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Abstract: Background. Recent worldwide estimates are of 53 million users of opioids annually,
and of 585,000 drug-related deaths, of which two thirds are due to opioids. There are considerable
international differences in levels of drug death rates and substance abuse. However, there are also
considerable variations within countries in drug misuse, overdose rates, and in drug death rates
particularly. Wide intra-national variations characterize countries where drug deaths have risen fastest
in recent years, such as the US and UK. Drug deaths are an outcome of drug misuse, which can ideally
be studied at a relatively low spatial scale (e.g., US counties). The research literature suggests that
small area variations in drug deaths to a considerable degree reflect contextual (place-related) factors
as well as individual risk factors. Methods. We consider the role of area social status, social cohesion,
segregation, urbanicity, and drug supply in an ecological regression analysis of county differences in
drug deaths in the US during 2015–2017. Results. The analysis of US small area data highlights a
range of factors which are statistically significant in explaining differences in drug deaths, but with
no risk factor having a predominant role. Comparisons with other countries where small area drug
mortality data have been analyzed show differences between countries in the impact of different
contextual factors, but some common themes. Conclusions. Intra-national differences in drug-related
deaths are considerable, but there are significant research gaps in the evidence base for small area
analysis of such deaths.
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1. Introduction

The United Nations Office on Drugs and Crime (UNODC) estimates that there are 53 million users
of opioids annually and that 585,000 people die annually worldwide (as a contributory or direct cause)
due to drug misuse [1]. Two thirds of these deaths are related to opioids. Drug deaths are a major
component of the disease burden associated with drug misuse [2] and, due to their disproportionate
contribution to premature deaths, have been linked to the deceleration or reversal of improvement in
life expectancies [3].

There are considerable international differences in drug misuse prevalence, drug use patterns,
and drug-related death rates. For example, the recent upturn in drug deaths in the US and Canada
has been linked to growing use of fentanyl, a synthetic opioid with potentially lethal effects at low
doses [4]. By contrast, in parts of Asia and Africa, growth of drug dependence has been linked to
tramadol, a less lethal opioid ([5], pp. 23–26).

Variations in drug-related deaths within countries are also pronounced and generally less well
documented. Research into reasons for such variations is also relatively limited. Where data are
available, they show wide disparities. For example, drug overdose mortality rates in US states (2017 data)
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vary 7-fold, from 8.1 per 100 thousand in Nebraska to 57.8 per 100 thousand in West Virginia [6].
In Scotland, drug death rates (for 2014–2018) by local authority range from 5 per 100,000 (Orkneys) to
31 per 100,000 (Dundee) [7].

As discussed in the literature on risk environments [8,9], such wide contrasts are difficult to
explain solely in terms of the individual risk factor pattern of different area populations (also known
as compositional factors), and contextual factors (place effects, due, for example, to structural
economic shifts) are relevant also [10,11].

In some ways, the contextual–compositional distinction may be reductionist, and recognition
of broader influences on individual behaviours is needed [12,13]. For example, under a relational
perspective, context and composition are not mutually exclusive since the health status of places
results from interactions of people with the wider environment. Bambra et al. [13] argue for a political
economy approach which recognizes the role of structural drivers of geographic health inequalities.
For example, in the case of drug-related mortality in the US, these might include variations between
US states in drug law enforcement, drug addiction treatment, and naloxone accessibility [14].

Below, we discuss in more detail the main themes in the research literature on small area variations
in drug-related deaths and summarize the findings of the ecological (area-based) studies on the factors
associated with such variation. As an illustrative example of the issues involved, we then consider
variation in drug deaths between 3141 US counties during the period 2015–2017. We use a Bayesian
regression method [15], and find the relative risk of drug deaths to be especially associated with
area income contrasts and social capital, with lesser impacts of ethnic segregation, unemployment,
urbanicity, and drug supply. We also find evidence of considerable spatial clustering in drug deaths.

2. Factors Underlying Intra-National Variation in Drug-Related Deaths

Interlinked themes are present in the literature on contextual variations in drug-related deaths
within countries. Among recurring themes is the notion of “deaths of despair”, combining drug and
alcohol-related deaths and suicide. This concept has been applied particularly to the United States [16,17]
but has relevance for other high-income countries with high increases in drug deaths, including parts
of the UK [18].

