Deleteri-

ous

rs886061266 I112N Deleterious Probably 
benign

Probably 
damaging Medium Disease Disease Deleterious Effect Neutral Disease Disease Deleteri-

ous

rs1396619437 S129P Deleterious Probably 
benign

Probably 
damaging Medium Disease Disease Deleterious Effect Neutral Disease Disease Deleteri-

ous

rs72552738 C132Y Deleterious Probably 
damaging

Possibly 
damaging Medium Disease Disease Deleterious Neutral Deleteri-

ous Disease Disease Deleteri-
ous

rs72552737 G144R Deleterious Probably 
damaging

Probably 
damaging Medium Disease Neutral Deleterious Effect Neutral Disease Disease Deleteri-

ous

rs1310627040 I149T Deleterious Probably 
damaging

Probably 
damaging Medium Disease Disease Deleterious Effect Deleteri-

ous Disease Disease Deleteri-
ous

rs1447033392 W150G Deleterious Probably 
damaging

Probably 
damaging Medium Disease Disease Deleterious Effect Deleteri-

ous Disease Disease Deleteri-
ous

Continued
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Variant ID SNP PROVEAN PANTHER Polyphen-2
Mutation 
Assessor

Meta-
SNP PMut PredictSNP1 SNAP2 SuSPect SNPs&GO

PhD-
SNP SIFT

rs1354851110 D151Y Deleterious Probably 
damaging

Probably 
damaging High Disease Disease Deleterious Effect Deleteri-

ous Disease Disease Deleteri-
ous

rs1408113946 R152T Deleterious Probably 
damaging

Probably 
damaging High Disease Disease Deleterious Effect Deleteri-

ous Disease Disease Deleteri-
ous

rs1800460 A154T Deleterious Probably 
benign

Possibly 
damaging High Disease Disease Deleterious Effect Deleteri-

ous Disease Disease Deleteri-
ous

rs1158437171 L155S Deleterious Possibly 
damaging

Probably 
damaging High Disease Disease Deleterious Effect Deleteri-

ous Disease Disease Deleteri-
ous

rs112339338 R163S Deleterious Probably 
damaging

Probably 
damaging High Disease Disease Deleterious Effect Deleteri-

ous Disease Disease Deleteri-
ous

rs112339338 R163C Deleterious Probably 
damaging

Probably 
damaging High Disease Disease Deleterious Effect Deleteri-

ous Disease Disease Deleteri-
ous

rs201695576 Y166C Deleterious Probably 
damaging

Probably 
damaging High Disease Disease Deleterious Effect Deleteri-

ous Disease Disease Deleteri-
ous

rs1386533390 L182P Deleterious Probably 
damaging

Probably 
damaging High Disease Disease Deleterious Effect Deleteri-

ous Disease Disease Deleteri-
ous

rs1783991755 V184D Deleterious Probably 
benign

Probably 
damaging Medium Disease Disease Deleterious Effect Neutral Disease Disease Deleteri-

ous

rs747307984 L185R Deleterious Probably 
benign

Possibly 
damaging High Disease Disease Deleterious Effect Deleteri-

ous Disease Disease Deleteri-
ous

rs1554137341 Y187C Deleterious Probably 
damaging

Probably 
damaging High Disease Disease Deleterious Effect Deleteri-

ous Disease Disease Deleteri-
ous

rs758437011 G194S Deleterious Probably 
damaging

Probably 
damaging High Neutral Disease Deleterious Effect Deleteri-

ous Neutral Disease Deleteri-
ous

rs79901429 I204T Deleterious Probably 
benign

Probably 
damaging Medium Disease Disease Deleterious Effect Deleteri-

ous Neutral Disease Deleteri-
ous

rs761626260 L207W Deleterious Probably 
damaging

Probably 
damaging Medium Disease Neutral Deleterious Effect Deleteri-

ous Disease Disease Neutral

rs377085266 C212R Deleterious Probably 
damaging

Probably 
damaging Medium Disease Disease Deleterious Effect Deleteri-

ous Disease Disease Neutral

rs780065109 G231V Deleterious Probably 
damaging

Probably 
damaging Medium Disease Disease Deleterious Effect Deleteri-

ous Disease Disease Deleteri-
ous

rs781105138 L235P Deleterious Probably 
benign

Probably 
damaging Medium Disease Disease Deleterious Effect Deleteri-

ous Disease Disease Deleteri-
ous

rs1142345 Y240C Deleterious Probably 
damaging

Probably 
damaging High Disease Disease Deleterious Effect Deleteri-

ous Neutral Disease Deleteri-
ous

rs1142345 Y240S Deleterious Probably 
damaging

Probably 
damaging Medium Neutral Disease Deleterious Neutral Deleteri-

ous Disease Disease Deleteri-
ous

Table 1.   List of missense nsSNPs predicted to be deleterious by at least nine out of 12 sequence-based tools.

Table 2.   List of missense nsSNPs predicted to be deleterious by at least six out of eight structure-based tools 
(As Y240S has already been identified to be deleterious, it is not a novel deleterious SNP and hence, it was not 
considered for further in silico analyses). *SVM = Support Vector Machines Method, NN = Neural Networks 
Method.

