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Abstract Despite being pervasive, the control of programmed grooming is poorly understood.

We addressed this gap by developing a high-throughput platform that allows long-term detection

of grooming in Drosophila melanogaster. In our method, a k-nearest neighbors algorithm

automatically classifies fly behavior and finds grooming events with over 90% accuracy in diverse

genotypes. Our data show that flies spend ~13% of their waking time grooming, driven largely by

two major internal programs. One of these programs regulates the timing of grooming and

involves the core circadian clock components cycle, clock, and period. The second program

regulates the duration of grooming and, while dependent on cycle and clock, appears to be

independent of period. This emerging dual control model in which one program controls timing

and another controls duration, resembles the two-process regulatory model of sleep. Together, our

quantitative approach presents the opportunity for further dissection of mechanisms controlling

long-term grooming in Drosophila.

DOI: https://doi.org/10.7554/eLife.34497.001

Introduction
Grooming is broadly defined as a class of behaviors directed at the external surface of the body.

Most animals spend considerable time grooming (Mooring et al., 2004; Sachs, 1988), and this near

universality suggests that grooming likely fulfills an essential role for animals (Spruijt et al., 1992).

Grooming assumes a variety of forms in different species—for instance, birds preen the oily sub-

stance produced by the preening gland from their feathers and skin, cats and dogs lick their fur, and

flies sweep their body parts with their legs. Although in most cases the primary function of grooming

is to maintain a clean body surface, different species-specific forms of grooming have roles in diverse

functions such as thermoregulation, communication and social relationships (Dawkins and Dawkins,

1976; Ferkin et al., 2001; Geist and Walther, 1974; McKenna, 1978; Patenaude and Bovet,

1984; Schino, 2001; Schino et al., 1988; Seyfarth, 1977; Spruijt et al., 1992; Thiessen et al.,

1977; Walther, 1984).

Many animal behaviors, such as locomotion, have been shown to be controlled by both external

stimuli (stimulated behavior) and internal programs (programmed behavior). An example of stimu-

lated locomotor activity is the abrupt evasive response triggered by the sudden appearance of a

predator. In contrast, programmed locomotor activities, such as daily foraging for food, are essential

to maintain vital functions of the organism (Bergman et al., 2000). Similar to locomotion, limited

data from mammals suggest that grooming may be controlled by both external stimuli and internal

programs (Hart et al., 1992; Hawlena et al., 2008; Mooring and Samuel, 1998). For example, stim-

ulated grooming might be performed when the animal is excessively dirty or itchy, and programmed
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grooming might be performed as a social ritual. Although grooming is a widely observed behavior,

the basic mechanisms regulating grooming are still not well understood.

The fruit fly Drosophila melanogaster is an ideal model organism with which to dissect the funda-

mental mechanisms of grooming and its relationship to other behaviors. The fly is known to be a fre-

quent groomer with a rich repertoire of behaviors and a sophisticated genetic toolkit developed to

study them (Connolly, 1968; Owald et al., 2015). The study of Drosophila grooming can be traced

back to the 1960s (Connolly, 1968; Szebenyi, 1969), and notable progress has since been made in

studying grooming stimulated by the application of dust particles to the insect exterior

(Hampel et al., 2015; Seeds et al., 2014). While most grooming studies thus far have focused on

stimulated grooming, understanding the mechanisms responsible for programmed grooming will

not only identify components distinct to each type of grooming but also inform us about how pro-

grammed grooming is prioritized with regard to other programmed behaviors such as locomotion,

feeding, and sleep in the same organism.

A major hurdle in detecting programmed grooming in Drosophila is the lack of practical method-

ology. In many cases, fly grooming events are extracted by eye (King et al., 2016; Phillis et al.,

1993; Yanagawa et al., 2014). Consequently, these data report only conspicuous behaviors within

relatively short durations of observation. To improve resolution and accuracy, a number of sophisti-

cated video-tracking methods have been recently developed for fly behavior (Kain et al., 2013;

Mendes et al., 2013). These designs are not amenable to easy scale-up for tracking multiple individ-

uals simultaneously. Moreover, while several of these methods are sufficient for short-term monitor-

ing (Branson et al., 2009; Kabra et al., 2013), continuous multi-hour measurements and rapid,

automated quantification methods are required to dissect long-term, unstimulated fly grooming rel-

ative to other daily behaviors like locomotion and sleep.

eLife digest From birds that preen their feathers to dogs that lick their fur, many animals groom

themselves. They do so to stay clean, but routine grooming also has a range of other uses, such as

social communication or controlling body temperature. Despite its importance, grooming remains

poorly understood; it is especially unclear how this behavior is regulated.

Fruit flies could be a good model to study grooming because they are often used in laboratories

to look into the genetic and brain mechanisms that control behavior. Flies clean themselves by

sweeping their legs over their wings and body, but little is known about how the insects groom

‘naturally’ over long periods of time. This is partly because scientists have had to recognize and

classify grooming behavior by eye, which is highly time-consuming.

Here, Qiao, Li et al. have created a system to automatically detect grooming behavior in fruit flies

over time. First, a camera records the movement of an individual insect. A computer then analyzes

the images and picks out general features of the fly’s movement that can help work out what the

insect is doing. For example, if a fly is moving its limbs, but not the main part of its body, it is

probably grooming itself. Qiao, Li et al. then borrowed an algorithm from an area of computer

science known as ‘machine learning’ to teach the computer how to classify each fly’s behavior

automatically.

The new system successfully recognized grooming behavior in over 90% of cases, and it revealed

that fruit flies spend about 13% of their waking life grooming. It also showed that grooming seems

to be controlled by two potentially independent internal programs. One program is tied to the

internal body clock of the fly, and regulates when the insect grooms during the day. The other

commands how long the fly cleans itself, and balances the amount of time spent on grooming with

other behaviors.

Cleaning oneself is not just important for animals to stay disease-free: it also reflects the general

health state of an individual. For example, a loss of grooming is associated with sickness, old age,

and, in humans, with mental illness. If scientists can understand how grooming is controlled at the

brain and molecular levels, this may give an insight into how these mechanisms relate to diseases.

The system created by Qiao, Li et al. could help to make such studies possible.

DOI: https://doi.org/10.7554/eLife.34497.002
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To overcome limitations of currently available methods, we developed a new platform for long-

term video-tracking and automated analysis of fly grooming. The layout of our hardware takes

advantage of a basic design for housing individual flies that is widely used in locomotion and sleep

studies (Gilestro, 2012; Pfeiffenberger et al., 2010; Zimmerman et al., 2008). Here, we

Figure 1. Overview of approach for detecting Drosophila grooming. (A) Apparatus used in recording behavior. Flies constrained to individual tubes are

continuously illuminated by infrared light from below and recorded by a digital camera from above. LED lights on sides of chamber simulate day-night

light conditions. Temperature and humidity probes placed in the chamber are monitored by a computer. Inset: Camera photo of fly tubes in chamber.

(B) Examples of the most commonly observed types of grooming in our experiments. The top row displays postures of a fly in inactive state. The three

rows below show how the limbs and body of a fly coordinate to perform specific grooming movements. Arrows point to the moving part during

grooming. (C) Flowchart of our algorithm used to classify fly behavior. After generating a suitable background image, the algorithm characterizes

movements of fly center (CD), core (CM) and periphery (PM) to fully classify behavior in each frame.

DOI: https://doi.org/10.7554/eLife.34497.003
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incorporate this standardized hardware into stud-

ies of grooming. Our algorithm maps fly activity

onto a three-dimensional behavioral space and

utilizes k-nearest neighbors (kNN) method, a

machine learning technique, to classify each

video frame as grooming, locomotion or rest.

Results from multi-day recordings reveal that

Drosophila spend approximately 13% of their

waking time grooming, and the temporal pattern

of grooming behavior is tightly regulated by the

fly’s internal circadian pacemaker. These findings

suggest that grooming, similar to feeding and

rest, likely serves one or more critical functions in

Drosophila. Additionally, genetic perturbations

reveal that the transcription factors CYCLE and

CLOCK are critical parts of an internal program

that controls the amount of Drosophila groom-

ing. These grooming data, the easily implement-

able hardware, and the automated analysis package together permit the construction of high-

resolution ethograms of stereotypical fly behavior over the circadian time-scale.