A predominant theme in the literature relating to deaths of despair is the effects of job losses
(especially male jobs) due to de-industrialization and associated reductions in community cohesion and
economic opportunity, for example, in US rust belt areas. Hence, it may be expected that unemployment
contrasts between small areas, or changes in unemployment, would be associated with drug-related
deaths [19]. The impact of economic restructuring is arguably especially on white males, and may partly
explain the male excess in drug deaths as well as adverse trends in mortality [20]. Thus, as summarized
in [21], “less-educated white males suffer overdose deaths at such a high rate that it has lowered their
overall life expectancy”.

However, there have been skeptical studies regarding the central role of de-industrialization [22],
and other aspects of employment change, such as job losses related to international trade, have been
proposed as a source of geographic variation in US drug deaths [21].

Alternative, more broadly based socio-economic factors have been proposed, such as material
deprivation and income segregation. Thus, Boardman et al. [23] find neighborhood poverty acting to
raise drug misuse, even after individual risk factors are controlled for, while Monnat [24] considers a
range of indices of distress and forms of labor market dependence as potential sources of varying drug
death rates in US counties over 2006–2015.

As to UK evidence, a study of drug deaths in England and Wales [25] found a “steep socio-economic
gradient” in drug deaths, while an official review [26] of drug deaths in Scotland argues that
“the single biggest structural driver of problem drug use is poverty and deprivation”, later amplifying
that “it is not necessarily the case that poverty in itself is a direct driver of problematic drug use;
however, those in poverty are more likely to be exposed to additional risk factors, such as unstable
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home life, unemployment, and adverse childhood experiences which increase the likelihood of a
person being predisposed towards problematic substance use”.

The social environment, as measured by social capital and social cohesion, may affect associations
between neighborhood-level poverty and drug misuse rates [27,28]. In particular, social cohesion
may act as a protective factor that moderates the impact of poverty [29], with lower misuse and
mortality in deprived areas that are relatively cohesive, but higher misuse and mortality where
deprivation is reinforced by low cohesion. Thus, Aslund and Nillson [30] report in a Swedish study
of adolescent substance use that “subjects within the group with low neighborhood social capital
had . . . more than double the odds of having used illicit drugs compared with individuals with high
neighborhood social capital”. Regarding US states, we find a correlation of −0.34 between age adjusted
drug-related death rates over 2015–2017 and state level averages of social capital, extracted from
https://aese.psu.edu/nercrd/community/social-capital-resources [31]. However, not all studies report a
significant impact of social capital on drug misuse and overdose, with Gatti et al. [32] finding that drug
overdose rates in Italian provinces were mostly determined by area socio-economic status.

Poverty effects may also be amplified by racial segregation, as mostly US studies (e.g., [33,34]) show.
Segregation may impact on mental health, with Cooper et al. [33] mentioning that “black residents of
segregated communities are at elevated risk of depression, anxiety, and general psychological distress”.
Effects of segregation may extend beyond ethnic segregation to include measures of social segregation
more generally, such as poverty segregation [34] and income inequality [35].

The urban status of small areas may also be relevant to drug-related deaths. The broader literature
on drug deaths suggests that drug-related mortality may be lower in rural areas, especially after area
socio-economic status is allowed for (e.g., in the USA, this would be after allowing for the impact
of lower rural incomes). Urban physical environments may affect levels of drug abuse and drug
deaths [36,37], e.g., by facilitating access to drugs. With regard to the US, Hedegaard et al. [38] report
that “the age-adjusted rate of drug overdose deaths was higher in urban than in rural counties (22.0 and
20.0 per 100,000, respectively)”.

Supply side factors may also influence drug death levels, with higher mortality associated with
easier access. For example, Monnat [39] investigates opioid supply factors (exposure to prescription
opioids and fentanyl supply) as influences on US county drug mortality over 2014–2016. In the US,
increases in opioid supply, through over-prescribing or illegal access, have been cited as a factor
explaining increased opioid-related mortality, as opposed to job losses and “deaths of despair”.
Ruhm [40] investigates “the alternative hypothesis that changes in the drug [supply] environment are a
main cause of rising overdose deaths”. He finds a significant impact of opioid prescribing patterns on
drug deaths at US county level, after adjusting for incomplete reporting of drug involvement on death
certificates. Relevant also to the influence of supply factors in the US is a demarcation of phases of the
opioid crisis. Thus, DeWeerdt [41] argues that “The opioid epidemic has had three phases: the first
was dominated by prescription opioids, the second by heroin, and the third by cheaper—but more
potent—synthetic opioids such as fentanyl. All of these forms of opioid remain relevant to the current
crisis”. Excess prescribing of opioids has also occurred in the UK [42] and Canada [43].

