
Citation: Bae, W.D.; Alkobaisi, S.;

Horak, M.; Park, C.-S.; Kim, S.;

Davidson, J. Predicting Health Risks

of Adult Asthmatics Susceptible to

Indoor Air Quality Using Improved

Logistic and Quantile Regression

Models. Life 2022, 12, 1631. https://

doi.org/10.3390/life12101631

Academic Editors: K. H. Katie Chan,

Ka-Chun Wong, Brian Chen and Jie Li

Received: 5 August 2022

Accepted: 4 October 2022

Published: 18 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

life

Article

Predicting Health Risks of Adult Asthmatics Susceptible to
Indoor Air Quality Using Improved Logistic and Quantile
Regression Models
Wan D. Bae 1 , Shayma Alkobaisi 2,*, Matthew Horak 3, Choon-Sik Park 4 , Sungroul Kim 5, Joel Davidson 1

1 Department of Computer Science, Seattle University, Seattle, WA 98122, USA
2 College of Information Technology, United Arab Emirates University, Al Ain 15551, United Arab Emirates
3 Lockheed Martin Space Systems, Denver, CO 80221, USA
4 Department of Internal Medicine, Soonchunhyang Bucheon Hospital, Bucheon 420-767, Korea
5 Department of ICT Environmental Health System, Graduate School, Department of Environmental Sciences,

Soonchunhyang University, Asan 336-745, Korea
* Correspondence: shayma.alkobaisi@uaeu.ac.ae

Abstract: The increasing global patterns for asthma disease and its associated fiscal burden to
healthcare systems demand a change to healthcare processes and the way asthma risks are managed.
Patient-centered health care systems equipped with advanced sensing technologies can empower
patients to participate actively in their health risk control, which results in improving health outcomes.
Despite having data analytics gradually emerging in health care, the path to well established and
successful data driven health care services exhibit some limitations. Low accuracy of existing
predictive models causes misclassification and needs improvement. In addition, lack of guidance
and explanation of the reasons of a prediction leads to unsuccessful interventions. This paper
proposes a modeling framework for an asthma risk management system in which the contributions
are three fold: First, the framework uses a deep learning technique to improve the performance of
logistic regression classification models. Second, it implements a variable sliding window method
considering spatio-temporal properties of the data, which improves the quality of quantile regression
models. Lastly, it provides a guidance on how to use the outcomes of the two predictive models in
practice. To promote the application of predictive modeling, we present a use case that illustrates the
life cycle of the proposed framework. The performance of our proposed framework was extensively
evaluated using real datasets in which results showed improvement in the model classification
accuracy, approximately 11.5–18.4% in the improved logistic regression classification model and
confirmed low relative errors ranging from 0.018 to 0.160 in quantile regression model.

Keywords: personalized asthma care; asthma risk prediction; exposome; indoor air quality; logistic
regression; quantile regression; transfer learning; sliding window regression

1. Introduction
1.1. Asthma and Exposome

Asthma is one of the primary care-sensitive conditions that can be controlled and
prevented, through effective care management such as the early recognition of high risk
and prompt interventions [1]. A small fraction of asthma exacerbations, which are possibly
avoidable by predictive risk modelings account for 63% of the annual total asthma cost in
the US and significantly contribute to rising socioeconomic burden [2–6]. The increasing
global patterns for asthma and its associated fiscal burden on patients and healthcare
providers demand a change to care processes and the way asthma risks are managed.
Personalized patient-centered care is a shift from the traditional professional-care model to
a service-oriented model aimed at reducing the cost of any symptoms that can be treated
outside hospitals. Computing technologies and emerging predictive analysis provide great
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promise in promoting patient-centered care by empowering patients to participate actively
in health risk control [7–12].

While factors responsible for increasing the risks of asthma exacerbation are not com-
pletely understood, approximately 70–90% of chronic respiratory diseases are attributed to
environmental factors, response to which varies significantly over the population [13–15].
The term “exposome” refers to the assessment of different environmental exposures’ effect
on human health [16,17] and exposures are calculated based on a specific time range, at a
specific location and under certain environmental circumstances [18]. Exposome analytics
seeks to discover effects of environmental factors on the health of individuals by integrating
time and location, as well as behavioral patterns to estimate individual exposure, and then
predict health risks of individuals. Indoor air quality, particularly at home, has been recog-
nized as a major source of exposure to hightened asthma triggers [19–21]. Most people,
elderly people in particular, spend about 80–90% of their time indoors [21–24]. In addition,
the modern home is highly thermally insulated to improve energy efficiency, often to be a
detriment to indoor air quality [21]. While the list of known or suspected asthma triggers
include many variables (e.g., air pollutants, allergens, certain food, stress, etc.), the present
study focuses on indoor air quality that can be monitored on an individual patient-specific
basis in real-time and over which patients have significant control in terms of the level of
exposure to each.

