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Abstract

The objective of this study was to evaluate the performance of stacked species distribution models in predicting the alpha
and gamma species diversity patterns of two important plant clades along elevation in the Andes. We modelled the
distribution of the species in the Anthurium genus (53 species) and the Bromeliaceae family (89 species) using six modelling
techniques. We combined all of the predictions for the same species in ensemble models based on two different criteria: the
average of the rescaled predictions by all techniques and the average of the best techniques. The rescaled predictions were
then reclassified into binary predictions (presence/absence). By stacking either the original predictions or binary predictions
for both ensemble procedures, we obtained four different species richness models per taxa. The gamma and alpha diversity
per elevation band (500 m) was also computed. To evaluate the prediction abilities for the four predictions of species
richness and gamma diversity, the models were compared with the real data along an elevation gradient that was
independently compiled by specialists. Finally, we also tested whether our richness models performed better than a null
model of altitudinal changes of diversity based on the literature. Stacking of the ensemble prediction of the individual
species models generated richness models that proved to be well correlated with the observed alpha diversity richness
patterns along elevation and with the gamma diversity derived from the literature. Overall, these models tend to
overpredict species richness. The use of the ensemble predictions from the species models built with different techniques
seems very promising for modelling of species assemblages. Stacking of the binary models reduced the over-prediction,
although more research is needed. The randomisation test proved to be a promising method for testing the performance of
the stacked models, but other implementations may still be developed.
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Introduction

Altitudinal gradients have proven to be useful to test general

hypotheses on the main drivers shaping global species diversity

patterns, such as scale, landscape ecology, and area and season

length effects [1]. Altitudinal gradients are complex gradients and

thus include variations in several environmental factors, such as

temperature, precipitation, topography, erosion, and soil resources

[2], which directly influence the growth, persistence and

reproduction of organisms [3]. These factors further control the

spatial variation in species richness [4–14].

The analysis of the biodiversity response to such key ecological

gradients mainly involves modelling exercises at community level

using comprehensive observational dataset (including a set of

environmental variables and data on the distribution of a given

organism). Modelling at community level can be performed

following different strategies [15], such as direct versus species-

assembly approaches [16], each involving different modelling

options [17]. The direct strategy of aggregating biological survey

data to produce community-level entities that are then modelled

(i.e., assemble first, predict later in [15]) has been much used and

evaluated, but the alternative strategy of assembling individual

species models (i.e., predict first, assemble later in [15]) has been

evaluated far less and only more recently [18–21], even though

many of the assessments of the global threat to biodiversity that

have been published were based on such an approach [22–24].

This option involves making individual models for all the species

included in the analysis separately and then combine them to

generate a community level analysis. More specifically, species

distribution models (SDMs) have often been developed using data

sampled along elevation gradients for the forecasting of biodiver-

sity changes, for instance to anticipate the possible ecological

impacts of climate change on mountain flora [25–27]. These

models and predictions were usually evaluated in a standard way,

e.g., by comparing the predictions and observations at the level of

individual species distributions, but rarely by evaluating the

properties of the assemblages themselves [28]. In particular, little

is known about the performance of stacked species distribution

models (S-SDMs) in predicting biodiversity patterns along

important ecological gradients such as elevation [29].

The S-SDM approach considers a simple stacking of individual

species responses to the environment and therefore does not
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explicitly integrate any potential constraint on the maximum

number of species that can co-occur in a given area (e.g., available

energy, heterogeneity within the modelled unit, or biotic interac-

tions; [29]). On average, it has been shown that the sum of the

individual predictions tends to overestimate species richness (i.e.,

commission errors; [16,21,29]). Species assemblages can better

represent environmental constraints on species richness in stressful

(non-productive) environments (e.g., alpine areas) [28,30], where

diversity is primarily determined directly or indirectly by climate. In

more productive environments, species responses to climatic factors

alone cannot account for the key filters on the local assembly, and

their stacked predictions may lead to greater species overprediction.

These studies emphasise that the accuracy of prediction is not

necessarily constant across geographic space or along an indirect

ecological environmental gradient such as elevation.