Variant ID SNP CUPSAT

DUET

I-Mutant

MUpro

INPS-MD PoPMuSiC HoTMuSiC SNPMuSiCmCSM SDM DUET SVM* NN*

rs72552741 W33G Destabilis-
ing

Destabiliz-
ing

Destabiliz-
ing

Destabiliz-
ing Decrease Decrease Decrease Decrease Strongly 

Decrease
Strongly 
Decrease

Strongly 
Decrease

rs753277177 W78R Destabilis-
ing

Destabiliz-
ing

Destabiliz-
ing

Destabiliz-
ing Decrease Decrease Decrease Decrease Decrease Decrease Strongly 

Decrease

rs1784191846 V89E Destabilis-
ing

Destabiliz-
ing

Destabiliz-
ing

Destabiliz-
ing Decrease Decrease Decrease Decrease Strongly 

Decrease
Strongly 
Decrease Decrease

rs1447033392 W150G Destabilis-
ing

Destabiliz-
ing

Destabiliz-
ing

Destabiliz-
ing Decrease Decrease Decrease Decrease Strongly 

Decrease
Strongly 
Decrease

Strongly 
Decrease

rs1386533390 L182P Destabilis-
ing

Destabiliz-
ing

Destabiliz-
ing

Destabiliz-
ing Decrease Decrease Decrease Decrease Strongly 

Decrease
Strongly 
Decrease Decrease

rs1142345 Y240S Destabilis-
ing

Destabiliz-
ing

Destabiliz-
ing

Destabiliz-
ing Decrease Decrease Decrease Decrease Strongly 

Decrease Decrease Decrease
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Table 3.   Screening of pre-identified SNPs to validate the screening process (SNPs that would get selected as 
per the screening process utilised in this study are highlighted in bold. PV = PROVEAN, PT = PANTHER, 
PP2 = PolyPhen-2, MA = Mutation Assessor, MS = Meta-SNP, PM = PMut, PS1 = PredictSNP1, S2 = SNAP 2, 
SP = SuSPect, SG = SNPs&GO, PS = PhD-SNP, ST = SIFT, C = CUPSAT, D = DUET, IM = I-Mutant, MP = MUpro, 
IMD = INPS-MD, PPM = PoPMuSiC, HTM = HoTMuSiC, SM = SNPMuSiC, VD = Very Dangerous, 
D = Dangerous, N = Neutral). *NA = Not Available (Residues 1 to 16 are absent in the PDB file 2H11, hence 
structural analysis tools could not be used for this SNP. Mutation Assessor also did not yield any result for this 
SNP). **NA = Not Available (This pre-identified SNP is not annotated in dbSNP).

Variant ID SNP

Sequence-based tools (12) Structure-based tools (8)
Tools
(20) NaturePV PT PP2 MA MS PM PS1 S2 SP SG PS ST C D IM MP IMD PPM HTM SM

rs9333569 M1V N D N NA* N N N N N N N D NA* NA* NA* NA* NA* NA* NA* NA* NA* D 84 ,VD 77

rs72552742 E28V D N N N N D N D N N D D D N N D N D D N 9 D 77,88,91

NA** Q42E N N N N N N N N N N N N D N N N N D D N 3 D 77,81

rs72552740 L49S D D D D D D D D D D D D D D D D D D D D 20 VD 77,85,88

rs200591577 L69V D D D D D D D D D D D D D N D D D D D N 18 VD 75,83

rs777686348 G71R D D D D D D D D D D D D D D D D N D D D 19 VD 77,81

rs281874771 A73V D D D N D D D D D N N D D D N N N D D D 14 VD 89

rs1800462 A80P D D D D D D D D D D D D D D D D D D D D 20 VD 77,78,87

rs111901354 R82W D N D N D N D D D D D D D D D N N D D N 14 VD 74

NA** Y107D D D D N D D D D N D D D D D D D D D D D 18 VD 76

rs115106679 E114K N N D N N N N N N N N D D N D D N D D N 7 VD 74,86

rs200220210 S125L D N N N N N N N N N N N D N N N N D D D 5 D 77,88,91

rs72552738 C132Y D D N N D D D N D D D D N D D D D D D D 16 D 77,91, VD 80

rs72552737 G144R D D D N D N D D N D D D D D D D N D D D 16
D 77,88,91, 
VD 15

rs1800460 A154T D N N D D D D D D D D D N D D D N D D D 16
VD 
11,73,78,82,87,89

rs112339338 R163C D D D D D D D D D D D D N D D D N D D D 18 VD 74

rs144041067 R163H D D D N D N D D D N D N D D D D D D D N 15 VD 72,77,81

NA** R163P D D D D D D D D D D D D N D D D D D D D 19 VD 75,77

rs201695576 Y166C D D D D D D D D D D D D N D D D D D D D 19 D 79

rs74423290 A167G D N N N N D D D D N D N D D D D D D D D 15 D 92

rs72556347 F208L N D N N N N N N N N D N D D D D D D D D 10 D 90

rs377085266 C212R D D D N D D D D D D D N D D D D D D D D 18 VD 83

rs150900439 K238E N N N N N N N N N N N D N N D D N D D N 5 D 75,77

rs1142345 Y240C D D D D D D D D D N D D D D D D N D D D 19
VD 
9,11,73,78,82,87

rs1142345 Y240S D D D N N D D N D D D D D D D D D SD D D 18 VD 20

Figure 2.   Accuracy of the in silico screening pipeline with respect to the pre-identified deleterious missense 
mutations of human TPMT.
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sequences had the same amino acid residue at the residue location under consideration. For instance, the amino 
acid “W” or tryptophan was conserved at residue 33 across all 10 sequences and hence, was assigned a score of 10 
for MSA. If an amino acid was at a particular residue location only for human TPMT and none of the other nine 
TPMT sequences, it would be assigned a score of 1. As for CDD, 13 of the most dissimilar sequences of TPMT 
were considered for MSA, and scores ranging from 1 to 13 were considered, assigned similarly to MSA depend-
ing on how many sequences had that particular amino acid conserved at the given residue location.

The ConSurf results showed that four of the five screened mutations, W33G, W78R, V89, and W150G were 
present at residues that were highly conserved as all of them were on residues possessing a color score of 8 or 9. 
Residue 182 (where the L182P mutation occurs) had a slightly above-average conservation score of 6. The color 
scores corresponding to all amino acid residues of TPMT as predicted by ConSurf are shown in Table S4. They are 
structurally represented for chain A of TPMT (2H11) in Figure S2 as a still image and as an animation for better 
visualization through the POLYVIEW-3D server94 in Animation 1. The conservation analysis results obtained 
through the five MSA tools, ConSurf and CDD with respect to the residues associated with the five screened 
SNPs are presented in Table S5. All of them were conserved across the 10 aforementioned species whose TPMT 
sequences were considered for MSA. In addition, CDD which identified the most diverse TPMT sequences and 
performed MSA found that all but one SNP (W150G) were at residues that were conserved across at least seven 
of the most dissimilar TPMT sequences indicating that those residues have stood the test of time and evolution 
to remain a part of the amino acid sequence of the protein, presumably due to their important contribution to 
the desired functioning or maintenance of structural stability of the protein. It is worth noting that this does 
not invalidate the candidature of W150G as a potentially deleterious missense SNP of TPMT, since despite the 
CDD results, residue 150 had a color score of 8 as per ConSurf results. Furthermore, conservation level is not 
an absolute indicator, but rather a good general indicator of deleterious nature.