Results

Automatic grooming detecting system
We used a custom-designed video set-up to monitor fly behavior. Within the set-up, insects were

placed individually in cylindrical glass tubes 6 cm long and 5 mm wide with food and cotton at oppo-

site ends (Figure 1A). Tubes were placed in a chamber where temperature and humidity are moni-

tored and controlled. Flies were illuminated from the sides by white light-emitting diodes (LED) to

simulate day-night conditions and by infrared LED from below for video imaging. Videos were cap-

tured by a digital camera above the chambers (see Materials and methods). A sample raw video clip

is shown in Video 1. Because the tubes (commonly used with Drosophila Activity Monitors or DAMs)

are commercially available for studying circadian and sleep behavior, this set-up can be easily repli-

cated by other labs.

We then developed an automated video image analysis package that classifies fly behavior into

grooming, locomotion, or rest. ‘Grooming’ in our algorithm is defined as fly legs rubbing against

each other or sweeping over the surface of the body and wings (Szebenyi, 1969) (Videos 2 and

Video 1. Sample raw experimental video

DOI: https://doi.org/10.7554/eLife.34497.004

Video 2. Sample video of grooming on head and front

legs

DOI: https://doi.org/10.7554/eLife.34497.005

Video 3. Sample video of grooming on wings and hind

legs

DOI: https://doi.org/10.7554/eLife.34497.006
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Figure 2. Feature extraction and behavior classification. (A) The distribution of grayscale fluctuations in the absence of mobile flies. A cutoff of

grayscale value change C0 = 10 rules out >99.99% of fluctuations. Shown here are only positive values of fluctuations, which are symmetric about zero.

(B) Maximum area (pixels) of a closed object generated by noise when different threshold C0 are applied. A C0 = 10 rejects objects larger than 20

pixels. Based on this, we set a threshold C1 = 25 to remove objects smaller than 25 pixels without affecting identification of flies which have a typical

area of ~300 pixels in our studies. (C) Grayscale value distribution of pixels belonging to 20 individual flies. Two regions are clearly seen: the left region

with peak around 40 represents the core of the flies and the right region with peak around 90 represents their periphery. (D) Variations in the center

position of a stationary fly. The minimum displacement that represents a true fly center movement is 0.5-pixel length in our experiment, a requirement

that excludes >99.99% of false displacements. (E) Examples of original and processed images of a fly displaying different behaviors: Top, left: front leg

grooming; top, right: wing grooming; bottom, left: resting; bottom, right: locomoting. In each panel, original images from two consecutive frames are

shown on left, periphery in the middle and core on the right. Changes of periphery and core are shown in the bottom row. PM and CM denote

differences in the number of pixels representing the fly periphery and core, respectively, in two frames. Features PM and CM are different for different

behaviors. Rubbing of front legs manifests through PM (top, left) while sweeping wings affects PM and CM (top, right). (F) k-nearest neighbors (kNN)

algorithm works by placing an unclassified sample (black circle) representing a frame into a feature space with pre-labeled samples (green/gray/purple

circles, the training set). The label of the unclassified point is decided by the most frequent label among its k-nearest neighbors. The three axes of the

feature space are normalized periphery movement (PM), core movement (CM), and center displacement (CD). Fly activity in the feature space is

separated into three regions: grooming (green), locomotion (gray) and resting (purple). Training samples (N = 9322 grooming, 9930 locomotion, 5748

rest) and nine unlabeled samples in PM-CM-CD space are shown.

DOI: https://doi.org/10.7554/eLife.34497.007

The following source data and figure supplement are available for figure 2:

Source data 1. Source data for Figure 2.

DOI: https://doi.org/10.7554/eLife.34497.009

Source data 2. Source data for Figure 2—figure supplement 1.

DOI: https://doi.org/10.7554/eLife.34497.010

Figure supplement 1. Details of environmental conditions and fly detection.

Figure 2 continued on next page
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3), ‘locomotion’ as translation of the whole body, and ‘rest’ as the absence of either grooming or

locomotion. Figure 1B shows images of grooming behaviors frequently observed in our videos

involving the head, legs and wings. Since we are primarily interested in detecting grooming events

rather than performing a detailed classification of all types of behavior (Branson et al., 2009), other

behaviors involving body centroid movements, such as feeding, were initially classified as locomo-

tion. This three-tier classification allowed our algorithm to efficiently and rapidly interpret grooming

events in the recordings without incurring any significant errors in reporting locomotion and rest.

Behavior classification algorithm
To classify behavior, raw videos were processed through four major automated steps: fly identifica-

tion, feature extraction, classifier training (optional), and subset behavior classification (Figure 1C).

First, fly identification was accomplished with the following analysis. Fly shape was extracted from a

video frame by computing the difference between the current frame and a reference frame. The ref-

erence or background frame was created by comparing eight randomly selected frames and erasing

all moving objects from one of them (see Materials and methods). The background frame was

updated every 1000 s to account for changes in the fly’s surroundings, such as decrease in the level

of food and accumulation of debris within the tube, over the course of multiple hours (Figure 2—fig-

ure supplement 1B). A preliminary image of flies in the current frame was determined by comparing

the frame to background and setting all pixels greater than a threshold C0 (Figure 2A) equal to 10.

Despite the use of C0, some artifacts in the form of small objects still remained in the extracted

image. A C0 = 10 rejects artifacts larger than 20 pixels (Figure 2B). Based on this, to further elimi-

nate remaining small objects, we erased all closed objects with areas less than a second threshold C1

= 25 pixels, retaining only the fly silhouette (Figure 2—figure supplement 1C, right). Thus, each

individual fly and its movements were distinguished from background structures.

Second, we performed feature extraction to distinguish three specific types of behaviors, which

are grooming, locomotion, and rest, performed by the individual fly. The features we used were: (1)

periphery movement (PM), which characterizes movements of the legs, head and wings; (2) core

movement (CM), which quantifies movements of the thorax and abdomen; and (3) centroid displace-

ment (CD), which quantifies whole body displacement. Extracting these three features allowed us to

identify patterns corresponding to different types of behavior.

To extract PM and CM, we split each fly’s body into a core and a periphery. Based on the gray-

scale distributions of the two parts (Figure 2C), we set the median of pixel grayscale values as the

criterion to split a fly body into core (darker) and periphery (lighter). This criterion made the core

and periphery areas roughly equal, giving PM and CM equal weight in the feature space. Slight var-

iations in light condition across the arena can cause differing grayscale distribution for each individ-

ual. We therefore calculated the median value separately for each fly. After splitting the fly’s body

into two parts, PM and CM were extracted by computing the number of non-overlapping periphery

and core pixels, respectively, in two consecutive frames.

To extract CD, we calculated the average position of all pixels from the individual fly and defined

changes in that quantity between every two consecutive frames as CD. Since the fly moves in essen-

tially one dimension through the narrow tube, we ignored movements perpendicular to the long axis

of the tube when calculating centroid movement. In subsequent analysis, fly location was repre-

sented by its centroid position. Noise in the apparatus may slightly change the centroid position

even when a fly is stationary. Figure 2D shows the distribution of such centroid displacements

caused by noise. Based on this distribution, we set 0.5 pixel length as the minimum actual CD – that

is, displacements smaller than 0.5 pixel were ignored. Application of this threshold eliminated

99.99% of such false displacements and accurately identified fly centroid displacement.