Specific aspects of the model technique can also lead to error in

species stacking that shapes biodiversity patterns along elevation

gradients; some of these errors are more related to the technical

aspects of modelling (e.g., the threshold for the binary classification

of predicted probabilities; [20]) and others are more related to the

ability of SDMs to capture the full spectrum of community assembly

processes [28]. These findings support the need to better evaluate

the capacity of SDMs to predict assemblage and diversity patterns

and to better understand their strengths and weaknesses in doing so.

However, many questions, both technical and conceptual, remain

to be addressed. The related assembly hypotheses should also be

tested on a large variety of ecosystems and organisms.

In particular, one remaining question is whether stacked

predictions from species distribution models (S-SDMs) can

reproduce existing biogeographic patterns, such as the biodiversity

patterns along environmental gradients. For instance, for species

richness for different clades along an elevation gradient, Rahbek

[31] recognised three main patterns: (1) a monotonic reduction

from the lowest to the highest elevations; (2) a hump-shaped

pattern, with the maximum values at middle elevations; (3)

relatively constant values from low to middle elevations, followed

by a sharp decrease toward highest elevations.

In this study, our objective was to fill this gap by evaluating the

ability of S-SDMs to predict known patterns of species richness for

Bromeliaceae and Araceae along a wide elevation gradient in Ecuador

and by comparing different ecological modelling options. We used

typical herbarium species occurrence data for 142 species, as used in

Elith et al. [32], combined with typical bioclimatic maps to predict

potential altitudinal biodiversity patterns and compare these with

actual patterns obtained from two exhaustive, independent data: (1)

expert criteria extracted from bibliography [33], and data from plot

transect [34–35]. In the central Andes, Kessler [34] identified hump-

shaped curves for Bromeliaceae, whereas Araceae showed relatively

constant values up to elevations of between 1000 and 1500 m, followed

by a monotonic decrease. It is thus interesting to evaluate how well

these patterns can be reproduced by stacking individual predictions of

species distributions. More specifically, we place more emphasis on

comparing the performance of the two-ensemble modelling approach

[36], which combines predictions from six techniques into a single

prediction of species richness. To our knowledge, such an evaluation of

SDMs to reconstruct patterns of species richness along an elevation

gradient has very rarely been performed [19] and never along such a

wide elevation gradient in the tropics.

Materials and Methods

Species data
We conducted all analyses on two plant clades: the genus

Anthurium (Araceae family; 53 species) and the family Bromeliaceae

(89 species). These two groups are interesting for this purpose

because (1) the taxonomic knowledge for these two plant groups is

extensive and thus offers the required guarantees of reliable

identification at the species level; and (2) their observed altitudinal

patterns have already been thoroughly investigated [34].

We used all of the records stored in the TROPICOS database

(Missouri Botanical Garden). All records and location data

(latitude/longitude) were checked by specialists from the Missouri

Botanical Garden (Saint Louis, USA) and Real Jardı́n Botánico

(Madrid, Spain), and whenever possible errors (i.e., georeferencing

or species identification) were corrected; otherwise, data in error

were removed. As part of this data checking process, we performed

a statistical analysis to detect outliers, as in Mateo [19], and

analyzed the outliers individually. Outliers that presented

insufficient reliability (expert criteria) were discarded.

The final occurrence maps included 17,064 point locations.

The minimum sample size to obtain reliable predictions of species

distribution for these dataset was determined in a previous study

[37], Therefore, species with fewer than 15 occurrences (i.e., for

which reliable models could not be fitted because of the small

sample size) were excluded from further analyses [37,38].

Environmental predictors
We used the 19 bioclimatic variables (Table 1) that were

available in WorldClim 1.3 [39] (http://www.worldclim.org) as

predictor variables. These bioclimatic variables were derived by

interpolating monthly mean temperature and rainfall data onto a

digital elevation model (161 km grid cell). They represent

biologically relevant environmental factors [40]. We did not find

a priori reason for removing some variables and therefore kept all

variables for the analyses, recognizing that overfitting may thus

happen for species with low number of occurrences. We argue that

Table 1. Environmental variables used to generate the
species distribution models.