As per ConSurf, 108 residues (46.55%) possessed color scores that were greater than or equal to 6, and 47 
(18.1%) among them were highly conserved having a conservation score of 8 or 9. Among these 108 residues, 
the largest conserved region consisted of residues 64–110 (except residues 85, 91, 94, 97, 98, 101, 104, 106, and 
108) having 38 residues with color scores greater than or equal to 6 and 20 highly conserved residues having color 
scores greater than or equal to 8. The regions covering the ligand (S-adenosyl-L-methionine or SAM) attachment 
site are from residues 29 to 40 and 134 to 135. Hence, ligand binding does not explain the high conservation level 
of this region. Further investigation is required to deduce the high level of conservation observed in this region.

Interaction analysis.  The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database 
was used to identify the interaction network of human TPMT. The output was given in the form of edges and 
nodes that represent interactions and proteins, respectively, as shown in Figure S3. All of the predicted func-
tional partners of TPMT and their respective scores are shown in Table S6. These scores indicate how likely an 
interaction is to be true, as evaluated by STRING.

The interaction analysis revealed that the TPMT interaction network is primarily involved in the biosynthesis 
of guanosine monophosphate (GMP) and guanosine triphosphate (GTP), catabolism of deoxyribonucleoside 
triphosphate (dNTPs) and the biosynthesis as well as degradation of purines. GMP is a nucleotide that is utilized 
as a monomer in RNA. GTP is an extremely essential nucleotide in the body serving as a medium of energy 
transfer in the cell, similar to adenosine triphosphate (ATP), albeit more specific than its more universal counter-
part, ATP. It is also important in signal transduction, most prominently in G-proteins. Furthermore, cyclic GMP 
(cGMP) which is derived from GTP, is a very important second messenger in the body involved in key biological 
processes, including but not limited to glycogenolysis, cellular apoptosis, vasodilation, phototransduction in the 
eye, and more. Due to the importance of the network with regard to purines and dNTPs, it is very important for 
the regular functioning of most cellular processes. Interestingly, the network is also involved in lymphocyte prolif-
eration reaffirming an immune response association which is in stark contrast to the importance of TPMT in the 
methylation of thiopurine drugs that treat autoimmune disorders like Crohn’s disease and rheumatoid arthritis.

Suffice it to say that the TPMT interaction network is a very important network involved in several key 
biological processes. All major biological processes in which the TPMT interaction network is involved, as per 
the STRING database are shown in Table S7. As mentioned before, TPMT polymorphisms can severely alter 
enzyme activity and the appropriate conduction of these key biological processes that the network is involved 
in, are subject to the deleterious consequences of these dangerous polymorphisms.

Oncogenic analysis and phenotypic analysis.  As mentioned before, TPMT polymorphisms are 
known to be associated with cancers. Hence, to predict the oncogenic nature of the screened SNPs, CScape and 
CScape-somatic were used. The former predicts the oncogenic nature of somatic point mutations that occur in 
the coding regions of the cancer genome with an accuracy of 92%. The input is given using the format: chromo-
some, position, reference, mutant; as per the GRCh38 assembly for one or multiple mutations. The output is in 
the form of p-values which can lie between 0 and 1 and values above 0.5 are considered deleterious. On the other 
hand, values below 0.5 are considered benign. It predicted that all five mutations are oncogenic and W33G with 
high confidence. CScape-somatic is a tool that can differentiate between mutations that can be cancer drivers 
and mutations that can be passenger variants. Cancer drivers occur fairly early in the development of the tumor. 
Meanwhile, passenger variants accumulate at later stages after a tumor starts to grow and usually correspond to 
low or no oncogenicity. The input and accuracy of CScape-somatic are identical to CScape, except for the fact 
that the GRCh37 assembly is used in the input. Akin to CScape, the predictions of CScape-somatic are again 
given as p-scores that lie between 0 and 1. Mutations that possess p-scores above 0.5 are predicted to be cancer 
drivers. Conversely, mutations that possess p-scores 0.5 are predicted to be passenger variants. CScape-somatic 
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predicted that all five mutants are cancer drivers and W33G with high confidence. The results obtained from 
both oncogenic tools are presented in Table 4.

In addition to CScape and CScape-somatic, Dr Cancer was also used for the assessment of the oncogenic 
potential of SNPs. It is a slightly older tool than the CScape tools that utilize a disease-specific machine learning 
approach to predict whether a missense SNP is associated with cancer or not. It does so by utilizing multiple 
methods including SEQPROF where the sequence and profile at the mutated position are the input for the Sup-
port Vector Machine (SVM), SVM-GOS where the GOS (Gene Ontology Score) of the mutated sequence is the 
input for the SVM, and finally, SEQPRFGO where the input for the SVM is the input provided for the two prior 
methods. The first method, SEQPROF predicted that all five mutations are cancer-associated while the other two 
methods did not predict any of the mutations to be cancer-associated. The results pertaining to the five mutations 
obtained from Dr Cancer are shown in Table S8.

Functional Analysis through Hidden Markov Models (FATHMM) server was used for phenotypic analysis 
as it predicts the phenotypic consequences of mutations in the human genome. The input given was the Uniprot 
ID of TPMT along with the amino acid substitutions associated with the five deleterious missense SNPs. The 
tool classified only L182P as a dangerous mutation, associated with abnormalities of the head, neck, face, mouth, 
and philtrum. The results obtained from the FATHMM server are presented in Table S9.