1.2. Asthma Care and Management

Recent health applications appear to positively influence asthma risk management
around the globe [25–28]. Several studies indicate that patients using mobile asthma self-
management apps (e.g., AsthmaSense, AsthmaMD, Propelle and ADAM) have significantly
improved quality of life scores. Subsequently, those patients were less likely to visit emer-
gency departments due to asthma-related complications [29–31]. Additionally, research
in [32] proposes a model that incorporates patient’s history of readmission and impacts of
patient attribute changes over time on a tree-based classification method to estimate the
probability of readmission. In a different direction, several research works present pattern
recognition models to find complex interrelations between air pollution, weather, and
asthma exacerbation. In [33], authors proposed a method that extracts related features and
uses supervised learning approaches such as classification models to detect adverse health
events. Overall, however, while systems integrating environment measurement techniques
with predictive analytics promise successful implementation of tailoring care to individual
patients and thus for transforming the future of healthcare, existing predictive health ana-
lytics provide limited help in creating efficient tailored care plans [34]. This continues to be
one of the most challenging problems in environmental health research [35–38].

One major challenge in predictive analytics in asthma is that asthma exacerbations
resulting in hospitalization and emergency room visits are rare events and current predic-
tive models exhibit unsatisfactory accuracy for risk analysis of such events [39,40]. This
is mainly due to imbalanced datasets where the high risk zone is much smaller than the
normal zone but also partially due to the small size of individual patients’ datasets. For
example, recording one observation per day provides only 180 data points over a 6 month
period and is not sufficient to develop a neural network based model, while several over-
sampling methods have been proposed to solve the imbalanced dataset problem [41–44]
in order to improve the accuracy of classification models, little is known about their effec-
tiveness on the models with small sized training data. On the other hand, most machine
learning techniques require a large amount of data to train high quality models. This
problem is acute for practical and realistic use of predictive models in health applications
where datasets for individuals are frequently very small.

An asthma exacerbation can be the result of a single or a mixture of environmental
triggers that are of spatiotemporal nature. In addition, measurements of individual expo-
sures in space and time are affected by many factors and governed by complex interactions
and relationships between environmental and human systems [45,46]. However, these
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spatio-temporal properties of environmental data and human behavioral changes are not
fully captured in the existing predictive models. The review in [47], which assesses the
effectiveness and feasibility of using smartphones and tablet apps to facilitate asthma self
care and management, highlights a gap in considering the environmental impact and the
seasonal nature of asthma. This environmental impact could improve the efficacy of apps
as standalone interventions [48]. Another shortcoming of current predictive models is
in interpreting the outcomes of predictions and the lack of guidance that helps health
professionals utilize to the largest extent possible their domain knowledge in the process of
prediction modeling and applying the results to patient interventions [49].

1.3. Our Contributions

In this paper, we focus on the problem of estimating the probability that a patient
will experience a critical asthma exacerbation given the patient’s exposures to indoor
environmental factors. We address the limitations of existing predictive models and propose
a framework to improve the predictions and applicability of logistic regression and quantile
regression models. In the framework, two regression models collaborate together to make
predictions. As the framework continuously collects data, the models evolve with newly
updated parameters and hyper-parameters.

The first improvement applied in our framework is the deep learning technique of
transfer learning to overcome the performance issues of logistic regression as classifier due
to the limited size of training data. Our proposed TL method trains logistic regression
models through three phases, the first phase is training a fully connected neural network
source model using population data, and it is further tuned for target model using an
individual patient’s data in the second phase. In the last step, the last layer outputs of
the target model are inputted to logistic regressors. The second improvement method is
a method of variable sliding window to improve the accuracy of individual patient risk
estimation regression models.

In classification modeling, we remark that we studied many other classification models
for the target model, which are known to have modest data requirements, such as decision
trees, random forests, and support vector machines. We found that logistic regression was
the best, so for simplicity of exposition, we restrict our attention to that model. Furthermore,
while this paper focuses on asthma risk prediction, it is worth mentioning that the proposed
solutions can be transferred to other environmental chronic diseases with adjustments.

2. Materials and Methods

In this section, we present our approach to design and implement an asthma risk
management system. Figure 1 presents the conceptual design model for the proposed
framework that consists of the following components: (1) real-time data acquisition and
management; (2) exposure estimation and risk prediction; (3) daily interventions and
feedback, and assessment. The model integrates measurements of environmental and
physiological conditions, estimation of exposure, evaluation of current health state and
prediction of adverse health events. In the proposed machine learning framework, individ-
uals’ exposures to indoor environmental factors are collected in real-time along with their
daily routines, which are used as parameters to assess the interactions between asthma
risk and indoor air quality. The outcomes of the prediction are then used in the targeted
interventions to reduce the probability of high risk.
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Figure 1. An overview of asthma risk management.

2.1. Study Design
2.1.1. Asthma Risk Measurement

The peak expository flow rate (PEFR) measurement is one of the primary health-level
indicators used in asthma care and management [50]. One of the uses of this measurement
is to quantify an individual’s asthma exacerbation level and provide the medical practition-
ers with basis for better understanding of the predictions and thus, better decision-making
outcomes. The significance of PEFR measurement is catagorized into three zones, green,
yellow and red, using a standardized “normal” value that is established by the American
Lung Association based on population-level data using gender, age and height informa-
tion [51]. One drawback of estimating asthma severity based on population-level norms
in this way is that the high variability of PEFR values within the population makes its
applicability on the individual level unrealistic.