BIO1 Annual Mean Temperature

BIO2 Mean Diurnal Range (Mean of monthly (max temp - min temp))

BIO3 Isothermality (BI02/BI07) (* 100)

BIO4 Temperature Seasonality (standard deviation *100)

BIO5 Max Temperature of Warmest Month

BIO6 Min Temperature of Coldest Month

BIO7 Temperature Annual Range (BI05–BI06)

BIO8 Mean Temperature of Wettest Quarter

BIO9 Mean Temperature of Driest Quarter

BIO10 Mean Temperature of Warmest Quarter

BIO11 Mean Temperature of Coldest Quarter

BIO12 Annual Precipitation

BIO13 Precipitation of Wettest Month

BIO14 Precipitation of Driest Month

BIO15 Precipitation Seasonality (Coefficient of Variation)

BIO16 Precipitation of Wettest Quarter

BIO17 Precipitation of Driest Quarter

BIO18 Precipitation of Warmest Quarter

BIO19 Precipitation of Coldest Quarter

Bioclimatic variables are derived from the monthly temperature (units: uC * 10)
and rainfall (mm). They represent annual trends, seasonality, and limiting
factors.
doi:10.1371/journal.pone.0032586.t001
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such technical decision is conservative and may tend to predict

more around the know presences.

Species distribution modelling
We used six different techniques to model individual species

distributions. Boosted regression trees (BRT) [41], generalised

linear models (GLM) [42], and multivariate adaptive regression

splines (MARS) [43] are group discriminative techniques that need

presence/absence data. The other three techniques, i.e., genetic

algorithm for rule-set prediction (GARP) [44], Gower’s metric

distance (GMD) [45] and maximum entropy (MAXENT) [46],

require only presence data.

Absences are necessary to perform the group discriminative

techniques. As herbarium collections only provide presence data,

we generated pseudo-absences as similarly performed by Elith et

al. [32] with the extension ‘‘Random Point Generator 1.28’’

(ArcView 3.2) and the following constraints [47]: (1) we generated

approximately the same number of pseudo-absences as presences

to avoid problems associated with unbalanced prevalence [48]; (2)

to collect information on the different ecological conditions in the

study area, we defined a minimum distance of 30 km between

pseudo-absences [49,50]; (3) to avoid increasing the false negative

rate, we defined a buffer (30 km in diameter) around each

presence from which pseudo-absences were eliminated [51,52].

The distance of 30 km was calculated based on the information

contained in the maps according to the pixel size [37].

The six modelling techniques used are standard and well

described [32,47]. We generated MARS models using MARS 2.0

(www.salford-systems.com), running 30 models per species and

varying the following parameters: (1) the maximum number of basic

functions; (2) whether or not interactions were allowed between basic

functions; and (3) inclusion of all of the 19 WorldClim variables or

elimination of the mean annual temperature and mean annual

precipitation to reduce multicollinearity. We used MARS 2.0 instead

of the mda library [32] related to the findings in previous works

[19,37,53]. The GLM models were generated using BIOMOD, and

quadratic terms were allowed. The MAXENT models were

generated in MAXENT 2.1 with the default settings (‘‘Auto

features’’, convergence = 10-5, maximum number of itera-

tions = 500, regularisation value b= 10-4). BRUTO (BRT) models

were generated in R (www.r-project.org) with the ‘‘mda’’ package

and the parameters detailed in Elith et al. [32]. The Gower distance

models (GMD) were performed in DIVA-GIS [54]. GARP Desktop

1.1.6 was used to generate 100 models per species; we selected the

bottom 20% of models with the lowest extrinsic omission error, and

of those, the ten models around the median of the commission error

were used to generate the GARP ensemble model presented in the

results section.