By extracting these three features (PM, CM and CD), we were able to distinguish between loco-

motion, rest, and grooming. As shown in Figure 2E, relative metrics of PM and CM were different

depending on the type of behavior. Specifically, during locomotion, both parts moved significantly

(Figure 2E, bottom-right) together with substantial changes in CD. During rest, no significant

Figure 2 continued

DOI: https://doi.org/10.7554/eLife.34497.008
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movement was seen either in the periphery or the core (Figure 2E, bottom-left). During grooming,

the periphery moved more than the core (Figure 2E, top-left, top-right). Importantly, since differen-

ces in fly size can affect values of PM, CM and CD, we normalized these features to individual fly size

before proceeding with further analysis (see Materials and methods). The behavior-dependent

Figure 3. Data pruning and performance evaluation. (A) Grooming data are pruned after identification by the kNN classifier. A frame is finally labeled

as grooming only if this frame is in a group of 15 frames in which 12 or more were labeled as grooming by the classifier (see B below). Frame previously

labeled as grooming by the classifier but that did not pass the pruning procedure is relabeled as locomotion. (B) Performance of the classifier with

pruning filter sizes of 4/5, 8/10, 8/15, 10/15, 10/20, 12/15, 14/15 and 15/20. Accuracy (closed circles) is equal to the ratio of correct grooming labels to all

output grooming labels. Sensitivity (open circles) is equal to the ratio of grooming identified by the classifier to all visually labeled grooming events. We

set the pruning filter to be 12/15 to attain >90% accuracy and sensitivity. (C) Fly genotypes vary by size and pigmentation, which can potentially affect

performance of our classifier. To verify the generality and robustness of our method to different genotypes, accuracy (top) and sensitivity (bottom) of

classifier on w1118, Canton S, iso31, and yw were tested. Error rates in all tested strains were less than 10%.

DOI: https://doi.org/10.7554/eLife.34497.011

The following source data is available for figure 3:

Source data 1. Source data for Figure 3.

DOI: https://doi.org/10.7554/eLife.34497.012
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changes of these features suggest that PM, CM

and CD are appropriate metrics for behavior

classification.

Third, to produce a rapid, objective and auto-

mated quantification of grooming behavior, we

performed classifier training to teach the algo-

rithm to automatically recognize these features.

We classified fly behavior by applying the k-near-

est neighbors (kNN) technique to the normalized

features (Bishop, 2007; Dankert et al., 2009;

Kain et al., 2013). Briefly, kNN works by placing

an unlabeled sample into a feature space with

pre-labeled samples serving as a training set for

the algorithm. The label or class of the unlabeled

sample is then decided by the label that is most

common among its k-nearest training samples. In

our case, the nearest neighbors were searched

through a k-d tree algorithm (Sproull, 1991). To

construct the kNN classifier, we prepared a train-

ing set by visually labeling fly behavior from 25,000 frames (9322 frames of grooming, 9930 frames

of locomotion and 5748 frames of resting from 20 w1118 flies) and mapping them onto a three-

dimensional feature space where the axes correspond to normalized PM, CM and CD (Figure 2F,

color symbols). With these training samples, we applied 10-fold cross-validation (Bishop, 2007;

McLachlan et al., 2005) to the kNN classifier with k ranging from 1 to 50 and settled on k = 10 to

achieve balance between computing time and accuracy (Figure 2—figure supplement 1D).

Finally, to specifically distinguish between grooming behavior and other types of peripheral

movement, we pruned output labels from the kNN classifier (Figure 3A). The algorithm calculates

features from every two consecutive frames, resulting in some classifications being confounded by

short-term fly activity. For example, features extracted from only two frames often cannot distinguish

a fly stretching its body parts from one that is grooming (Video 4). Based on our observations during

creation of the training set, a typical bout of grooming lasts >3 s or for 15 frames at our normal

frame rate, longer than an average stretching event, which lasts for ~1 s. Accordingly, we devised a

strategy in which a ~ 15 frame-long temporal filter slid one frame at a time to eliminate false groom-

ing labels caused by short, grooming-like behavior. Grooming designations were retained only if at

least a minimum number of grooming frames were found within the filter (Figure 3A). To determine

the size of the filter and the minimum number of grooming frames within, we assessed the accuracy

of our classifier with the ‘minimum number of grooming frames/size of filter’ at 4/5, 8/10, 8/15, 10/

15, 10/20, 12/15, 14/15, and 15/20. These tests were conducted with a 10 min video (N = 20 Canton

S flies). As expected, comparison between 8/15, 10/15, 12/15 and 14/15 shows (Figure 3B) that for

fixed filter sizes, a larger number of grooming frames led to fewer false positive (higher accuracy)

but more frequent false negative identification of grooming (lower sensitivity). On the other

hand, <12 minimum number increased risk of misidentifying other short-term grooming-like behav-

iors as grooming. Based on these findings, we set the pruning filter to be 12/15, simultaneously min-

imizing false positive and false negative errors. Because of this pruning process, if fewer than 12

grooming frames were found within a 15-frame sliding window, then all grooming frames were re-

labeled as locomotion once the left edge of the window reached the 15th frame (Figure 3A). Thus,

these pruned labels were the final output of our grooming classification algorithm, consisting of fly

identification, feature extraction and classifier training.

The accuracy of our algorithm was evaluated by comparing the computer-identified grooming

with manually labeled grooming identified by visual inspection. We tested a total of 450 min of vid-

eos from a different set of w1118 flies (N = 15) than the one used in training the classifier. The com-

parisons showed that, of the grooming events picked out by our algorithm, 92.1% were manually

verified as true grooming events (Figure 3C, top panel). Furthermore, among all manually scored

grooming events, 95.5% were successfully identified by our computational method (Figure 3C, bot-

tom panel). Since size and pigmentation differences between genotypes can potentially affect

behavioral classification, we investigated robustness of our w1118-trained classifier with manually-

Video 4. Sample video of grooming-like behavior

(stretching body)

DOI: https://doi.org/10.7554/eLife.34497.013
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Figure 4. How grooming fits into the daily routine of a fly. (A) Ethogram of grooming (green), locomotion (gray), feeding (blue), short rest (purple), and

sleep (dark gray) performed by an iso31+ fly in 60 s (300 frames). Individual events of these four behaviors are mutually exclusive and together

constitute wake (yellow-orange), which is complementary to sleep (dark gray). (B) Average fraction of time flies spent in each behavior. N = 83 iso31+

flies. (C) (D) Correlation between pairs of behaviors. There is strong negative correlation between sleep and locomotion (r = �0.93) and between sleep

and short rest (r = �0.63). Interestingly, time spent in grooming does not show strong correlation with any of the other four behaviors. N = 83 iso31+

Figure 4 continued on next page
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labeled data from Canton S, iso31, and yw strains (10 min videos with N = 20 of each type). As

shown in Figure 3C, error rates in each tested strain less than 10%. Together, these results suggest

that our method identifies grooming with high fidelity in several different Drosophila melanogaster

strains.

Flies spend a significant portion of their awake time grooming
The solitary flies in our experiments also spent portions of their time feeding (Ja et al., 2007) and

sleeping (Hendricks et al., 2000; Shaw et al., 2000), behaviors that our classifier did not initially

label but that can nevertheless be identified by our algorithm. Prolonged proximity with food (>3 s,

<body length) was accepted as a proxy for feeding. Rest periods lasting �5 min (Dubowy and Seh-

gal, 2017) were classified as sleep, following the currently accepted definition of the behavior.

Together, these additional classifications led to the identification of five major behaviors in our data:

grooming, locomotion, feeding, short rest (< 5 min of quiescence), and sleep (Figure 4). The first

four behaviors are mutually exclusive at the level of single events, together defining the wake state

of the fly, and collectively complementary to the sleep state (Figure 4A). We found that a typical

iso31+ fly under 12 hr light:12 hr dark (LD) conditions spent approximately 6% of its daily time

grooming,~24% time locomoting, ~3% time feeding, ~16% resting, and the remaining ~51% sleep-

ing (Figure 4B). That is, the average iso31+ fly spent ~13% of its awake time grooming. It is worth

noting here that such behavioral statistics can vary even between wild-type laboratory strains

(Colomb and Brembs, 2014; Zalucki et al., 2015). For instance, similar analysis of a Canton-S strain

showed that these flies groomed ~19% of their awake time (Figure 4—figure supplement 1A).