Structural effects of deleterious missense SNPs.  W33G at residue 33 is present at a ligand binding 
site and will undoubtedly have an effect on the ligand binding process and subsequent functioning of the protein. 
V89E at residue 89 and W150G at residue 150 is extremely close to the ligand binding sites at residues 90 and 150 
respectively and hence, they may also impact the ligand binding process. The HOPE server was used to visualize 
the five highly deleterious missense SNPs, as shown in Animation 2. It was found that except V89E, all mutant 
residues were smaller in size when compared to their wild-type counterparts. Hence, with respect to W33G, 
W78R, W150G, and L182P, it was predicted that the mutant residues would not fit in the core of the protein 
since they are larger than the respective wild-type counterparts. All structural consequences of the mutations as 
predicted by the HOPE server have been presented in Table S10.

The secondary structure alterations caused by the mutations, as obtained from NetSurfP-2.0 are shown in Fig-
ure S4. It was observed that L182P caused the helix to start from residue 47 instead of residue 46 in the wild-type 
structure of TPMT (2H11). However, NetSurfP-2.0 predicted this coil to start at residue 47 itself, which is incor-
rect. Regardless, if the predicted change does occur, it might be damaging due to the change induced with respect 
to the helix. W33G and L182P replaced a coil with a strand at residue 122. However, in the wild-type structure 
of TPMT (2H11), this residue is already under the conformation of a strand. This is because NetSurfP-2.0 did 
not correctly predict the confirmation at residue 122 for the wild-type sequence of TPMT. Since the wild-type 
structure of TPMT already has that conformation at residue 122, if the mutation causes the predicted change, it 
will make no difference. A similar change was observed with respect to W33G and V89E, but here the strand was 
replaced by a coil at residue 68. However, the wild-type structure of TPMT (2H11) already has a coil at residue 68 
which was not predicted by NetSurfP-2.0. Hence, this predicted change will also cause no damage. Yet another 
change akin to the aforementioned changes was observed where L182P replaced a strand with a coil at residue 
187, but in the wild-type structure of TPMT, this residue is already in the confirmation of a coil. Hence, this 
predicted change will also cause no damage. Due to the inconsistencies between the secondary structure predic-
tion of wild-type TPMT by NetSurfP-2.0 and the actual wild-type structure of TPMT, it is difficult to draw any 
concrete conclusions regarding the secondary structure changes. Hence to infer some credible changes caused 
by the mutations in the secondary structure and other structural aspects of the protein, MDS was carried out 
for a period of 100 ns, the results of which are discussed in “Molecular dynamics simulations analysis” section.

The CASTp 3.0 server was used to assess the alterations in the binding pockets caused by the mutations. The 
results for the same are shown in Table S11. It was observed that W33G and W150G vastly increased the size 
of the largest binding pocket of TPMT which will undoubtedly impact ligand binding as residue 33 is a ligand 
binding site. W78R and V89E did not impact the binding pocket dimensions significantly. L182P introduced a 
few pockets that are absent from the wild-type protein albeit of a very minuscule size that is unlikely to impact 

Table 4.   : Oncogenic nature of mutations predicted using CScape and CScape-somatic. *HC = High 
Confidence.

Variant ID SNP

CScape CScape-somatic

Input & 
Assembly Coding Score Message

Input & 
Assembly Coding Score Message

rs72552741 W33G 6,18,149,031,A,C 
& GRCh38 0.898663 Oncogenic (HC*) 6,18,149,262,A,C 

& GRCh37 0.907987 Driver (HC*)

rs753277177 W78R 6,18,147,824,A,G 
& GRCh38 0.695307 Oncogenic 6,18,148,055,A,G 

& GRCh37 0.820811 Driver

rs1784191846 V89E 6,18,143,696,A,T 
& GRCh38 0.807748 Oncogenic 6,18,143,927,A,T 

& GRCh37 0.781448 Driver

rs1447033392 W150G 6,18,139,009,A,C 
& GRCh38 0.860191 Oncogenic 6,18,139,240,A,C 

& GRCh37 0.728649 Driver

rs1386533390 L182P 6,18,133,839,A,G 
& GRCh38 0.519117 Oncogenic 6,18,134,070,A,G 

& GRCh37 0.841487 Driver
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the binding process much. However, it also introduced a larger binding pocket that is absent from the wild-type 
protein. This might affect the binding process.

Finally, AmylPred 2 was used to identify amyloid-forming regions in TPMT. Amyloid refers to proteinaceous 
and abnormally fibrous extracellular deposits. It is insoluble, mostly possesses a β-sheet conformation and is 
associated with a variety of diseases called amyloidoses, such as Alzheimer’s disease, type 2 diabetes and more. 
They are usually progressive disorders associated with high morbidity and mortality95. The amyloid-forming 
regions predicted by AmylPred 2 for TPMT include residue groups 64–69, 86–89, 100–101, 127–138, 147–149, 
154–158, 170–175, 178–187, 207–217 and 231–243. W150G is just one residue away from the predicted amyloid 
region comprised of residues 147–149, while V89E and L182P fall under these regions with residues 86–89 and 
178–187, respectively. Hence, they may influence these predicted amyloid- forming regions and worsen disease 
progression.

Post‑translational modification analysis.  GPS 5.0 software was used to predict the PTM sites of TPMT. 
The predicted PTM sites and their distribution are shown in Figure S5. While none of the mutations are at PTM 
sites, W33G is near the PTM site T38, V89E is in proximity to S92 and S85. Furthermore, L182P is in close 
proximity to the PTM site Y180. It is very much possible that due to their proximity to PTM sites, W33G, V89E 
and L182P can impact the phosphorylation of the protein, which is essential for the natural functioning of the 
protein.