3. Data and Methods

The US has had one of the world’s fastest growth rates in drug-related deaths generally and
opioid-related deaths in particular. Drug deaths involving any form of opioid—prescription opioids,
other synthetic opioids (such as fentanyl), and heroin—rose from 18,515 in 2007 to 47,600 in 2017,
before declining slightly to 46,802 in 2018. The majority (around 70%) of deaths were among
males. The age-standardized rate for all drug-related mortality rose from 6.1 per 100,000 in 1999 to
21.7 in 2017 [44].

We consider a regression relating drug-related deaths in US counties between 2015 and 2017 to area
characteristics. Drug deaths were defined with ICD10 codes X40–X44, X60–X64, X85, and Y10–Y14 [44].
We apply a regression methodology appropriate to the form of the outcome, namely a positive count.

https://aese.psu.edu/nercrd/community/social-capital-resources
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This methodology is sometimes referred to as Bayesian disease mapping [45]. Specifically, we use a
Poisson regression with log link, where the log link is needed to ensure that the regression produces a
positive predicted response; this method is set out in Appendix A. We also allow for the fact that small
death counts are not provided for some areas (see Appendix B). The goal of disease mapping is to
estimate relative risks of drug-related death for each county in the US, where the US-wide relative
risk is 1 [46]. For example, an extremely high relative risk might be 5, and a low relative risk might be
0.1 or 0.2. The model involves known variables which are postulated risk factors but also includes two
sets of random effects: one set represents spatially correlated but unobserved risk factors, the other
represents Poisson extra-heterogeneity (also called over-dispersion) since the variance of drug deaths
exceeds the mean number of drug deaths.

We also study whether regression coefficients vary over the USA. If there were such variability,
then this would be an example of geographic heterogeneity. Classical methods to investigate this
include geographically weighted regression [47,48], whereas the Bayesian approach, adopted here,
involves spatially varying regression through use of random effects [49,50].

Spatial correlation in relative risks of drug deaths is to be expected [51,52], and we can assess this
from the model. Summary measures such as Moran’s I can be used. We can also apply a Bayesian
estimator of local indicators of spatial association (LISA) clustering [53], used by Wilt et al. [54] in
connection with drug deaths. We obtain the probability that county i is a high-high cluster core,
namely a high mortality county surrounded by similarly high mortality counties. These probabilities
can also be obtained for low-low clusters, where a low mortality county is surrounded by similarly
low mortality counties.

There are seven variables, X1 to X7, postulated as risk factors for drug deaths. We consider two
alternative specifications for X1, the variable used to measure employment opportunities. The first
specification uses the 2016 county unemployment rate, while the second uses the percent point
difference between unemployment in 2016 and in 2006.

X2 serves both as an indicator of area socio-economic status and a measure of within county
income disparities. It is an index of concentration at extremes, abbreviated as ICE [55], obtained from
the 2016 American Community Survey as [(t.high)i − (t.low)i]/Ti, where Ti is total households in county
i, (t.high)i is the number of households with incomes over $150,000 and (t.low)i is the number of
households with incomes below $15,000. The highest and lowest scores on this index are for Loudoun
(Virginia) and Holmes county (Mississippi), respectively. This variable was found to be a clearer
measure of area socio-economic status in the regression than county poverty rates.

X3 is a measure of social capital based on the index of Rupasingha et al. [31]. X4 is a measure
of urban-rural status, namely the 2010 Census proportion of county population living in rural
areas. X5 is a measure of racial-ethnic segregation from the County Health Rankings (https://www.
countyhealthrankings.org/); this is an index of dissimilarity where higher values indicate greater
residential segregation between non-white and white county residents.