In this study, we base our forecasts on a simplified version of the individual-based
asthma risk zoning method proposed in [52]. The method allows for classification of a
patient’s condition into several zones based on the patient’s own historical distribution
of PEFR values. For the purposes of prediction of high risk days in this paper we use
only two zones, a “safe zone” which we nominally take to be PEFR values in the upper
80% of the patient’s historical PERF values and a “risk zone” taken to be PEFR values in
the lower 20% of the probability density function distribution. The PEFR value dividing
the two zones is called the critical PEFR value, PEFRC. The objective of the inference
engine will be to predict when a patient is in danger of entering the risk zone, which is
understood to be a potential medical emergency where severe airway narrowing is likely
to occur and immediate action may be necessary. Therefore, as discussed in [52] it is
important for doctors and patients together to analyze the patient’s PEFR distribution as it
relates to the patient’s actual health condition and take care to modify the 80/20 cutoff as
necessary. Accordingly, the system is able to evaluate the susceptibility of each individual
to an asthma exacerbation, on an individual basis as the value of the exposure to variables
changes over time.

The models aim to estimate the probability, P(y < PEFRC), that a patient’s PEFR
value today will fall below their or her critical value. Even though PEFRC may have been
established based on the lower, say, 10% or 20% of the patient’s PERF values, the probability
of falling below PEFRC depends on many environmental factors and hence use of a various
values of PEFRC can be used to measure a patient’s daily health risk. Figure 2 illustrates the
distributions of morning PEFR values of the 19 patients who were participants in our study.
The blue dotted line represents the average of 20% quantile value of the 19 participants’
PEFR data while the red line inside the boxplot represents 20% quantile value of a particular
patient’s PEFR data.
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Figure 2. Distributions of participants’ PEFR data.

2.1.2. Indoor Air Quality Measurement

Fine particulate matter of 2.5 µm (PM2.5) concentration, carbon dioxide (CO2), tem-
perature, and relative humidity (dampness) are known to be some of the most important
asthma risk factors among the list of known or suspected asthma triggers because they
have high temporal variability, are strongly affected by participants’ activities and can be
monitored in real-time.

In our risk prediction, we study aggregate exposure to those four variables constructed
through various environmental factors and aggregation methods. These four air quality
data points were obtained through laser-light scattering sensor with 2 min intervals in
participants’ main living spaces. Each participant’s exposures to these variables were
estimated using 24 h historical air quality data before the participant’s PEFR measurement.
The air quality data stamped by time and location were collected in the individual’s daily
routine and stored in our database server for data preprocessing of exposure estimation.

2.1.3. Population Data

A total of 19 participants were recruited from the adult asthma patients (aged 34 to
83 years) who had joined our ESCORT (environmental health smart study with connectivity
and remote sensing technologies) study [53]. These participants were consulted and
monitored by doctors and medical practitioners at Soonchunhyang University Bucheon
Hospital, South Korea. In our study, all participants are non-smokers and occupants at
their home are all non-smokers.

The patients’ daily PEFR values were collected twice a day (morning and evening)
between 1 November 2017 and 31 May 2018 and the resulting dataset sizes vary between
118 days and 212 days with an average of 154 days. Participants agreed to keeping the
air quality monitoring unit for monitoring and storing indoor air quality such as CO2,
PM2.5, temperature and humidity, and writing their daily activities and place visited every
30 min in a diary provided. Several categorical data such as income, living situation and
cooking habits were also collectected. The comprehensive nature of our framework offers
the opportunity to track spatiotemporal exposure patterns for each participant over a
period of time and to capture participants’ daily activities. The environmental variables
and measurement in this study are summarized in Table 1.

Table 1. Environmental variables and mesurement.

Category Variables Measurement

Physiological data yesterday’s PEFRs twice a day (AM & PM)

Indoor air pollutants & PM2.5, CO2 every 60 s interval via
other variables temperature, humidity remote sensors installed at home

Cooking behavior the frequency of frying level 1 (evey day)–level 7 (none)
Living environment distance from home to major roads level 1 (<1 m)–level 5 (>11 m)
Life style income level level 1–level 9
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2.2. Exposure Estimation

To simplify the relationship between stochastic, spatio-temporal sequences of pollutant
concentration and their physiological consequences, researchers have recently began to
entertain the notion of “exposome” [16], while exposome studies have uncovered many
important relationships between environment and human health, the assessment of indi-
viduals’ exposure to air quality over time has been confined to population averages, rather
than individualized estimates. Measurements of individual patient’s exposure to indoor
air pollution is affected by many factors, such as concentration of pollution, location/time
of the individual, physical activities (exertion) and behavior, and the human system [45,46].
As part of developing a tailored care plan for a patient utilizing indoor air quality control,
historical data of a patient’s exposures to the targeted indoor environmental factors needs
to be obtained as well as knowledge of the sources of air pollution and underlying charac-
teristics of the exposure [20]. As more sensor technologies become available, they can be
used to monitor real-time indoor air quality and to develop analytical models for asthma
care management [16,54].