Molecular dynamics simulations analysis.  MDS was performed to identify the structural consequences 
of the mutations in a dynamic fashion and at an atomic level. Seven systems (Wild-Type Apo protein (WT), 
Wild-Type protein with SAH ligand attached (WT-SAH), W33G, W78R, V89E, W150G, and L182P) were gen-
erated for MDS, following which MDS was performed for a simulation time of 100 ns through GROMACS. All 
of the 10,000 frames from the 100 ns of simulation time were recorded for the WT, WT-SAH, W33G, W78R, 
V89E, W150G, and L182P systems and are shown in Animations 3, 4, 5, 6, 7, 8, and 9 respectively. From Anima-
tion 4 (WT-SAH) and Animation 5 (W33G) it can be clearly seen that the ligand interactions upon stabilization 
do not resemble each other. As mentioned before, W33G occurs at a ligand binding site and is undoubtedly 
the reason for the difference in ligand interactions between the W33G mutant and the wild-type protein. From 
Animation 6 (W78R) it is apparent that the ligand interactions are different from the wild-type protein, however 
not to the extent observed in W33G. The difference is even less apparent in V89E (Animation 7). However, from 
Animation 8 (W150G), it can be clearly seen that the ligand interactions in the W150G mutant, upon stabiliza-
tion, are very different from the wild-type protein. Furthermore, from Animation 9 (L182P), it can also be seen 
that the ligand interactions are different from the wild-type protein. These results are in line with the CASTp 3.0 
results where W33G and W150G affected the largest binding pocket of TPMT and L182P introduced and altered 
several pockets, while W78R and V89E did not have much impact on the binding pockets. Trajectory analysis 
and MM-PBSA analysis were performed in order to quantify the MDS results.

RMSD analysis.  RMSD was calculated for all seven protein systems to assess their respective stabilities. 
RMSD as a parameter is useful for assessing the stability of the protein relative to its conformation. Smaller 
RMSD deviations correspond to a more stable protein structure. A plot of RMSD against time for all systems is 
shown in Fig. 3A. The apo form of the wild-type protein and the ligand-bound form had average RMSD values of 
0.301 nm and 0.353 nm, respectively. From Fig. 3A, it can be seen that the apo form of TPMT is more stable than 
the ligand-bound TPMT and the average RMSD values reflect the same. Meanwhile, the mutants W33G, W78R, 
V89E, W150G and L182P had average RMSD values of 0.317, 0.392, 0.335, 0.331 and 0.291 nm, respectively. It 
was also observed that the W150G mutant showed the most RMSD fluctuations till the first 50 ns. Interestingly, 
the L182P mutant protein appeared to possess higher stability than both the apo form and ligand-bound wild-
type conformations of the protein. Furthermore, only W78R had an average RMSD value higher than ligand-
bound TPMT, implying all other mutations are more stable than ligand-bound TPMT as per RMSD analysis. 
The RMSD results indicated that all systems attained stability after 30 ns. Hence, the last 70 ns of the trajectory 
were considered with respect to the calculations pertaining to the rest of the MDS parameters.

RMSF analysis.  RMSF was used to assess the flexibility and stability of the seven systems. High RMSF val-
ues usually signify greater flexibility during MDS. A plot showcasing the RMSF values against all residues for 
all systems is shown in Fig. 3B. The apo form of the wild-type protein and the ligand-bound form had average 
RMSF values of 0.120 nm and 0.132 nm, respectively, again indicating that the apo form of TPMT is more stable 
than the ligand-bound TPMT. Meanwhile, the mutants W33G, W78R, V89E, W150G, and L182P had aver-
age RMSF values of 0.108, 0.123, 0.100, 0.148, and 0.108 nm, respectively. Interestingly, mutants W33G, V89E, 
and L182P appear to be more stable than both the apo form and ligand-bound wild-type conformations of the 
protein. Furthermore, only W150G had an average RMSF higher than ligand-bound TPMT, implying all other 
mutations are more stable than ligand-bound TPMT at least in the 100 ns of simulation time and as per RMSF.

Radius of gyration analysis.  The radius of gyration (Rg) of a system indicates the root-mean-square dis-
tance of the atoms of the protein in the system from the axis of rotation and is useful to assess protein structure 
compactness. Low Rg values indicate a more compact and rigid protein structure, while high Rg values indicate 
that the protein is less compact and flexible. A plot showcasing the variation of Rg with respect to time for all 
systems is shown in Fig. 3C. The apo form of the wild-type protein and the ligand-bound form had average Rg 
values of 1.704 nm and 1.726 nm, respectively. Hence, the apo form of TPMT is less flexible than the ligand-
bound form of TPMT. Meanwhile, the mutants W33G, W78R, V89E, W150G, and L182P had average RMSF 
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values of 1.713, 1.721, 1.730, 1.735, and 1.724 nm, respectively. The apo form of the protein was found to be the 
most stable among all systems. V89E and W150G were the only systems that were less compact and more flexible 
than ligand-bound TPMT, implying all other mutations are more stable as per the Rg values.

Hydrogen bonding analysis.  Hydrogen bonds are important for maintaining the stability of the protein 
structure. A greater number of average hydrogen bonds correspond to a more stable protein structure, and con-
versely, a fewer number of average hydrogen bonds correspond to a less stable protein structure. A plot showcas-
ing the number of intramolecular hydrogen bonds against time for all systems is shown in Fig. 3D. The apo form 
of the wild-type protein and the ligand-bound form had 158 and 157 hydrogen bonds on average, respectively. 
While this does mean that, yet again ligand-bound TPMT is less stable than the apo form of TPMT, the differ-
ence is very minuscule. Meanwhile, the mutants W33G, W78R, V89E, W150G, and L182P had 158, 165, 160, 
153, and 159 hydrogen bonds on average, respectively. W33G and L182P seemed to have a negligible effect on 
the hydrogen bond formation. However, apart from W150G, the average number of hydrogen bonds was more 
than or equal to the average hydrogen bonds in the apo form of TPMT, implying that all other mutations are 
more stable than the apo form of TPMT.