Each modelling technique produces models with different

prediction values. The GLM generates probabilities in the range

of 0–1. MARS generates scores that are not restricted to a

predefined range. MAXENT generates models with values

between 0 and 100. GARP generates a set of presence/absence

models (in this case, we used a combination of 10 presence/

absence models). The values in the GMD models have a

maximum of 100, but they do not have a minimum value; these

values can be used ‘‘as is’’ or transformed. All models were

rescaled to the [0–1] range to generate ensemble models. The

models were rescaled using the following equation:

Rescaled value~(Cell Value{Minimum)=

(Maximum{Minimum)

Assessing predictive performance
The predictive performance of SDMs should ideally be

evaluated with a set of independent data. In our study, this

procedure was not possible for most species, due to the scant

number of available collections that requires using all available

data to fit the model [19]. Therefore, we assessed predictive

performance of all SDMs by means of resubstitution, i.e.

calculating ROC plots and the AUC statistic on the same data

as used to fit the model. This is thus a different measure of model

fit and some authors suggested that this can still be effective when

no independent data can be left out for evaluation [26]. Although,

the AUC values obtained by a resubstitution process tend to be

higher than the AUC values obtained by means of evaluation [19].

In addition, we use independent data for some species of the genus

Anthurium to evaluate the predictive power of models [47].

Ensemble models
Following Araújo and New [36] and Marmion et al. [55], we

calculated ensemble models for each of the species based on two

different criteria: (1) ENSEMBLE-A: the average of all of the

available rescaled SDMs (BRT, GARP, GLM, GMD, MARS, and

MAXENT). (2) ENSEMBLE-B: the average of the four best

methods (BRT, GLM, MARS and MAXENT) based on the

model ranking in Elith et al. [32].

Binary models (presence/absence)
The original models were reclassified into models of presence/

absence (BINARY) using a threshold approach. Liu et al. [56] and

Jiménez-Valverde and Lobo [57] present different possibilities for

choosing thresholds. Because only presence data were available,

we used a threshold approach that minimised the commission

error [58] and allowed a maximum commission error of 0.05.

Prediction of gamma diversity with respect to elevation
We estimated the gamma diversity in the same elevation band

(500 m) used for the two ensemble models of alpha diversity. For

the gamma diversity, we only used binary models and calculated

the number of species predicted in at least a minimum number of

pixels pertaining to each elevation band. We imposed three

different thresholds by summing all of the species predicted in at

least one pixel, in at least 10 pixels or in at least 50 pixels per

elevation band.

Prediction of alpha diversity along altitude
We stacked (i.e., summed) the rescaled and binarised SDM

predictions for the two ensemble procedures so that we obtained

four species richness maps (S-SDMs) per taxa (Anthurium spp. and

Bromeliaceae). We estimated the altitudinal alpha diversity

patterns of the four S-SDMs along the elevation gradient by

calculating the mean and maximum species richness of the pixels

falling into the different 500 m elevation classes.

Evaluation of predicted altitudinal diversity patterns
To evaluate the ability of the ensemble S-SDMs to predict the

alpha diversity patterns along the elevation gradient and the

gamma diversity per elevation belt, we compared the model

predictions to independent data compiled by Jørgensen and León-

Yánez [33] for gamma diversity and to data compiled by Kessler

[34,35] for alpha diversity.

For gamma diversity, independent distributions of the 53 species

considered in the genus Anthurium and of the 89 Bromeliaceae

species were extracted from the Catalogue of Vascular Plants of

Ecuador [33]. To determine whether the patterns of gamma

Modelling Altitudinal Diversity Patterns
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diversity derived from the models were statistically similar to the