The proposed system calculates the impact of environmental exposure on individuals
biomarkers (e.g., lung function level, PEFR) at any given time. It retrieves information on
the concentrations of each air pollutant in the air of identified regions and the timeframe
over which the exposure occurs. It then uses the general equation for exposure in (1) and
more complex integrative models to quantify exposures. Exposure factors refer to any extra
information that is required to calculate the exposure amount such as exposure rates or
number of possible spaces, activity-patterns and body weight [53].

Each participant’s exposures to environmental variables can be estimated using a time
window on historical air quality data before the participant’s PEFR measurement. The
time window can be determined by medical expertise, where approximately 24 h window
(between yesterday’s AM measurement time and today’s AM measurement time) was used
in our experiments. Then the exposure amount for an activity can be calculated as follows:

Ej =
Conc ∗ Inh.Rate

60 seconds
, (1)

where Conc is the environmental concentration (e.g., PM2.5) per activity per person mea-
sured every 60 s, Inh.Rate is inhalation rate of adult patients based on ages, and j is type of
activities. In the estimation of daily exposures to CO2, temperature and relative humidity,
Ej is the mean value of the reported values within 24 h time interval.

Equation (1) indicates the accumulated amount of environmental exposure per minute
for a particular activity j. Then, the accumulated daily exposure to an environmental
variable is calculated by:

f (xi, t) =
N

∑
j=1

EjTi,j, (2)

where xi is the space (room) on which the individual stayed, Ti,j is the time spent for activity
j and Ej is the exposure amount for activity j per minute. The predefined activities and
their characteristics can be found in [53].

2.3. Risk Prediction Modeling

Our proposed modeling framework utilizes two commonly used machine learning
methods in medical applications, (1) logistic regression (LR) together with a neural network
based transfer learning (TR) and (2) quantile regression (QR). The LR method, a popular
machine learning method for classification problems, estimates the probability of an event
(i.e., a binary response), such as positive or negative, based on a given set of independent
variables. It is often used in medical domain to predict the risk of developing a given
disease, based on observed variables of the patient [55]. In the context of probability
modeling, LR finds an optimal Θ = {θ0, θ1, . . . , θn}, the set of coefficients for the linear
combination z = θ0 + θ1x1 + . . .+ θnxn of the n independent variables, which best estimates
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the probability, p, of developing the disease (positive) when substituted into the logistic
function p = g(z) = 1/(1 + e−z). On the other hand, in machine learning contexts, LR
is often used for binary classification where p ≥ 0.5 results in the model outputting the
positive class.

In a traditional clinical use, LR has the advantage of having a probability associated
with output metrics that are relatively easily understood. An example of typical outputs
would be “Based on an estimation of your exposure to air pollutants in last 24 h, you have
a 50% chance of falling below your critical PEFR value today”. The patient can be also
guided to follow a medical protocol to prevent an asthma exacerbation. One disadvantage
is that patients frequently receive warnings for events that are highly critical but nonethless
have low probability. The situation that the critical event does not occur is considered as
“false positives”. Therefore, it is important that the system gains more detailed information
when LR estimates a non-negligible probability of a critical event. In our proposed two-step
system, we use logistic regression only for classification of the patient’s next-day risk state
(high-risk or low-risk) and quantile regression to provide more nuanced information to the
patient regarding their overall likelihood of experiencing a critial exacerbation event.

The QR method estimates the conditional median or other quantiles of the response
variable based on the values of explanatory variables. Linear regression attempts to
find the best Θ = {θ0, θ1, . . . , θn} for the linear equation y = θ0 + θ1x1 + . . . + θnxn of
the n independent variables, which predicts the average value of the response variable
y. The average value is referred to as the “conditional mean” of the distribution of y
given explanatory variables (x1, x2, . . . , xn). QR on the other hand attempts to model
the quantile values of the conditional distribution, hence it can approximate the whole
conditional distribution of a response variable y [56]. QR has recently found use in many
medical applications in which the more extreme values of a patient’s data are of particular
interest [57]. In our modeling framework, QR works as the second method.

All machine learning techniques come with a set of advantages and disadvantages: LR
models exhibit unsatisfactory accuracy in individual-level health risk prediction application
where the size of training datasets is small. Supposing that we collect a patient’s data for
1 year, then the total number of data tuples is 365. Most machine learning algorithms
underperform with this small dataset.

On the other hand, one environmental factor may lead to changes in several aspects of
the distribution of other environmental variables, including changes in the mean, variability,
and severity of extreme cases. Classical quantile regression analyzse a single quantile or
several quantiles separately [58]. Thus, performance of QR models in this context can be
improved by taking into account time trends for each quantile level and time locality (i.e.,
recent data is used in training/validation).

We propose solutions to these problems in order to improve the performance of
predictive models: (1) LR with neural network based transfer learning, and (2) QR with
a variable sliding window method. The two improved methods are presented in the
following subsections and the results of the improvement are presented in Section 3.