SASA analysis.  SASA as a parameter is useful for assessing the portion of the protein surface that is exposed 
to the water solvent. A plot of SASA against time for all systems is shown in Fig. 4A, while a plot of SASA against 
all residues for all systems is shown in Fig. 4B. The apo form of the wild-type protein and the ligand-bound form 
had average SASA values of 117.414 nm2 and 124.768 nm2, respectively. Their average residual SASA values were 
found to be 0.512 nm2 and 0.545 nm2, respectively. Both parameters indicate that the ligand-bound TPMT has a 

Figure 3.   RMSD, RMSF, Rg and H-bond analysis results.
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hydrophobic core that is more exposed to the solvent than the apo form of TPMT than the apo form of TPMT. 
This could be essential for the appropriate functioning of the protein. Meanwhile, the mutants W33G, W78R, 
V89E, W150G, and L182P had average SASA values of 122.214, 121.862, 124.490, 126.017, and 125.385 nm2, 
respectively, and average residual SASA values of 0.534, 0.532, 0.543, 0.550 and 0.557 nm2, respectively. Hence, 
mutants W33G, W78R, and V89E have more hydrophobic cores that are more protected from the solvent when 
compared to the ligand-bound form of TPMT. However, this could be detrimental as a certain degree of flex-
ibility is important for the normal functioning of the protein. On the other hand, mutants W150G and L182P 
appeared to have more hydrophobic cores that are more exposed to the solvent than ligand-bound TPMT as per 
the SASA analysis.

This is in agreement with respect to the results from prior analyses where the apo form of TPMT was always 
found to possess more stability than ligand-bound TPMT, however excess stability or plasticity of the protein 
can actually hamper its natural functioning and a certain degree of flexibility is needed for the protein to bind 
to the ligand and perform its intended function96. From the results obtained thus far, it would seem that most 
mutations increase the plasticity of the protein structure and thereby reduce its functional capabilities. In fact, in 
another study where MDS was performed for the Y240S mutant of TPMT, the RMSD graph of the Y204S mutant 
showed a lesser average value than wild-type TPMT, despite the fact that in the same study Y204S was proven 
to be very deleterious through in vivo techniques19. Another study found higher SASA values in the three most 
well-known and deleterious TPMT alleles (A80P, A154T, and Y240C) than the SASA values of WT-TPMT97. 
Hence, it is not unprecedented for enhanced stability resulting from missense mutations to have a negative 
effect on TPMT. Hence, these results are in line with prior mutational studies of TPMT. To further validate this 
phenomenon of functional hampering due to enhanced plasticity in the case of TPMT polymorphisms, the MM-
PBSA method was utilized to assess the binding energy and its components for all six ligand-bound systems in 
“Binding energy analysis” section.

Figure 4.   SASA analysis and PCA results.
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PCA.  PCA was also performed in order to assess the collective motions of the seven systems. The motions of 
the Cα atoms of a given protein were the basis of PCA. Eigenvalues were used to quantify the atomic contribu-
tion to the collective motion and eigenvectors were used to quantify the overall direction of motion of atoms. The 
eigenvalues were plotted in decreasing order against the respective eigenvector for all seven systems in Fig. 4C. 
As is evident from Fig. 4C, apart from W150G, the eigenvalues of all mutations possessed amplitudes lower 
than that of the apo form and the ligand-bound form of TPMT, implying more rigidity in the collective motions 
upon mutations. This is in line with prior analyses as W150G was the only mutation that was predicted to be 
unstable by three parameters (RMSF, Rg, H-bonds, SASA). The first two eigenvectors were plotted oppositely in 
phase space where each of the continuum spectra represents the correlated motions. The analyzed clusters of all 
seven systems were plotted and are depicted in Fig. 4D. As is evident from prior analyses, most mutations with 
the exception of W150G, would be expected to reduce the collective motion of the system due to the enhanced 
plasticity. The PCA results line up with this expectation as it can be seen in Fig. 4D that apart from W150G, the 
collective motions of all mutations are more restricted than both the apo form and the ligand-bound form of 
TPMT, with W33G having the most restricted motion. This lines up with the Rg results where W33G was found 
to be the most rigid mutation system. Hence, it was observed that none of the mutant systems developed motion 
clusters that were similar to that of the apo form or ligand-bound form of TPMT, reaffirming the fact that they 
have a deleterious impact on TPMT.

Secondary structure analysis.  SSA was performed for all systems, and the results for the same are pre-
sented in Figure S6. In the apo form of the protein, a 5-turn helix conformation exists between residues 17 and 
27 after 85 ns. However, in the WT-SAH system, the residues were not in this conformation after 85 ns. Further-
more, close to residue 177, WT-SAH replaced the β-sheet conformation observed in the apo form, with bends. 
It also replaced the α-helix near residue 137 with turns for a brief period but stabilized similarly to the apo form 
near the end of simulation time. Most notably, the α-helix between residues 222 and 237 was completely replaced 
by bends in the WT-SAH system over the entire simulation time.

All mutant comparisons regarding secondary structure are with respect to the WT-SAH system, as all mutant 
systems are also ligand-bound. It was observed that in all mutant systems, residues 17 to 27 seemed to lose a 
lot of their secondary structure conformations, which is problematic as residue 26 is a ligand binding site. With 
respect to the W33G system, it very notably replaced the α-helix conformation between residues 27 and 37 with 
a 5-turn helix conformation for nearly the entirety of the simulation time. This is probably due to the difference 
in properties between tryptophan and glycine as discussed in the HOPE results, especially glycine being more 
flexible than tryptophan. This is also in line with the CASTp 3.0 results where this mutation massively altered the 
largest protein binding pocket and was predicted to impact ligand binding. However, towards the end of the simu-
lation time, the 5-turn helix conformation was replaced by turns. It is still very much possible that ultimately the 
conformation of that region would be a 5-turn helix in the W33G system, as that was the conformation conferred 
on the protein for the majority of the simulation time. The region in question covers three ligand binding sites 
at residues 26, 29, and 33. Hence, such a change could drastically impact ligand binding. The W33G system also 
brought back the α-helix conformation observed in the apo form of the protein between residues 222 and 237, 
which was absent in the WT-SAH system. As observed in prior analyses, W33G tends to enhance the plasticity 
of the protein. This was also observed in the variation of the secondary structure across time, wherein W33G had 
far lesser variation in the secondary structure conformations over time when compared to the WT-SAH system.