These analyses demonstrate that our platform for long-term video-tracking and automated analysis

can provide a quantitative ethological structure for daily basal fly behavior.

Since sleep and wake are complementary states, we expected fractional time spent in sleep to

negatively correlate with that of the four wake behaviors our method tracks. Pair-wise comparisons

(Pearson’s correlation coefficient, r, see Materials and methods) of individual fly sleep with groom-

ing, locomotion, short rest or feeding, showed the expected negative relationships (Figure 4C and

Figure 4—figure supplement 1B). Interestingly, the strength of negative correlation with sleep

(Figure 4C) increased with the average fractional time spent in a wake behavior (Figure 4B). We rea-

soned that similar analysis among the wake behaviors, in contrast, should show positive correlations.

Pair-wise comparisons among grooming, locomotion, short rest and feeding showed the predicted

Figure 4 continued

flies. r is the Pearson product-moment correlation coefficient. (E) Temporal patterns of behaviors of a single iso31+ fly during 4 days in LD cycles.

Behaviors shown here are, grooming (G), locomotion (L), feeding (F), short rest (R), wake (W), and sleep (S). Level of activity is shown in terms of fraction

of time spent in each behavior. Fraction is calculated every 30 min. White/black horizontal bars indicate light/dark environmental conditions,

respectively. (F) Rhythmicity in grooming, locomotion and wake in an example fly. In LD condition, fraction of time spent in these behaviors are plotted

on left. In power spectra on right of time series of behaviors (horizontal dash line denotes threshold power for p=0.05), temporal patterns of the three

behaviors all show significant circadian rhythmicity. In right top, spectra of randomized grooming show no rhythmicity, while modified locomotion is still

rhythmic. Similarly, in time series on right bottom, with the same randomized grooming, wake remains rhythmic while grooming, as one component

from it, is arrhythmic. In time series of behaviors, activity is binned every 30 min.

DOI: https://doi.org/10.7554/eLife.34497.014

The following source data and figure supplements are available for figure 4:

Source data 1. Source data for Figure 4.

DOI: https://doi.org/10.7554/eLife.34497.018

Source data 2. Source data for Figure 4—figure supplement 1.

DOI: https://doi.org/10.7554/eLife.34497.019

Source data 3. Source data for Figure 4—figure supplement 2.

DOI: https://doi.org/10.7554/eLife.34497.020

Figure supplement 1. Relationships among fly grooming, locomotion, feeding, short rest, and sleep.

DOI: https://doi.org/10.7554/eLife.34497.015

Figure supplement 2. Temporal relationships between grooming and locomotion.

DOI: https://doi.org/10.7554/eLife.34497.016

Figure supplement 3. Mathematical description of temporal changes in grooming and locomotion patterns.

DOI: https://doi.org/10.7554/eLife.34497.017
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positive correlations, although to varying degrees (Figure 4D and Figure 4—figure supplement

1C). The analyses further revealed that the fraction of time a fly spent in short rest was the best pre-

dictor of its grooming time (r = 0.42 in iso31+ and 0.26 in Canton-S) while locomotion (r = 0.26 and

�0.13) and feeding (r = 0.27 and 0.06) were both less reliable in predicting grooming.

The weaker grooming-locomotion and grooming-feeding correlations were unexpected for two

reasons. First, daily variations in grooming levels had appeared to closely follow those in locomotion

(Figure 4—figure supplement 2A), suggesting the possibility that grooming is a by-product of the

more robustly driven locomotor activity. Second, feeding activity has been postulated to act as a

trigger for grooming with food debris serving as an external stimulus (Hampel et al., 2015;

Seeds et al., 2014). To further dissect the lack of predictive relationship between grooming and

locomotion, we first examined temporal parameters that describe grooming and locomotion over

short timescales (Figure 4—figure supplement 2A–E). Basal locomotor events during mid-day and

night (Figure 4—figure supplement 2A, rectangles) were relatively sparse compared to grooming

episodes during the same times. This difference in inter-event time interval between grooming and

locomotion persisted to different degrees throughout the day-night cycle, such that the average lon-

gest pause between two subsequent grooming events was ~88 min while that between two locomo-

tor events was ~132 min (Figure 4—figure supplement 2C). Examination of the duration of

individual events showed grooming events on average lasted for ~0.23 min compared to ~0.44 for

locomotor events (Figure 4—figure supplement 2D). These analyses revealed significant differences

between the two behaviors over short timescales and do not support locomotor activity as a driver

of grooming.

To focus on temporal dynamics at longer timescales, we binned multi-day data in 30 min (Fig-

ure 4—figure supplement 2F,G) and applied least square fit to a previously developed mathemati-

cal model that describes long timescale variations in fly activity in terms of exponential functions

(Lazopulo and Syed, 2016, 2017). The functions were defined by four rate parameters bMR, bMD, bER
and bED, where subscripts denote morning rise (MR), morning decay (MD), evening rise (ER) and

evening decay (ED), and two duration parameters that describe the relative durations of morning

(TM) and evening (TE) peaks in activity (Figure 4—figure supplement 2H and Figure 4—figure sup-

plement 3). Results from this analysis showed that the rate parameter bMR of grooming was smaller

than that of locomotion (Figure 4—figure supplement 2I), indicating a slower increase in night-time

grooming activity. Additionally, the evening duration parameter (TE) for grooming was greater than

that for locomotion (Figure 4—figure supplement 2J), indicating that the evening peak in grooming

lasted longer. These differences in long timescale kinetics were again inconsistent with locomotor

activity as a driver of grooming. Finally, comparison with large timescale variations in feeding pat-

terns showed that peak time in contacting food was offset by 2–4 hr from nearby peaks in grooming

(Figure 4—figure supplement 2O–P). The large temporal offset suggests contact with food is also

not likely to drive the majority of grooming events observed in our experiments. Thus, according to

our analyses of the kinetics of Drosophila ethograms in our system, neither locomotor activity nor

feeding is likely to be a primary driver of basal grooming.

To identify major drivers of basal grooming, we noted that multi-day time series of the behaviors

showed time-of-day-dependent changes in each behavior (Figure 4E). The appearance of repeating

patterns raised the possibility that external light-dark (LD) cycles alone or in combination with inter-

nal programs could be exerting temporal control over several of these behavioral outputs, including

grooming. Indeed, environmental light-dark cycles through influence on the circadian clock are

known to drive rhythmic changes in fly sleep and wake durations and within the awake state, feed-

ing, and locomotor activities (Chatterjee and Rouyer, 2016; Pfeiffenberger et al., 2010). That

these rhythms persisted in the absence of LD cycles is generally considered to be strong support for

clock control of these behaviors.

We set out to determine whether the circadian clock drives rhythmic modulations in fly daily

grooming independent of other circadian-regulated behaviors–that is, to test whether grooming

exhibits circadian oscillations simply because individual grooming events are mutually exclusive of

other individual wake activities. We recognized that the mutual exclusivity of the behaviors seen at

the level of individual events (Figure 4A) did not persist at the level of fractional time in each behav-

ior where the long timescale modulations are visible (Figure 4E). This is because fractional time data

are binned and the only constraint on these data was that the sum of the time spent in each wake

behavior (grooming, locomotion, feeding and short rest) and sleep equaled one for each time bin
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(Figure 4—figure supplement 1F). In this representation, therefore, rhythmicity of one behavior (i.e.

grooming) did not dictate rhythmic status of another (i.e. locomotion).