2.3.1. Logistic Regression Classification with a Neural Network Based Transfer Learning

One of the main challenges to improving prediction quality of LR models is the limited
availability of large high quality labeled datasets [59]. The TL technique, one of deep
learning techniques in machine learning, can help overcome a scarcity of data by focusing
on fine tuning a pretrained model with a small amount of specialized training data [60].
This strategy has shown great promise in the medical field in the context of image analysis
of MRI or CT scan data and images [61]. Authors in [62] reported results of a preliminary
study of the effectiveness of transfer learning for asthma risk forecasting. Still, however,
to date little research has been performed in the context of individual-level health risk
prediction with limited training data.

We propose an improved TL + LR classification method as a pipeline: it trains a fully
connected neural network (NN) (source model) with population data of the 18 asthma
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patients (excluding a target patient) and then retrains the NN with a target patient’s data
(target model). The output of the last hidden layer of the target model of the NN model
is pipelined into a LR model as input data. Finally, the logistic regression produces a
prediction decision (classification) with a probability. The process of transfer learning based
logistic regression is shown in Figure 3.

Figure 3. Transfer Learning based Logistic Regression (TL + LR).

2.3.2. Qunatile Regression with a Variable Sliding Window Method

Spatio-temporal analysis using QR has known to be one of the successful machine
learning techniques for time-series data prediction in business and economics [63]. Recent
work in [58] presents a joint model of QR and temporal variability for finding patterns
of climate change by taking into consideration the spatio-temporal properties of the data.
Asthma risks are known to be associated with an overall increase or decrease in temperature,
humidity and other air pollutants in a specifically defined past time period. Many studies
consider air quality and other environmental facotrs in asthma care and management, but
the literature is lacking in in-depth analysis of patients’ exposures to these factors in a
recent time period.

To improve QR models, we propose a variable sliding window method, where the
time window size (the duration of the model construction) and the length of sliding (model
usage time) are determined dynamically over time. This method defines two parameters:
the window size W of the number of data points (i.e., the number of days) for the model
training and validation and the sliding size mk of the number of days for the current model
usage duration at kth iteration, which is also considered as the time period for the next
model development. The dataset within in a given window consists of a training dataset
(Dtrain) and a validation dataset (Dvalid). Figure 4 illustrates the use of the sliding window
method in the QR modeling process.

Figure 4. QR with a variable sliding window method.
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As an example of the QR modeling, one can build a QR model using the data collected
for 45 consecutivie days (W = 45), 30 days’ data points (Dtrain) are used for training the
model and 15 days’ data points (Dvalid) are used for validation of the model. Note that using
a larger value for W (a larger training/validation dataset) may loose temporal information
by the fact that the relationship between health risks and environmental variables is
dynamic and typically changes over time. If the quality of the model is acceptable, this
model can be used for a certain number of days m to predict the health risk of the patient.
The values of m can be determined based on the outcomes of the validation process. With
recent advancements in computing hardware and software, updating the model every day
is possible, but for utility and practical use, 7 days (m = 7) would be a reasonable value for
m unless more frequent updates on the model are required to maintain acceptable errors
in prediction.

The optimal values of W and m depend on many application-specific factors including
the desired model accuracy, specific nature of the given data and available computing
resources, and should be searched during the model development phase. In our study, we
analyzed W = 35, 40, 45, 50, and m = 30, 20, 10, 5, 1 to find a good pairing of (W, m), and
the results are presented in Section 3.2.

2.4. A Predictive Modeling Framework and Its Use Case

While various statistical methods exist for evaluating the performance of logistic
and quantile regression models [57,64], practical interpretation of their metrics is difficult
to convey to medical practitioners and patients. Thus, we propose a new predictive
modeling framework that yields understandable information on the model’s performance
and delivers easy to use the outcomes of predictions.

2.4.1. Training, Validation and Testing

In the QR modeling, training, validation and testing are conducted using a variable
sliding window method as described in Section 2.3.2. As m number (moving size) of data
are collected and augmented to the dataset, the same number of data points that are the
least recently colllected are removed from the dataset. On the other hand, the TL + LR
modeling uses k-fold cross validation, the most commonly used method for classifiers, for
model training, validation and testing. Details of the TL + LR modeling process are below.

Initialization: For each patient, we collect a set of data consisting of the variables
listed in Table 1 and integrate them to a dataset. In the improved LR (NN-based TR
+ LR) classification modeling, each patient’s integrated dataset is divided to (a) train-
ing/validation data according to an 80%/20% split. We also construct (c) a dataset for the
source model by combining all patients’ data except the target patient.

Training and Validation: For each patient, we build a source model using the entire
dataset (c). For overcoming the class imbalance problem, an oversampling technique is
used to generate synthetic data using some samples from dataset (a) and these synthetic
data are augmented to dataset (a). We then use k-fold cross validation to build a target
model using the augmented data, which is split to k non-overlappting datasets (called
as folds): For k rounds of evaluation, k − 1 folds are used for training a model and the
remaining 1 fold is used for validatin the model. In the training/validation phase, we
build k models and select the best model by evaluating the models using the standaard
evaluation metrics. The metrics we used in out study are presented in Section 3.1.1. Model
overfitting and underfitting are also tested using learning curves and training loss. The
hyperparameters are selected through extended training and k-fold validation processes to
avoid over-fitting while to increase the accuracy.