W78R on the other hand did introduce some more secondary structure variation in the initial residues and 
close to the mutation site, but reduced variation in other places. Furthermore, the α-helix between residues 222 
and 237 as seen in the W33G system, and the apo form of the protein was also seen in the first 50 ns in the W78R 
system, post which it was largely replaced by turns. Similar to W78R, the V89E system seemed to reduce the 
structural variation when compared to the WT-SAH system, although not to the degree observed in the W33G 
system, probably due to the enhanced plasticity caused by the V89E mutation. Notably, the α-helix conforma-
tion near residue 137 as observed in the WT-SAH system for a majority of the simulation time, was absent from 
the V89E system. This could be problematic for ligand binding as the region near residue 133 contains three 
ligand binding sites at residues 133, 134 and 135. The α-helix between residues 222 and 237 did appear in the 
first 5 ns in the V89E system as well, however it was replaced by bends after that. W150G appeared to have a 
slightly increased variation in the secondary structure when compared to the WT-SAH system which is in line 
with prior MDS analyses where W150G was predicted to impart instability to the system. It also introduced a 
5-turn helix conformation between residues 47 and 57 as opposed to an α-helix conformation in the WT-SAH 
system. The α-helix between residues 222 and 237 also appeared in the W150G system, albeit only for the first 
5 ns similar to V89E post which it only appeared on a few occasions. Curiously, L182P also created an α-helix 
conformation between residues 222 and 237, which lasted for over 60 ns in the 100 ns of simulation time. Akin 
to other mutations, the L182P system imparted enhanced plasticity to the protein and as a result, showed a 
reduced variation in secondary structure conformations across the simulation time to a degree similar to that 
observed in the W33G system. This lines up with the PCA results where L182P showed a restricted collective 
motion to a degree similar to W33G.

This common trend of introducing the α-helix conformation between residues 222 and 237 in mutant systems 
could be due to the fact that its presence might be partially responsible for enhanced plasticity. Upon closer 
inspection, it was found that while this residue region was in fact not in the α-helix conformation in the 100 ns 
simulation time of the WT-SAH system, it was in the α-helix conformation in the final ligand-bound TPMT 
structure i.e., in the structure with PDB ID 2H11. Furthermore, this particular stretch of residues harbored 28 
hydrogen bonds in the final structure. Figure S7 (generated using UCSF Chimera98) shows the hydrogen bonds 
present in the final ligand-bound TPMT structure (2H11) between the stretch of residues from residue 221 to 
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residue 237. This suggests that the formation of the α-helix conformation between residues 222 and 237 occurs 
post 100 ns and is important for enhancing the stability of the protein, as it is present in the final conformation. 
As the mutations increase plasticity, it is logical to surmise that they might introduce this conformation very 
early in order to contribute to the plasticity of the protein.

Binding energy analysis.  To further analyze the impact of the missense mutations on the protein with 
respect to ligand binding, the MM-PBSA method was used over the last 70 ns of simulation time with an inter-
val of 100 ps. Various components of binding energy including van der Waals energy, electrostatic energy, polar 
solvation energy and SASA energy, as well as the binding energy itself, which is the cumulative sum of the 
aforementioned components, were calculated for all systems except the apo form of TPMT. The average values of 
these parameters are stated in Table 5. It was observed that apart from L182P, all mutations drastically increased 
the binding free energy when compared to ligand-bound TPMT with W33G having the most significant impact 
on binding free energy. These results are in line with prior MDS analyses where most mutations enhanced the 
plasticity of the protein which has likely hampered ligand binding as evident from the binding free energy values. 
Furthermore, these results are also in line with the secondary structure analysis and PCA results analysis where 
it was observed that W33G seemed to impart the most plasticity to the protein–ligand system.

A graph showcasing the residual contribution to binding energy at catalytic residues (residue number 26, 
29, 33, 40, 69, 70, 90, 91, 133, 134, 135, 152 and 153) involved in ligand binding is presented in Figure S8. As 
is evident from the figure, most catalytic residues were unable to contribute to binding energy in all mutations 
except L182P. Interestingly, L182P shows a nearly threefold increase in binding energy at residue 152 when 
compared to wild-type ligand-bound TPMT. As shown in Figure S9, in the wild-type ligand-bound TPMT (WT-
SAH) system the distance between residue 152 and the ligand is over 7 Å while in the L182P mutant system, 
the distance between residue 152 and the ligand is just over 3 Å. Furthermore, there are a lot of hydrogen bonds 
nearby, making the conformations very rigid as opposed to a single one observed at the ligand near residue 152 
in the case of the WT-SAH system. This increased proximity and rigidity may cause repulsion and result in a 
threefold increase in binding energy at residue 152, as observed in the case of L182P. Figure 5 shows the change 
in ligand conformations over the simulation time for all six ligand-bound systems. It can be clearly seen that the 
ligand conformations are very similar at the start of the simulation (0 ns) and then from 20 ns onwards, they 
show variation with respect to the WT-SAH system. Animation 10 provides a 360° view of the change in ligand 
conformations over the simulation time for all six ligand-bound systems.

Relative deleterious nature of the screened deleterious TPMT missense SNPs.  To summarise 
the present study and visually draw meaningful conclusions, the relative deleterious natures of the five highly 
deleterious missense SNPs were determined, as shown in Fig. 6. The relative deleterious natures of the five nsS-
NPs were calculated through their respective absolute cumulative scores of sequence-based and structure-based 
tools, cumulative conservation scores at the mutated residues by ConSurf, CDD and all MSA tools, cumulative 
coding scores provided by both CScape and CScape-somatic (Oncogenic scores), changes in protein binding 
pockets with respect to volume (cumulative for W33G and L182P, due to the presence of multiple binding pocket 
changes), the distances to nearest amyloid-forming regions, the distances to nearest PTM sites, and the respec-
tive binding energies of the mutant systems calculated using the MM-PBSA method (MDS score) during MDS 
analysis.