To test the independence of rhythms, we performed a series of ‘shuffling experiments’ using

well-established (Allada and Chung, 2010; Chatterjee and Rouyer, 2016) rhythmicities of wakeful-

ness and locomotion as metrics (Figure 4F ). In brief, we took data from Figure 4E in which groom-

ing, locomotion and wakefulness have LD-driven ~24 hr rhythms (Figure 4F, left and power spectra)

and computationally randomized the grooming time-series such that it lost rhythmicity (Figure 4F,

right). To account for the randomized grooming, we also adjusted either locomotion (Figure 4F,

upper panel) or wakefulness (Figure 4F, bottom panel), in both cases ensuring that wakefulness was

between 0 and 1 at all times (see Materials and methods). In either case, we found that rhythmicity

in locomotion and wakefulness were intact regardless of the rhythmic status of grooming. The simu-

lation result suggested that circadian control of fly locomotion and wakefulness does not guarantee

circadian control of underlying basal grooming, at least as measured from changes in the duration of

the behaviors. Therefore, demonstration of robust ~24 hr rhythms in grooming in the absence of any

external cues should be strong evidence in favor of circadian control of the behavior.

Temporal pattern of grooming is controlled by the circadian clock
To test whether basal grooming is also under circadian control, we first entrained iso31+ + to 2 days

of alternating light-dark cycles and then monitored their behavior over multiple days in constant

darkness (DD). In the absence of light cues, locomotor, feeding and sleep showed the familiar clock-

driven rhythms in their daily timing (Figure 5A,B). Although short rest appeared to undergo rhyth-

mic changes (Figure 5A), spectral analysis indicated these changes did not result in statistically sig-

nificant rhythms at the p=0.05 level (Figure 5B). Lack of rhythms in short rest is consistent with our

earlier reasoning that rhythmic wakefulness and locomotion does not necessarily imply rhythmicity of

each behavior in the awake state.

Grooming data also showed periodic changes in constant darkness (Figure 5C). Power spectra of

individual time-series (‘WT’ in Figure 5D and Figure 5—figure supplement 1A) indicated these

periodic changes to be statistically rhythmic by revealing peaks significant at p=0.01 in 100% of flies

(29 out of 29 individuals, Figure 5E). The average period of oscillations was 23.72 hr, with a standard

deviation of 0.72 hr (Figure 5—figure supplement 1B). The presence of these robust circadian

rhythms in the absence of external cues further support the hypothesis that fly basal grooming is

under control of the internal timekeeper. Consistent with our prediction that grooming rhythms in

DD do not necessarily follow from rhythms in locomotion or wakefulness, we found that knowing

locomotion or wakefulness is rhythmic did not inform about the rhythmic status of grooming (Fig-

ure 5—figure supplement 2). This finding further underscored the importance of the DD studies in

establishing rhythmicity in basal grooming. It should be noted here that our simulation results do

not demonstrate bidirectional independence of rhythmicity in wakefulness and grooming but, only

that rhythmicity of wakefulness does not depend on that of grooming. Demonstration of fully inde-

pendent rhythms in the two behaviors is beyond the scope of the present study.

We next took advantage of several circadian mutants to examine further the control of grooming

by the circadian clock. The Drosophila clock is composed of two interlocked genetic feedback loops

in which period (per) is one of the core components and whose transcription is controlled by the pri-

mary transcription factors Clock (clk) and Cycle (cyc) (Allada and Chung, 2010). The per gene has

several well-characterized mutant alleles, two of which—perS and perL—produce short and long cir-

cadian rhythms, respectively, while a third, per0, results in arrhythmic behavior (Konopka and

Benzer, 1971). Population-averaged grooming of perS and perL showed altered oscillations in LD

and DD (Figure 5C, second and third rows), with average DD periods of 19.23 � 0.57 hr and 28.84

� 1.13 hr, respectively (Figure 5D,E and Figure 5—figure supplement 1A). The periods of oscilla-

tion in grooming were well within published values of circadian rhythms of these mutants

(Konopka and Benzer, 1971) and in agreement with alterations in locomotor rhythms of the flies

(Figure 5—figure supplement 3A). Consistent with these results, grooming in per0 flies was arrhyth-

mic (Figure 5C, bottom row) and, when analyzed at the individual fly level, the power spectra

unveiled the absence of statistically significant rhythms in 19 out of 20 flies at p=0.01 level

(Figure 5D,E and Figure 5—figure supplement 1A). Moreover, analysis of grooming patterns in

cyc01 (Rutila et al., 1998) and clkJrk (Allada et al., 1998), arrhythmic mutants of cyc and clk, also
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Figure 5. Grooming is under control of the circadian clock. (A) Average temporal patterns (fraction of time spent in 30 min bins) of locomotion,

feeding, short rest and sleep of eight representative iso31+ flies during 3 days in constant darkness (DD). Black horizontal bar represents lights-off

condition. (B) Power spectra of behaviors in panel (A). Except for short rest, temporal patterns of the other three behaviors show significant circadian

rhythmicity. Horizontal dash line and dash dot line denote threshold powers for p=0.05 and p=0.01, respectively. (C) Grooming activity (in 30 min bins)

of wild-type and clock mutants during 2 days in LD cycle followed by four days in DD cycle. Grooming traces are population averages. In DD, wild-type

(WT, iso31+) grooming continues to show 24 hr rhythms. In comparison, grooming in perSor perL flies show shorter or longer rhythms, respectively. For

per0 flies, grooming is arrhythmic in DD. N = 8 WT, 8 perS, 8 perL, and 8 per0 representative flies. (D) Example power spectra showing circadian

rhythmicity in grooming patterns of three individual wild-type, perS, perL and per0 flies. Spectra are normalized to variance of activity (in 30 min bins).

Dash lines and dash dot lines represent threshold power at p=0.05 and p=0.01, respectively. More examples of individual power spectra are provided

in Figure 5—figure supplement 1. (E) Spectral powers of circadian peaks of individual wild-type and circadian mutants. N = 29 control, 20 perS, 29

perL, 20 per0, 13 cyc01 and 11 clkJRK .

DOI: https://doi.org/10.7554/eLife.34497.023

The following source data and figure supplements are available for figure 5:

Source data 1. Source data for Figure 5.

DOI: https://doi.org/10.7554/eLife.34497.027

Source data 2. Source data for Figure 5—figure supplement 1.

DOI: https://doi.org/10.7554/eLife.34497.028

Source data 3. Source data for Figure 5—figure supplement 3.

DOI: https://doi.org/10.7554/eLife.34497.029

Source data 4. Source data for Figure 5—figure supplement 2.

DOI: https://doi.org/10.7554/eLife.34497.030

Figure supplement 1. (A) Example Lomb-Scargle periodograms of grooming activity of individual per mutants and their background control (WT).

DOI: https://doi.org/10.7554/eLife.34497.024

Figure supplement 2. Rhythmicity in grooming patterns need not be a direct result of rhythmicity in locomotion or sleep-wake cycles.

Figure 5 continued on next page
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showed loss of circadian rhythms (Figure 5E and Figure 5—figure supplement 3B–D). Together,

these results support the hypothesis that the circadian clock temporally modulates fly grooming.

Grooming duration is controlled by cycle and clock
To test whether, in addition to regulating the timing of grooming, the circadian clock also regulates

grooming duration, we examined the average duration of grooming in circadian mutants. Despite

causing major changes in temporal patterns of grooming, the per0 mutation did not significantly

change the average duration of grooming in these flies (Figure 6A). In contrast, cyc01 and clkJrk

mutants both exhibited increased daily average grooming relative to their respective genetic con-

trols (Figure 6B,C). While both mutants exhibited increased grooming duration, this change was

accompanied by opposing changes in their locomotion: cyc01 flies spent less time and clkJrk flies

spent almost twice as much time in locomotion (Figure 6B,C, pie plots). Thus, the increase in cyc01

grooming came almost entirely from loss of locomotor activity while the increase in clkJrk grooming

came from loss of sleep. These results support the hypothesis that locomotion and grooming are

partly independent behaviors and further suggests that the cyc01 and clkJrk mutations alter the

insect’s internal homeostasis in distinct ways, similar to phenotypic differences reported previously in

sleep studies involving cyc01 and clkJrk (Hendricks et al., 2003; Shaw et al., 2002). Importantly,

together with per0 data, the results raise the possibility of non-circadian roles for cyc and clk in set-

ting the duration of internally driven grooming in Drosophila.