Testing: Once the model is trained and validated, the estimation quality of the model
is analyzed through the testing phase on the remaining data (b), which are not used for
training. The dataset (b) should keep the same data distribution as the patient’s original
data. Hence no over-sampling is applied to balance samples among classes. Standard
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evaluation metrics for classifiers are used to evaluate the model performance. Averages
over all test data represent the quality of the models.

2.4.2. Model Use

In use, the patient’s today’s PEFR value and indoor air quality data values in Table 1
are collected, and the patient’s prediction models are used to estimate the patients’ health
risk for tomorrow based on the amount exposure to environmental factors and today’s
PEFR value. In our proposed framework, the two methods, TL + LR and QR, collaboratively
work to make a risk prediction, influence on parameters and hyper-parameters, and evolve
in the life cycle of a prediction framework. Figure 5 illustrates the overview of the proposed
predictive modeling framework and a use case of the modeling framework. Steps of the
use case are:

Step 1: The framework starts with the development of a TR + LR model through
the training and validating process using the patient’s historical data. In model usage, the
model predicts the class of the patient’s next-day health risk state in terms of falling below
their PEFRC (p(PEFRC) ≥ 0.5).

Step 2: If the model predicts high-risk class, it sends a request to the QR modeling pro-
cess for prediction for more detailed information. Model parameters and hyper-parameters
including τC are updated based on the outcomes of the previous step.

Step 3: It uses a QR model to predict the PEFR value PEFR(τc) associated with the
critical quantile tauc.

Note that the model training and validation process by using the QR method is
independent from the TL + LR modeling although they both can provide the information
for updating parameters and hyper-parameters.

Step 4: If the value of PEFR(τc) estimated in step 3 falls below its previous value and
the drop value is larger than a threshold θ, the system outputs a prediction report. Model
parameters and hyper-parameters including PEFRC are updated based on the outcomes of
the previous step.

Figure 5. A use case of the predictive modeling framework.

3. Results

The experiments on the quality of the predictive modeling were conducted on the
19 patients’ datasets and Table 2 presents a summary of the datasets.
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Table 2. Data distribution.

Overall (n = 19) Women (n = 10) Men (n = 9)
P25 P50 P75 P50 P50

Data size per patient (days) 140 188 196 163 203
Age (years) 56 72 75 65 68
BMI (Kg/m2) 23.8 21.9 26.8 23.9 23.6
AM PEFR (L/min) 313.7 373.3 453.9 350.7 462.3

Daily average exposures (24 h)

Temperature (◦C) 21.9 22.4 23.7 21.2 22.6
Relative humidity (%) 37.9 32.7 44.1 40.9 37.3
PM2.5 (µg/m3) 40.2 35.7 50.6 46.2 35.7
CO2 (ppm) 1005.9 886.9 1241.0 1030.4 918.4

3.1. Performance Evaluation of Classification Models
3.1.1. Evaluation Metrics

The confusion matrix is a commonly used method for evaluating clasification models.
In a binary confusion matrix, the model performance is evaluated based on the model’s
ability to distinguish “positive” data samples from “negative” ones. The confusion matrix
is shown in Table 3, where TP represents “True Positive”, the number of positive data
samples correctly classified as positive, FN represents “False Negative”, the number of
positive data points incorrectly classified as negative, FP represents “False Positive”, the
number of negative data points incorrectly classified as positive, and TN represents “True
Netagive”, the number of negative data points correctly classified data as negative. The
binary confusion matrix can be generalized to the confusion matrix for muti-class classi-
fication. For classification problems with multiple classes, one overall quality metric is
arrived at by calculating these numbers for each class independently and averaging the
results. In our study, of high-risk prediction, our “positive” samples were the data tuples in
which a patient’s PEFR value was below the patient’s critical cutoff (PEFRC) and the class
containing these data is called ClassRisk and the class contraining the data above PEFRC is
ClassnoRisk.

Table 3. Confusion matrix.

Predictive classRisk Predictive classnoRisk

Actual classRisk TP FN

Actual classnoRisk FP TN

The following standard metrics that take into account minority classes were used:
(1) weighted accuracy = TP

2(TP+FN)
+ TN

2(TN+FP) , (2) sensitivity (also called recall) = TP
TP+FN ,

(3) specificity = TN
FP+FN , (4) precision= TP

TP+FP , (5) F1-score = 2∗precision∗recall
precision+recall , and (6) Receiver

Operating Characteristic (ROC), while these matrics are equally important for evaluating
classifiers, we emphasize the model’s performance on the target class Classrisk in the context
of risk prediction.