observed patterns [59,60], we used a reconstruction of the diversity

change with elevation based on the literature. This procedure

starts by generating for the most specious altitudinal band a

random number between zero and the maximum number of

species found for that band in the literature [33]. For the

remaining altitudinal bands, we generated random numbers

limited to +/210 species from the previous altitudinal band for

Anthurium and +/222 species for Bromeliaceae; these two values

correspond to the maximum change in the number of species

found in the literature between one altitude and the next level

[33]. This restriction was needed to keep the variability of the

simulated values within a range similar to that of the observed

values (i.e., to generate a realistic null model). We then compared

the S-SDMs predicted differences in gamma diversity between

each neighbouring altitudinal band with the differences generated

by a set of 10,000 random simulations from our null model of

altitudinal changes in gamma diversity. This comparison was

based on the difference between the generated random number

and the observed number of species and the average of the

differences between the randomly generated and observed values

across altitudinal bands. These differences were ordered, and the

rank of the observed difference was divided by 10,000 to obtain

the final empirical P-value. A P-value exceeding 0.05 would mean

that the distribution derived from the models could have been

obtained by chance alone, so that there was no association, at the

5% level, between the modelled and observed distributions.

For alpha diversity (species richness), the numerical data were

not available for a similar statistical validation as performed for the

gamma diversity. In this case, it was only possible to determine

whether the patterns obtained with the models fit the patterns

(curves comparison) established by Kessler [34,35].

Results

All species distribution models were highly accurate in regard to

AUC values that were all above 0.95 [19]. Figure 1 shows two

richness models (S-SDMs) for the genus Anthurium, and Figure 2

shows the predicted richness for Bromeliaceae. Richness models

that were derived from different ensemble procedures can be

slightly different.

Table 2 shows the P-values of the randomisation tests, which

show overall that the predicted gamma diversity patterns could be

considered in most cases to be different from those derived from

the null model of altitudinal changes in gamma diversity based on

the literature [33] (Figure 3). However, only the ENSEMBLE-A-

BINARY model could not be separated from (i.e., fits) the patterns

derived from the literature.

There was no large difference between the three thresholds

(summing all species predicted in at least one pixel, 10 pixels or 50

pixels per elevation band) used to calculate the altitudinal gamma

diversity patterns, although the predicted patterns that were closest

to the independent evaluation datasets were always obtained with

a threshold of 50 pixels (Figure 3, Table 2).

Figure 4 shows the predicted altitudinal patterns of alpha

diversity. In both taxa (Anthurium spp. and Bromeliaceae), only the

binary model yielded predictions that were comparable to the

patterns described by Kessler [34,35]. The original models

revealed a clear tendency toward overprediction in the high

elevation areas.

Discussion

In this paper, we assessed the ability of binarised predictions of

S-SDMs to reproduce patterns of species richness along a wide

elevation gradient, considering both the mean alpha diversity and

Figure 1. Richness (alpha diversity) of the genus Anthurium from the S-SDMs for the two ensemble procedures. The S-SDMs were
generated by stacking the binary models of 53 species. ENSEMBLE-A: ensemble model of the six methods available. ENSEMBLE-B: ensemble
model of the four best methods.
doi:10.1371/journal.pone.0032586.g001
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gamma diversity in elevation belts. We tested original rescaled and

binarised predictions of S-SDMs based on two ensemble

approaches for 142 plant species within two different taxonomic

groups, namely the genus Anthurium and the family Bromeliaceae.

Altitudinal gamma diversity patterns
All of the ensemble procedures presented a significant over-

prediction of gamma diversity (i.e., high commission error;

Figure 3). ENSEMBLE-A-BINARY predicted the altitudinal

gamma diversity patterns with fair to good accuracy, yielding

patterns similar to those derived from the literature [33]. Other

models showed more serious problems of overprediction. If the

goal of a study is related to conservation or to the disentanglement

of spatial biodiversity patterns, the use of ENSEMBLE-BINARY

or stacking results from models of that type is thus recommended.

Furthermore, such an approach is also useful when the objective is

to generate SDMs at the species level, for instance when associated

with the conservation of a single species [61]. However, to gain

generality, these findings should be confirmed with studies in other

ecosystems and involving other organisms.

The absence of large differences between the three thresholds

(summing all species predicted in at least one pixel, 10 pixels or 50

pixels per elevation band) used to calculate the altitudinal gamma

diversity patterns was likely because many more than 1 or 30

suitable pixels are predicted for most species found in each

elevation band, making the difference weak even when the

threshold was 50. The patterns closest to reality were most often

obtained with the threshold of 50 pixels. Indeed, these thresholds

are likely to depend on the extent and resolution used for the

study, and in further studies, they could be defined as percentages

of the band surface area rather than absolute pixel number values.