cycle and clock have also been implicated in stress response, particularly in regulating level of

sleep in response to sleep deprivation and adjusting locomotor output in response to nutrient

unavailability (Hendricks et al., 2003; Keene et al., 2010; Shaw et al., 2002). Because grooming

and sleep have both been previously linked to stress, we asked whether reduction in sleep is always

accompanied by an increase in grooming as seen in our clkJrk data. To address this question, we

examined relationship between grooming and sleep in standard LD cycles in two short-sleeping

mutants–fumin and sleepless (sss). Consistent with the original studies (Koh et al., 2008;

Kume et al., 2005), our method found both strains to have extremely low levels of sleep

(Figure 6D,E, pie plots). But, while loss of sleep in fumin was accompanied by an upregulation in

grooming (Figure 6D), loss of sleep in sss was accompanied by a dramatic downregulation in

grooming, compared to control flies (Figure 6E). These divergent relationships between sleep and

grooming (e.g. sss vs. fumin) and between locomotion and grooming (e.g. clkJrk vs. cyc01) became

more evident when individuals of different genotypes were compared together (Figure 6—figure

supplement 1F,G). To better visualize the effects of disparate mutations, data of each genotype in

these plots were normalized to the population-mean of its genetic control. These results suggest

that resetting of the level of internally-driven grooming can occur via a number of ways with complex

compensatory changes in sleep and locomotor behavior.

Accumulated data from our experiments suggest that grooming is an innate fly behavior con-

trolled by two major regulators. One of these regulators controls temporal patterns in grooming

and the other controls amount of time spent in grooming. Circadian genes per, cyc and clk are

involved in controlling the timing of peaks/troughs in grooming rhythms while cyc and clk are also

involved in setting how much time is spent grooming. The apparent absence of per from the second

regulatory mechanism is consistent with the possibility that the two control mechanisms operate

independently.

Nearly all animals tested exhibit daily basal grooming behavior, suggesting that grooming is not

only fundamental to health but also reflects a generally healthy state. Consistent with this, loss of

grooming is indicative of sickness behavior (Hart, 1988) associated with infection or old age, and, in

the case of humans, mental illness. A greater understanding of the molecular mechanisms regulating

grooming would provide insight into the principles and neural circuits underlying other complex pro-

grammed behaviors, as well as potentially identify biomarkers of pathological disease states. Critical

Figure 5 continued

DOI: https://doi.org/10.7554/eLife.34497.025

Figure supplement 3. (A) Locomotion (in 30 min bins) of wild-type (iso31+) and clock mutants during two days in LD cycle followed by four days in DD

cycle.

DOI: https://doi.org/10.7554/eLife.34497.026
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to the dissection of these molecular mechanisms is a system for rapid, automated interpretation of

grooming in a genetically tractable model organism. The development of our platform will facilitate

high-throughput and unbiased analysis of the genetic regulators and neural circuits that control

grooming, as well as those responsible for loss of grooming in the context of disease.

Figure 6. Control of grooming duration is independent of circadian rhythmicity. In each panel, bar plots on left show average fractional time spent in

grooming in mutant and control flies. Pie charts on right present average fractional time spent in grooming (green), locomotion (gray), sleep (dark gray),

short rest (purple) and feeding (blue). Here, numerical values for fractional time spent in behavior are indicated only for grooming, locomotion and

sleep with additional details in Figure 6—figure supplement 1A. Although loss of a functional clock does not affect grooming amount (A), mutations

in clock (B) and cycle (C) genes lead to robust increases in the time flies spend grooming. Additional time for grooming can come from reduction in

sleep (B) or reduction in locomotion (C). Reduction in sleep, however, does not always entail similar changes in grooming since sleep mutants fumin (D)

and sleepless (E) show divergent alterations in grooming durations. N = 83 control, 53 per0, p=0.28. N = 76 control, 18 cyc01, p=2.7�10�4. N = 28

control, 25 clkJRK , p=7.8�10�9. N = 17 control, 23 fumin, p=0.003. N = 28 control, 17 sss, p=1.3�10�10.

DOI: https://doi.org/10.7554/eLife.34497.031

The following source data and figure supplement are available for figure 6:

Source data 1. Source data for Figure 6.

DOI: https://doi.org/10.7554/eLife.34497.033

Source data 2. Source data for Figure 6—figure supplement 1.

DOI: https://doi.org/10.7554/eLife.34497.034

Figure supplement 1. Changes in grooming due to mutations in clock, sleep or immune genes.

DOI: https://doi.org/10.7554/eLife.34497.032
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Discussion
Grooming continues to be one of the least understood Drosophila behaviors, possibly due to the

technical challenges of detecting grooming events in this small insect. Early work describing fly

grooming relied on manual scoring (Connolly, 1968; Szebenyi, 1969; Tinbergen, 1965), which

imposes significant limitations on the length of events that can be detected, fidelity and objectivity

of detection, and the level of detail that can be extracted from the data. Despite such limitations,

these initial studies made a number of noteworthy observations. Szebenyi delineated all the major

modes of fly grooming and suggested that repetitive grooming actions may closely follow a preset

sequence (Szebenyi, 1969). A subsequent study in the blowfly offered a more refined mechanistic

picture of insect grooming by proposing that the sequential actions form a hierarchical structure

(Dawkins and Dawkins, 1976). Combining modern computational and genetic tools, an elegant

study in Drosophila recently confirmed these previous hypotheses (Seeds et al., 2014). That fruit

flies may groom spontaneously in the absence of any apparent stimulus has also been previously

suggested (Connolly, 1968; Tinbergen, 1965). Consistent with this, our work provides evidence

that fruit flies groom as part of their daily repertoire of internally programmed behaviors and often

without any obvious external stimulus. Our analysis revealed that over a period of hours, grooming

is temporally structured by the fly circadian clock, with peak activity around dawn and dusk. The

study also identifies transcription factors CLOCK and CYCLE as critical molecular components that

control the amplitude of programmed Drosophila grooming.

Machine-learning is increasingly gaining popularity due to its applicability to virtually any problem

involving pattern classification, including in studies aimed at deconstructing stereotyped behavior in

the fruit fly (Branson et al., 2009; Kabra et al., 2013; Kain et al., 2013; Mendes et al., 2013;

Valletta et al., 2017). Similar to these recent efforts, we constructed a computational pipeline incor-

porating elements of machine learning to automatically identify grooming events in video recordings

of behaving flies. Our approach relies, in particular, on a supervised k-nearest neighbors algorithm

to broadly classify behavior into grooming, locomotion and rest (Figure 2). Application of additional

optional filters yielded approximate data on feeding and sleep (Figure 4). While previous methods

offer important details on different modes of grooming (Berman et al., 2014; Seeds et al., 2014),

leg movements (Kain et al., 2013; Mendes et al., 2013), and fly-fly interactions (Branson et al.,

2009; Kabra et al., 2013) from short videos, the methods have limited capability for interpreting

multi-day and multi-fly recordings. The method presented here offers less detail on modes of

grooming, but can instead readily dissect circadian time-scale recordings into three to five behav-

ioral classes on a typical personal computer.

The apparatus used in this method (Figure 1) also offers a number of advantages over current

ones. First, most items used in the apparatus, including the ~6 cm tubes in which flies are visualized,

are standard in a typical circadian experiment studying fly locomotion or sleep (Lazopulo et al.,

2015; Pfeiffenberger et al., 2010) using the Drosophila Activity Monitor (DAM). The retention of

this basic feature should lower the technical hurdle for the interested investigator who is likely to be

one already engaged in locomotion and sleep studies in Drosophila. The use of a shared design to

house flies also means that both experimental subjects and certain conclusions drawn from one plat-

form may be readily transferred to the other. Most current grooming methods require specialized

equipment for fly stimulation and detection (Seeds et al., 2014), elaborate optics (Kain et al.,

2013), or a specific form of fluorescence microscopy (Mendes et al., 2013). Second, our apparatus

can simultaneously monitor up to ~20 flies, while the existing approaches, although offering higher-

resolution data, monitor only one animal at a time. The scalability and high-throughput nature of our

platform should appeal to investigators interested in, for example, large-scale genetic studies to

identify mechanisms that differentially affect grooming, locomotion and rest (King et al., 2016).