Weighted accuracy is the average of a model’s accuracy rate at classifying positive
samples as ClassRisk and negative samples as ClassnoRisk. Sensitivity is the model’s success
rate at classifying positive samples as positive while speficity is the model’s success rate
at classifying negative samples as negative. On the other hand, precision measures what
percentage of data tuples that the model classifies as positive are actually positive. Typically,
precision decreases as recall increases. F1-score is the harmonic mean of sensitivity and
precision, which measures the model’s success at both the correct classification of high-risk
samples and avoiding the incorrect classification of low-risk samples as high-risk. The
area under a ROC curve (denoted as ROC AUC) provides an overall measure of fit of the
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model. However, ROC AUC does not account for prevalence or different misclassification
costs arising from false-negative and false-positive diagnoses [65]. Change in ROC AUC
has little direct clinical meaning for medical practitioners. They proposed an alternative
analysis based on the change in sensitivity and specificity at clinically relevant thresholds.
This analysis provides full benefits of prediction models by incorporating estimates of
prevalence and misclassification costs, and hence it is clinically interpretable since it reflects
changes in correct and incorrect risk predictions when a new test is introduced.

3.1.2. Classification Model Performance in Risk Prediction

Our model performance improvement focuses on the metic of sensitivity (correctness
of the target high risk zone (Cp < PEFRC) while keeping a good balance in improving all
other metrics. Although these model performance metrics assist medical practitioners in
integrating them into a care plan, the subtle practical implications of the metrics may be
challenging for non machine learning professionals to understand. In fact, metrics such as
sensitivity and the F1 score are sometimes heavily relied upon the model development and
on the training and validation phase rather than on the model usage phase.

For external and internal validation of the models, we divided the dataset to train-
ing/validation data (80%) and test data (20%). For each patient’s model, we conducted
10-fold cross validation for source model traning/validation and 5-fold cross validation for
target model training/validation. We then evaluated the model on a test data. We describe
the models’ performance based on the metrics discused above and present aggregate results
and the training loss of the model together with the accuracy.

In our experiments, we first applied the synthetic minority oversampling technique
(SMOTE) [41] in the training process of the models to overcome the imbalanced class
problem. We then implemented a transfer learning paradigm using deep neural networks
and LR models. Table 4 summarizes the results of the stand alone LR models and TL-
based LR models. The results show the overall performance gains of the TL-based logistic
regression models comparing it to that of the stand alone logistic regression, 14.3% in
weighted accuracy, 18.4% in sensitivity, 11.5% in specificity, 13.1% in precision, 15.7% in
F1 score, and 18.3% in ROC AUC. In the improved LR models with NN-based TL, the
average of sensitivity was 0.727 and the average of specificity was 0.757, while those values
are 0.614 and 0.679, respectively, in LR models. This shows that the improved LR models
provide a more balanced accuracy between positive class CP (<PEFRC) and negative class
CN (>= PEFRC).

Figure 6 illustrates the loss and accuracy of the source model training and validation
and those of target model retraining in the NN based TR + LR models. Figure (a) shows
training loss and accuracy and figure (c) shows validating loss and accuracy in the training
phases for the source model using 24 patients’ datasets (except the target patient SB-078).
The loss and accuracy of retraining for the target model for SB-078 are shown in figure (f).
Similarly, figures in (b), (d) and (f) show the loss and accuracy of source model training-
validation-target model retraining for SB-083.

The TL + LR classification models perform with reasonable accuracy rates for use in
health risk prediction as compared to the accuracy of commonly used models in health
domains. In Table 4, the average sensitivity of logistic regression models was 63% and this
was increased to 70% when the transfer learning technique was applied, which resulted in
11% overall improvement rate. At the same time, the average specificity of the models was
also improved from 66% to 74%.
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(a) SB-078: source model training (b) SB-083: Source model training

(c) SB-078: Source model validation (d) SB-083: Source model validation
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(e) SB-078: target model retraining
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(f) SB-083: target model retraining

Figure 6. Examples of training loss and accuracy rate of NN-based TL in source model training,
validation and target model retraining phases.

Table 4. Average model performance of 19 individuals.

Method Weighted Accuracy Sensitivity Specificity Precision F1 Score ROC AUC

LR with SMOTE * 0.645 0.614 0.679 0.607 0.596 0.618
NN-based TL + LR with SMOTE * 0.738 0.727 0.757 0.687 0.689 0.741

* SMOTE: the synthetic minority over-sampling technique [41].

Similar improvement in TL + LR was found in other metrics, such as weighted accuracy,
precision, and F1 score. The similar improvement trends in model quality can be seen in the
results of 19 individual patients’ models as shown in Figure 7. The performance summary
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of TL + LR for 19 individuals are shown in (a) and (b), respectively. The results also show
that TL + LR results in tighter bound in the performance measures.

(a) LR odel performance (b) NN-based TL + LR model performance
Figure 7. Model performance summary of 19 individuals: LR vs. NN-based TL + LR.

3.2. Performance Evaluation of Quantile Regression Models

To evaluate the quality of the QR model, we used a uniform measure of the relative
error for each quantile τ proposed in [66] and evaluated the model through extensive
experiments on real patients’ datasets. The uniform measure of the errors is calculated
as follows:

Errτ =

∣∣∣∣Nτ

N
− τ

∣∣∣∣, (3)

where Nτ is the number of data points (days having observed PEFR values) under that
day’s predicted τ PEFR quantile value and N is the total number of test days.