Altitudinal alpha diversity patterns
The first study exploring the altitudinal patterns in several plant

families in the Neotropics was that of Kessler [34], who showed

that Araceae had a relatively constant increase in alpha diversity

values up to altitudes between 1,000–1,500 m and then decreased

constantly above these elevations (Figure 4, ARAC). In our study,

the richness map obtained with ENSEMBLE-A-BINARY and

ENSEMBLE-B-BINARY showed altitudinal alpha diversity

patterns similar overall to those in Kessler [34]. However, the

Kessler data are for all Araceae species, whereas in our study only

the genus Anthurium was considered.

For the Bromeliaceae (Figure 4, BROM), Kessler [34] found

hump-shaped curves for both the epiphyte (maximum to 1,700 m)

Figure 2. Richness (alpha diversity) of the Bromeliaceae from the S-SDMs for the two ensemble procedures. The S-SDMs were
generated by stacking the binary models of 89 species. ENSEMBLE-A: ensemble model of the six methods available. ENSEMBLE-B: ensemble
model of the four best methods.
doi:10.1371/journal.pone.0032586.g002

Table 2. P-values of the randomisation tests.

1 PIXEL 10 PIXEL 50 PIXEL

Anthurium sp. ENSEMBLE-A 0.018 0.007 0.003

ENSEMBLE-B 0.199 0.104 0.052

Bromeliaceae ENSEMBLE-A 0.173 0.095 0.043

ENSEMBLE-B 0.458 0.326 0.192

These tests were used to determine whether the numbers of species (gamma
diversity) of two plant clades (Anthurium genus, Bromeliaceae family) according
to the two ensemble modelling procedures in each altitudinal band were
statistically different from the values derived from a null model of altitudinal
changes in gamma diversity based on the literature [33]. We imposed three
different thresholds by summing all of the species predicted in at least one
pixel, 10 pixels or 50 pixels per elevation band. ENSEMBLE-A: ensemble model
of the six methods available. ENSEMBLE-B: ensemble model of the four best
methods.
doi:10.1371/journal.pone.0032586.t002
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and terrestrial species (maximum to 3,000 m). The species richness

predictions obtained with ENSEMBLE-A-BINARY and ENSEM-

BLE-B-BINARY showed the pattern most similar to that of

Kessler [34] for the Bromeliaceae.

For both taxa, the results obtained by the mean model (mean

alpha diversity per pixel in binary models) were closer to reality

than the maximum models (maximum alpha diversity per pixel in

binary models). The maximum models presented significant over-

prediction of gamma diversity (i.e., high commission error;

Figure 4). All of the original models also showed significant

over-prediction (Figure 4). These results are consistent with

previous studies dealing with alpha diversity [16,21,62]. The

quality of the results obtained by the ENSEMBLE-A-BINARY

procedure was most probably due to the binarisation procedure

that was used. Indeed, the recently shown intrinsic tendency of S-

SDM to overpredict species richness independently from any

Figure 3. Altitudinal patterns of the potential gamma diversity in Ecuador. Altitudinal patterns for the genus Anthurium (above) and the
Bromeliaceae family (below) according to the two ensemble modelling procedures. We imposed three different thresholds by summing all of the
species predicted in at least one pixel, in at least 10 pixels or in at least 50 pixels per elevation band. Independent c-diversity: the altitudinal
patterns of gamma diversity in Ecuador for the genus Anthurium (53 species) and the Bromeliaceae family (89 species). Information from the
‘‘Catalogue of the vascular plants of Ecuador’’ [33]. ENSEMBLE-A: ensemble model of the six methods available. ENSEMBLE-B: ensemble model of
the four best methods.
doi:10.1371/journal.pone.0032586.g003
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binarisation procedure [63] might have been balanced here by the

setting of classification thresholds that minimized the commission

error rates of the individual SDMs. Although this procedure

appears to reduce the overprediction problem of S-SDMs, further

investigation should be conducted on the effects on the assemblage

composition in addition to the species richness predictions.