Finally, the flies in our apparatus are allowed to move freely over a distance roughly 10 times their

body length and still remain in the camera’s field of view while technical constraints in other studies

limit visualization to short distances (Mendes et al., 2013). The relative freedom of mobility, access

to food, and long time-scales of observation offered by our apparatus thus facilitate analysis of

basal, internally programmed behavior.

These properties make our platform amenable to addressing questions of biological relevance,

such as the importance of grooming behavior, its temporal regulation with regards to other fly

behaviors, and its dependence on the circadian timekeeping system. First, we found that flies
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consistently devote a significant fraction of time to grooming behavior during periods of wakefulness

(13%), and surprisingly, that grooming behavior is observed even during periods of reduced locomo-

tor activity (Figure 4—figure supplement 2A). This suggests that the benefits of grooming out-

weigh the caloric resources expended and the resulting interruption of rest, underscoring the

hypothesis that daily grooming is a fundamental behavior of Drosophila.

A few recent studies (Hampel et al., 2015; Phillis et al., 1993; Seeds et al., 2014) have shown

that fly grooming can be directly induced by peripheral stimuli, and there has been considerable

progress toward identifying the behavioral and neural aspects of such stimulus-induced grooming.

However, programmed grooming, or grooming in the absence of a macroscopic stimulus, remains

relatively understudied in Drosophila. To our knowledge, the existence of programmed grooming,

first proposed in the mid 60s, still remains unreported.

Data from this study suggest that a significant portion of daily fly grooming is driven by internal

programs. Flies in our experiments are active for ~34% of the time within a 24 hr period, during

which they mostly engage in grooming, locomotion and feeding. Behavioral analysis showed that,

like sleep, locomotion and feeding, fly grooming behavior is modulated by oscillations of the circa-

dian clock (Figure 5). This finding raised the possibility that the observed grooming was stimulated

by rhythms in contact with food or locomotor activity. However, closer examination revealed that

kinetics in feeding and locomotion were distinct from those of grooming (Figure 4—figure supple-

ment 2). Additionally, genetic modifications resulted in contrasting changes in these behaviors (Fig-

ure 6). These results together suggest that the majority of grooming events detected in our

experiments are not triggered by external stimuli such as light, food and locomotor movements.

Rather, internal regulatory mechanisms, independent of external stimuli, likely drive this pro-

grammed behavior.

Multi-day recordings of wild-type flies in constant darkness showed 24 hr rhythms in daily groom-

ing patterns (Figure 5, Figure 5—figure supplement 1). Furthermore, these rhythms were shifted

appropriately in the canonical period mutants perL and perS and abolished in arrhythmic per0 flies

(Figure 5). These data support a regulatory model in which timing of programmed grooming behav-

ior is orchestrated by the circadian clock. Notably, since loss of rhythmicity did not significantly affect

the amount of grooming (Figure 6A), our results suggest that the primary role of the clock is to

organize the behavior in time without influencing the total time flies dedicate to grooming.

Intriguingly, two other circadian mutations, cyc01 and clkJrk, increased the proportion of daily

time flies spend grooming (Figure 6B,C), implying that the changes in grooming level may not be

due to circadian defects. These data are consistent with the hypothesis that clock-independent but

cyc- and clk- dependent pathways regulate the amount of programmed grooming behavior.

Finally, why are flies innately programmed to groom? The present study does not directly address

this important question, but given that microscopic pathogens can sporulate on the fly cuticle and

eventually infect the insect (St. Leger et al., 2011), persistent grooming may serve as a first line of

defense against such attack. Thus, the immune system may constitute another internal program, sim-

ilar to the cyc and clk-controlled mechanisms, that drives fly grooming; if so, we hypothesized that

mutants with defective immune response may exhibit altered grooming behavior (Lemaitre et al.,

1995; Michel et al., 2001). Consistent with this, we found that grooming was reduced in the

immune-deficient imd mutant (Figure 6—figure supplement 1H), although a second immune-defi-

cient strain lacking a member of the Toll pathway (PGRP-SAseml) did not show a significant change.

Further studies are required to clarify these initial results and elucidate the biological function of pro-

grammed grooming in Drosophila.

Together, our data provide strong supporting evidence for programmed grooming in Drosophila

and suggest that this innate behavior is driven by two possibly distinct sets of regulatory systems.

The circadian system temporally segregates time-dependent variations in grooming from those of

other essential behavioral outputs like feeding and sleep. Circadian coordination of grooming under-

scores a previously under-appreciated importance of this behavior in the daily routine of the fruit fly.

The second regulatory system adjusts the level of grooming relative to other behaviors. This set of

regulation likely confers adaptability on the animal by allowing it to up- or downregulate grooming

as necessitated by internal and external conditions. The dual control mechanism of grooming pro-

posed here is highly reminiscent of the two-process framework—circadian and homeostatic—that is

widely used in understanding sleep regulation (Borbély, 1982). Although this work has not
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demonstrated grooming is under homeostatic control, future studies could be aimed at better char-

acterizing the nature of the non-circadian regulatory system of fly grooming.

In summary, we present here a new platform to detect innate grooming behavior simultaneously

and for days at a time in multiple individual fruit flies. The apparatus can be assembled easily, and

the accompanying analytics are available publicly. Utilizing this platform, we report several mecha-

nisms that are possibly responsible for driving the timing and level of programmed grooming in Dro-

sophila. We also suggest future experiments that through use of this platform can lead to deeper

understanding of the underlying biology of grooming and its relation to other essential fly

behaviors.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Strain, strain
background (Drosophila
melanogaster, male)

sssp1 DOI: 10.1126/science.1155942 on iso31 background

Strain, strain
background (D.
melanogaster, male)

iso31 DOI: 10.1126/science.1155942

Strain, strain
background (D.
melanogaster, male)

fumin DOI: 10.1523/JNEUROSCI.2048-05.2005 on w1118 background

Strain, strain
background (D.
melanogaster, male)

w1118 Bloomington Drosophila
Stock Center

BDSC: 3605

Strain, strain
background (D.
melanogaster, male)

Canton S Bloomington Drosophila
Stock Center

BDSC: 64349

Strain, strain
background (D.
melanogaster, male)

clkJRK this paper backcrossed for five generations
to iso31

Strain, strain
background (D.
melanogaster, male)

per0 this paper backcrossed for five generations
to iso31+

Strain, strain
background (D.
melanogaster, male)

perS this paper backcrossed for six generations
to iso31+

Strain, strain
background (D.
melanogaster, male)

perL this paper backcrossed for six generations
to iso31+

Strain, strain
background (D.
melanogaster, male)

cyc01 other on Canton S background, gifts
from William Ja

Strain, strain
background (D.
melanogaster, male)

iso31+ other gifts from Michael Young

Fly strains
Clock mutants perS, per L, and per0 were backcrossed for five-six generations to an iso31 with mini-

white insertion strain (iso31+). cyc01 flies, gifts from William Ja (The Scripps Research Institute), have

the Canton S background. ClkJrk flies were backcrossed for five generations to iso31. sssP1 mutant

flies, gifts from Amita Sehgal (Perelman School of Medicine at the University of Pennsylvania), have

the iso31 background. fumin mutants, gifts from F. Rob Jackson (Tufts University School of Medi-

cine), have the w1118 background. Flies were bred and raised at 23˚C and 40% relative humidity on

standard cornmeal and molasses food. All experiments were done with 5–8 days old males at 260C

and 70–80% relative humidity in a custom-built behavior tracking chamber (Figure 1 and Figure 2—
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figure supplement 1A). For each experiment, control strain refers to the genetic background of a

mutant. WT flies in Figures 4 and 5 refer to the iso31+ line.