Table 5 shows the mean and standard deviation of the values of the relative error,
Errτ , for individuals QR analysis with varying the sizes of training window W (Ttrain) with
7 days of the model use time m (Tuse = 7). Our analysis shows that the avarage relative
errors of the 19 patients’ models are very low for all τ values ranging from 0.018 to 0.16 on
average. A general trend is that small values of τ and large values of τ result in higher
errors. Figure 8 shows the relative error in each of 19 patients’ models with 45 days for
training window (Ttrain = 45) and 7 days of the model use time (Tuse = 7).

Figure 8. QR relative error analysis of 19 individual models Tuse = 7.
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Table 5. Quantile regression analysis with Tuse = 7.

Ttrain
30 35 45 50 Average

Errτ * std Errτ std Errτ std Errτ std Errτ std

Tau(τ) 0.01–0.10 0.092 0.020 0.103 0.016 0.118 0.016 0.037 0.011 0.087 0.016
0.11–0.20 0.057 0.005 0.112 0.014 0.068 0.018 0.042 0.009 0.070 0.011
0.21–0.30 0.019 0.020 0.053 0.034 0.021 0.009 0.032 0.006 0.031 0.017
0.31–0.40 0.030 0.009 0.015 0.010 0.016 0.006 0.012 0.014 0.018 0.010
0.41–0.50 0.030 0.010 0.009 0.005 0.025 0.015 0.045 0.010 0.027 0.010
0.51–0.60 0.033 0.015 0.050 0.026 0.048 0.010 0.078 0.021 0.052 0.018
0.61–0.70 0.046 0.015 0.101 0.006 0.071 0.015 0.055 0.022 0.068 0.014
0.71–0.80 0.111 0.020 0.105 0.027 0.100 0.012 0.056 0.019 0.093 0.020
0.81–0.90 0.143 0.020 0.157 0.009 0.152 0.011 0.113 0.023 0.141 0.016
0.91–0.99 0.173 0.026 0.169 0.023 0.145 0.014 0.153 0.009 0.160 0.018

average 0.0734 0.016 0.0874 0.017 0.0764 0.0126 0.0623 0.0144 0.0747 0.015

* Errτ = a measure of the error for τ, Ttrain = # of days of model training, Tuse = # of days of model use.

A general trend found is that increasing the sliding window size (Ttrain = 35, 45, 50)
reduces the errors but the results also show that increasing the training window size Ttrain
does not always reduce the errors for some τ values. We also see that the average Errτ of
the models using 30 day is little lower than that of the model using 45 day window. This
means that a model can be developed for a patient in a relatively shorter period (i.e., in
1 month) and the model can be refined further while the system serves the patient risk
management. With an optimal window for the QR model for each individual, we show
the average relative errors of each individual’s quantile regression analysis for different
window sizes in Figure 9.

(a) QR relative errors of SB-003

(b) QR relative errors of SB-037

Figure 9. Cont.
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(c) QR relative errors of SB-043

(d) QR relative errors of SB-112

Figure 9. QR relative errors in 4 selected individaul models.

4. Discussion

The ability to control individual asthma attacks caused by environmental triggers
contributes to asthma aggravation reduction, and therefore decreases mortality and treat-
ment cost as well. It is well established that machine learning techniques can contribute
significantly to the management of asthma exacerbations and the reduction of its risks but
the efforts are still minimal. One major challenge in individual-level health risk modeling
is that the performance of commonly used machine learning methods is degraded with
the small sized training data, which is frequently found in health applications. Moreover,
many of these methods often ignore spatio-temporal properties existing in the data.

Another shortcoming is that doctors and patients often can have significant difficulty
understanding the outputs from the models and hence arriving at a practical and useful
interpretation of the risk prediction with a probability that is associated with the patient’s
critical PEFR value PEFRC [49]. Suppose that the system generates a prediction report
that the patient’s PEFR value will fall below their PEFRC with a relatively low probability,
let us say 20%. A formal meaning of this report is P(y < PEFRC) = 0.20, which can be
interpreted to a message that the patient’s falling into the risk zone is unlikely so the patient
will struggle only slightly with asthma condition. Does this message deliver a sensitive
and useful information that can help the patient?

A different challenge in the use of the probability associated with a health risk is to
deal with many false alarms. If the system warns the patient with the probability of 20%,
then 80% of the warnings are false warnings. Still most people would like to receive a report
when the change of having an asthma exacerbation is 20% to avoid hospital admissions or
emergency room visits. Therefore, machine learning techniques to automatically explain
the results of risk prediction and provide guidance on how to use the outcomes in an
asthma care are critical. This opens the possibility of real-time intervention to minimize
asthma risk at home.

In this paper, we propose a modeling framework that incorporates two well-known
machine learning algorithms to deliver more accurate predictions hence more effective
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solutions for progressive, individualized and preventive asthma risk management. As it
is one of the major challenges in any individual-level health modeling, the dataset size
of each patient is small (mean = 172 days) in our application and needs to be addressed.
Training on such a small data set results in relative low accuracy. Our approach is to use
a “transfer learning” strategy that incorporates population data as a base model and then
refines the model using an individual patient’s data. The results of transfer learning based
logistic regression show success of performing transfer learning on all patients’ data for
individual’s risk prediction. Our study demonstrates the promise of transfer learning in
the development of high quality predictive models based on small dataset.
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