Evaluation of predicted altitudinal diversity patterns
In general, studies investigating the response of biodiversity to

environmental changes that are based on SDMs evaluate the

accuracy of their predictions at the species level. Here we showed

that highly accurate SDMs (AUC above 0.95) might lead to

important discrepancies between the predicted diversity patterns

Figure 4. Altitudinal patterns of the potential alpha diversity in Ecuador. Altitudinal patterns for the genus Anthurium (above) and the
Bromeliaceae family (below) according to the two ensemble modelling procedures and original predictions or binary predictions of the SDMs.
Independent a- diversity: the Araceae and Bromeliaceae altitudinal patterns of alpha diversity modified from Kessler [35]. Maximum value:
maximum number of species within each 500-m altitudinal belt. Mean value: average number of species within each 500-m altitudinal belt.
ENSEMBLE-A: ensemble model of the six methods available. ENSEMBLE-B: ensemble model of the four best methods.
doi:10.1371/journal.pone.0032586.g004
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from S-SDMs and the observed patterns [19]. We suggest the

provision of both species-level and assemblage-level evaluation

metrics when SDMs are used to investigate biodiversity patterns

(S-SDMs). Robust gamma diversity estimates rarely exist; thus,

such a null-model reconstruction should prove useful in further

studies.

Binary models (presence/absence)
The use of a threshold clearly improved the results (Figures 3

and 4) by decreasing the commission error rates in SDMs and thus

allowing the modelled altitudinal alpha diversity patterns to better

fit the observed patterns. The original models showed serious

overprediction problems at high elevations that were solved when

the binary models were used. As previously suggested [21], the

selection of an appropriate suitability threshold can reduce error

rates in both individual and ensemble SDMs, but this selection is

not straightforward and the results can vary, sometimes dramat-

ically, depending on the threshold chosen. An additional problem

in the selection of reliable and stable threshold values is the lack of

real absences, as in the present study. When the modelling

algorithm has no information on absences, small differences in the

selected threshold value can severely affect the model outputs [57].

As this threshold selection is often subjective, in this study, we

chose a conservative value, which allowed a maximum commis-

sion error of 0.05. An interesting methodological line of research

would thus be to study the reliability of the different thresholding

approaches in species assemblage modelling, as it may help to

reduce over-prediction in some cases.

Ensemble models
Ensemble models have only relatively recently been applied to

ecological modelling for predicting the spatial distributions of

single species. Given the difficulty in choosing the most suitable

technique [40,64,65], some authors suggest the combination of

predictions from several modelling techniques to reduce the

observed variability [36,55,66,67]. In addition to improving the

prediction accuracy at the species level, our results further show

that ensemble modelling approaches can also allow adequate

predictions when stacking multiple species distributions.

Our results show that the S-SDMs generated from all of the

techniques provide better results than the S-SDMs generated from

the four best modelling techniques (Table 2). Thus, in future work,

research efforts may be reduced by using only techniques that are

known to generate reliable, stable and accurate SDMs, without the

need to select the best ones. Furthermore, in our study, both

stacking strategies over-predicted species richness, particularly at

high elevations, although this is likely to be study-dependent.

Conclusions
The main conclusions that we can draw from this work are 1)

Stacking ensemble models of species distributions could success-

fully reproduce alpha and gamma diversity patterns along a wide

elevation gradient in the Andes; 2) The best results in relation to

conservation or to disentangling the spatial patterns of biodiversity

were obtained when stacking binary predictions of individual

species distributions; 3) Stacking binary models may also reduce

over-prediction, and more research must be conducted to find the

most appropriate thresholding approach; and 4) The randomisa-

tion procedure used to reconstruct the gamma diversity patterns

and to compare them with the S-SDM predictions represents a

promising way to assess the predictions of stacked species

distribution models along incompletely surveyed environmental

gradients.
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