Behavior tracking apparatus
Chamber
Flies were placed individually in glass tubes (Trikinetics Inc., Waltham, MA, PGT5 � 65) with food

and a cotton plug at opposite ends. Twenty tubes were placed on a custom-designed acrylic plate

inside a transparent acrylic cuboid box for simultaneous imaging. Temperature and humidity were

monitored every 5 min with a digital thermometer (Dallas Semiconductor, Dallas, TX, DS18B20) and

a humidity sensor (Honeywell, Morris Plains, NJ, HIH-4010), respectively, while a wet sponge inside

the chamber kept the relative humidity around 70–80% (Figure 2—figure supplement 1A).

Illumination
The chamber was illuminated by two sets of light-emitting diode (LED) strips. White LEDs (LEDwho-

lesalers, Hayward, CA, 2026) producing ~700 lux were used to simulate daytime conditions and infra-

red LEDs (LEDLIGHTSWORLD, Bellevue, WA, SMD5050-300-IR 850 nm) were used to visualize the

flies at all times.

Camera
A CCD monochrome camera (The Imaging Source, Charlotte, NC, DMK-23U445) fitted with a varifo-

cal lens (Computar, Cary, NC, T2Z-3514-CS) was used for video imaging. To minimize influence of

chamber’s light/dark conditions on video quality, we put a 780 nm long pass filter (Midopt, Palatine,

IL, LP780-30.5) in front of the lens. Videos were saved as 8-bit images in. avi format with 1280 � 960

resolution at 10 Hz and down-sampled as needed.

Analytic hardware and runtime
Using a desktop computer with Intel Core i7-4770 3.4 GHz processer and 4 � 4 G DDR3 1600 MHz

RAM, it takes ~7 hr to extract grooming, locomotion and rest data from an 8 hr video of 20 flies

recorded in 10 Hz (in total 288,000 frames) at 1280 pixel �960 pixel resolution. Videos are analyzed

every two frames (5 Hz), which is sufficient to capture grooming events.

Algorithm for automatic detection of grooming
All computational analyses were done with custom-written Matlab scripts that will be available at

https://github.com/sbadvance/Drosophila-Grooming-Tracking.git (Qiao, 2017; copy archived

at https://github.com/elifesciences-publications/Drosophila-Grooming-Tracking).

Fly shape extraction. Fly shape was extracted by applying a background subtraction algorithm.

The background or reference frame is constructed randomly picking two frames, a template and a

contrast, and comparing their pixel grayscale values and erasing all moving objects from the tem-

plate frame. To remove the fly from the template frame, we replace the pixels belonging to the fly

with corresponding pixels from contrast frames, relying on the fact that a fly is always darker than

the surrounding objects. The template frame with no fly present then becomes the background

frame. Additionally, because a fly’s surroundings, including food debris, change substantially during

the course of an experiment (Figure 2—figure supplement 1B), the background frame is regener-

ated every 1000 s. Lastly, if a fly occupies the same area in the template and contrast frames, the

overlapping region cannot be erased on the template. To circumvent this problem, every time a

background frame is generated, we randomly choose seven, instead of one, frames as contrast

frames and compare all of them with the template. When a fly does not move for more than 1000 s,

the fly will not be removed from the background and cannot be detected in other frames during this

1000 s. Thus, when a fly is not detected, we consider the fly to be stationary at the position where it

was last detected.

To reduce effects of charge coupled device (CCD) image noise and fluctuations in the system, we

set a minimum change C0 as the threshold to accept grayscale changes from fly movements. We

denote the grayscale value of a pixel located at (x, y) (in units of pixel, in our case, x 2 [1:1280], y 2
[1:960]) in the template as Itemplate x;yð Þ and in the contrast frame Icontrast x;yð Þ. Only if
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Itemplate x;yð Þ� Icontrast x;yð Þ>C0

then

Itemplate x;yð Þ ¼ Icontrast x;yð Þ

While increasing threshold C0 reduces noise, it can also lead to rejection of real movements of

the fly. To optimize C0, we tested noise levels in our images by analyzing a 3-hr video with dead flies.

In the test, 30 pairs of consecutive frames were randomly chosen from the video and the differences

between their corresponding grayscale pixel values were calculated. The distribution of the differen-

ces, stemming from noise, is shown in Figure 2A. Based on this distribution, we set C0=10, which

excludes 99.99% of noise-related changes in grayscale values.

Feature normalization. Since PM and CM both represent areas (number of pixels in area), while

CD represents distance, we take the square root of PM and CM to make the dimensions of the fea-

tures homogeneous. In addition, fly size varies between individuals and across experimental settings.

To facilitate comparison of data in feature space, we therefore normalize PM, CM and CD of each fly

with a scale parameter SP equal to the square root of the area of that fly. Thus, the final form of nor-

malized features are

Normalized PM ¼
ffiffiffiffiffiffiffiffi

PM
p

=SP

Normalized CM ¼
ffiffiffiffiffiffiffiffi

CM
p

=SP

Normalized CD¼CD=SP

Spectral analysis
Figures 4 and 5 and Figure 5—figure supplements 1–3: To measure periodicity in locomotion and

grooming recordings, we applied the Lomb-Scargle periodogram (Lazopulo et al., 2015; Scar-

gle, 1982) to time-series that were binned into 30 min periods. Power at indicated p values shown

in power spectra were calculated according to

Power¼�ln 1� 1� pð Þ1=N
� �

where p is the p-value and N is the number of frequencies computed in Lomb-Scargle periodogram.

To test the effect of binning on rhythmicity, we binned grooming activity of individual flies in 30

min, 5 min, and 1 min bin sizes and ran Lomb-Scargle periodogram analysis on these binned data, as

well as raw data without any additional binning. Examples of 5 individual spectra of each bin size are

shown in Figure 5—figure supplement 1C. As shown in the figure, the separation between statisti-

cal cut-off power (at certain p value, horizontal lines) and peak power increases with smaller bin size

or equivalently, larger number of data points (N). This is because in Lomb-Scargle periodogram, cut-

off power grows as log (N) while peak power grows as N.

Time series randomization
In Figure 4F and Figure 5—figure supplement 2, randomized grooming was generated by ran-

domly shuffling time in raw grooming data. The corresponding modified locomotion and wake were

calculated according to

Modified locomotion = original locomotion+original grooming – randomized grooming

Modified wake = original wakefulness+original grooming – randomized grooming

These manipulations modified either locomotion or wake while keeping the other unchanged.

Statistics
No sample size estimation was performed when the study was being designed. Unless otherwise

specified, quantitative experiments with statistical analysis were repeated at least three times inde-

pendently. Exclusion of data applies to flies which were physically damaged (for example, broken

wings or legs), physically confined (for example, trapped by condensation inside tubes), or dead dur-

ing experiments. For testing statistical significance of differences between groups, we first tested
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the normality of data by one-sample Kolmogorov-Smirnov test. Two-sample F-test was applied for

equal variances test. Samples with equal variances were compared using two-tailed t-test. Sat-

terthwaite’s approximation for the effective degrees of freedom was applied for samples with

unequal variances. Results were expressed as mean ± s.d., unless otherwise specified. *p<0.05,

**p<0.01, ***p<0.001 were considered statistically significant.

In Figure 4C,D and Figure 4—figure supplement 1B,C, the Pearson correlation coefficient r for

each pair of data was calculated according to the standard definition

rX;Y ¼
E X��Xð Þ Y ��Yð Þ½ �

sXsY

where X and Y are time spent in two behaviors X and Y, rX; Y is the Pearson correlation coefficient

between two behaviors, E½ � is the expectation value, � and s are, respectively, mean value and stan-

dard deviation of a behavior. The statistical significance of r was estimated through bootstrapping.

For each two behaviors, we randomly paired data from n flies (n = 84 for iso31+ and n = 76 for Can-

ton S) and calculated a correlation coefficient r. This process was repeated 100,000 times and the

empirical distribution of the randomly paired r values were used for a two-tailed test (Figure 4—fig-

ure supplement 1D). p-values for all Pearson correlation coefficients are presented in Figure 4—fig-

ure supplement 1E.
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