Consider the oncogenic score where the cumulative score of CScape and CScape-somatic were considered. 
W33G was observed to have the highest cumulative oncogenic score among all mutations. Hence, to calculate 
the relative oncogenic score of say W78R, the cumulative oncogenic score of W78R (1.806) was divided by the 
cumulative oncogenic score of W33G (1.516) and multiplied by 100 which resulted in a relative oncogenic score 
for W78R as 83.942%.

This procedure was followed for all of the aforementioned categories for all mutations in order to unify the 
scale for all categories for all mutations for better interpretation and visualization. Due to the nature of the proce-
dure, a score of 100 for a mutation in a given category implies that it has the most deleterious effect on TPMT with 
respect to that category when compared to the other four mutations. For example, W33G has an oncogenic score 
of 100, which implies that it is the most deleterious missense SNP of TPMT among the five screened mutations 
with respect to oncogenicity. It is worth noting that for the categories that account for the distance of mutations 
from their nearest PTM site and nearest amyloid-forming region, a very minor change was incorporated into 

Table 5.   Binding energy and its components including van der Waals, electrostatic, polar solvation and SASA 
energy for all six ligand-bound systems, calculated over the last 70 ns of simulation time.

System
Van der Waals energy 
(kJ/mol)

Electrostatic energy 
(kJ/mol)

Polar solvation energy 
(kJ/mol) SASA energy (kJ/mol)

Binding energy (kJ/
mol)

WT-SAH − 215.76 ± 11.86 − 47.82 ± 9.34 146.29 ± 12.92 − 21.48 ± 0.92 − 138.77 ± 14.68

W33G − 0.004 ± 0.00 0.00 ± 0.00 16.21 ± 50.22 − 0.40 ± 3.47 15.81 ± 50.25

W78R − 0.005 ± 0.00 0.00 ± 0.00 5.13 ± 61.70 − 0.47 ± 3.52 4.65 ± 61.61

V89E − 0.005 ± 0.00 0.00 ± 0.00 − 17.84 ± 47.13 0.39 ± 3.64 − 17.45 ± 47.15

W150G − 0.005 ± 0.00 0.00 ± 0.00 − 28.27 ± 41.29 − 0.52 ± 3.85 − 28.8 ± 41.57

L182P − 210.10 ± 11.34 − 60.55 ± 10.00 189.25 ± 14.48 − 20.84 ± 0.87 − 102.24 ± 13.42
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the methodology. In the case of those two categories, after following the same aforementioned methodology to 
get the relative score, it was subtracted from 100 to get the final relative score. This was done because contrary to 
the other categories, a lower value indicates a closer distance to the nearest PTM site or amyloid-forming region 
which implies that the given mutation has a more deleterious effect. Finally, a category named “Total” was com-
puted where the relative scores of all categories were added and then using the same procedure used in the other 
categories, the “Total” category itself was calculated relative to the highest value in the “Total” category (W33G). 
Thus, from Fig. 6 it can be seen that W33G is the most deleterious missense mutation of TPMT amongst the five 
deleterious SNPs followed by W150G, V89E, L182P and W78R in the order of decreasing deleterious nature.

Figure 5.   Ligand conformations for all six ligand-bound systems across 0, 20, 40, 60, 80 and 100 ns of 
simulation time.
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Conclusion
The missense SNPs of the TPMT gene have been analyzed in the present study in order to identify novel del-
eterious SNPs through in silico means, including the validation of the in silico screening pipeline. TPMT was 
chosen due to the known association of its polymorphisms with the disease progression and treatments of 
several dangerous diseases including leukemia and IBD (Crohn’s disease and ulcerative colitis) (IBD). Since it 
is a known fact that in silico protocols cannot completely replace in vitro and in vivo experimental protocols 
which are usually more conclusive in nature, the present study has attempted to validate the screening pipeline 
by means of re-identifying known deleterious alleles of TPMT through the same. This was followed by the utili-
sation of a plethora of tools and analyses to gain a more comprehensive understanding of how the SNPs identi-
fied in the screening phase might be deleterious in nature. Among all missense SNPs of TPMT reported in the 
dbSNP database so far, five novel highly deleterious SNPs namely W33G (rs72552741), W78R (rs753277177), 
V89E (rs1784191846), W150G (rs1447033392) and L182P (rs1386533390) were identified in the present study. 
These SNPs have a high probability of being associated with the aforementioned diseases that are known to be 
associated with TPMT polymorphisms. The most deleterious SNP among the five was found to be W33G based 
on several different analyses. The authors believe that by giving a higher priority to these particular SNPs rather 
than considering the massive pool of all TPMT SNPs, future in vivo or in vitro research endeavors targeted at 
TPMT polymorphisms and/or their consequences in relevant disease progressions or treatments will greatly 
benefit from the present study.

Data availability
The SNP data utilized in this study are openly available in the dbSNP database at https://​www.​ncbi.​nlm.​nih.​gov/​
snp/?​term=​TPMT. The STRING database and CDD (Conserved Domain Database), used in the present study 
are available at https://​string-​db.​org/ and https://​www.​ncbi.​nlm.​nih.​gov/​cdd/ respectively. The protein sequence 
and structure used for TPMT in the present study, obtained from the UniProt database and PDB (Protein Data 
Bank) respectively are available at https://​www.​unipr​ot.​org/​unipr​otkb/​P51580/​entry#​seque​nces and https://​
www.​rcsb.​org/​struc​ture/​2H11 respectively. All data generated in the present study is present in the article and 
supplementary information.
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Figure 6.   The relative deleterious nature of the five highly deleterious TPMT missense SNPs. A score of 100 
for a mutation in a particular category indicates that the given mutation is the most deleterious with respect to 
that category (SQBT = Sequence-based tools, SRBT = Structure-based tools, BPI score = Binding pocket impact 
score, AFR = Amyloid forming region, PTM = Post-translational modification, MDS = Molecular dynamics 
simulations).
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