X6 and X7 are measures of drug availability and supply and are at state level. X6 is an indicator of
illicit supplies of fentanyl [56] calculated using data collected under the National Forensic Laboratory
Information System (NFLIS) scheme. This is calculated as a ratio of seizures to the population
aged 15–64; this age group is used to correct for the impact of population size as illegal opioid use
is concentrated in these ages and tails off sharply among the over 65 s [57]. X7 is a measure of legal
opioid prescribing [58], though it should be noted that legal prescription opioid use is a risk factor for
illicit drug use—for example, of heroin [59]. As noted in [58], prescribing rates for opioids vary widely,
and while the overall opioid prescribing rate in 2018 was 51.4 prescriptions per 100 people, some areas
have rates six times higher than that.

We use the program WINBUGS [60] (MRC Biostatistics Unit, University of Cambridge, Cambridge,
UK) to carry out estimation of the model. Estimation involves two chains to 20,000 iterations,
with assessment of convergence based on Brooks–Gelman–Rubin diagnostics [61]. Comparisons of fit
between models are based on the WAIC (Watanabe–Akaike information criterion) [62], which is lower

https://www.countyhealthrankings.org/
https://www.countyhealthrankings.org/
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for better fitting models. This is relevant to comparing the alternative specifications for job availability,
namely a model based on unemployment in 2016 and a model based on percent point differences in
unemployment between 2006 and 2016.

4. Results

4.1. Regression Findings

Table 1 shows the Poisson regression coefficients of the postulated risk factors under the alternative
models for employment opportunities. The respective WAIC values on the unemployment and
unemployment growth models are 20,315 and 20,356, so the unemployment model (top panel in
Table 1) performs best.

Table 1. Covariate effects. Coefficients and relative risks.

Model Version and
Area Predictor

Estimated
Coefficient 2.5% 97.5%

Relative Risk of Drug-Related
Mortality (Highest vs. Lowest

County Score)
2.5% 97.5%

Unemployment Model

Constant −0.12 −0.23 −0.03
Unemployment 0.33 0.06 0.59 1.39 1.07 1.81

ICE (High vs. Low Incomes) −0.58 −0.70 −0.42 0.56 0.50 0.66
Social Capital −0.57 −0.96 −0.21 0.57 0.38 0.81

Rurality −0.31 −0.40 −0.23 0.73 0.67 0.79
Race Segregation 0.36 0.26 0.45 1.43 1.29 1.57

Opioid Prescribing 0.17 0.05 0.26 1.18 1.05 1.81
Fentanyl Seizure Rate 0.19 0.04 0.37 1.21 1.04 1.30

Growth in Unemployment Model

Constant −0.14 −0.28 −0.01
Growth in Unemployment 0.25 0.07 0.41 1.29 1.08 1.51

ICE (High vs. Low Incomes) −0.71 −0.84 −0.59 0.49 0.43 0.55
Social Capital −0.51 −0.82 −0.14 0.60 0.44 0.87

Rurality −0.29 −0.36 −0.21 0.75 0.70 0.81
Race Segregation 0.35 0.23 0.48 1.41 1.27 1.62

Opioid Prescribing 0.16 0.06 0.25 1.18 1.07 1.28
Fentanyl Seizure Rate 0.17 0.03 0.31 1.19 1.04 1.37

ICE: index of concentration at extremes.

The risk factors listed in Table 1 are in a [0,1] form, with the value 1 corresponding to the maximum
score, and 0 to the minimum score. Since the risk factors are on a common scale, the regression
coefficients can be directly compared to assess their relative importance in explaining variation in
risks of drug-related death between counties. The Poisson regression involves a log link model for
relative risks of drug death. Thus, exponentiating the regression coefficients shows the relative risk of
drug death when the county with the highest score on, say, social capital, is compared with the county
having the lowest score. Thus, from Table 1, counties with high social capital have around half (0.57) of
the risk of drug death than those with low social capital.

The highest coefficients (in absolute terms) are for social capital and area income disparities
(high vs. low income groups). High levels of social capital in a county reduce the risk of drug-related
death, and the same applies to counties with high percentages of households with incomes over
$150,000 and/or low percentages of households with incomes under $15,000. Remaining risk factors
all have significant effects (in the sense that their 95% intervals are confined either to negative or to
positive values) but have lesser impacts than social capital and area income contrasts.

4.2. Spatial Clustering in Drug Death Risks

As discussed above, we can assess the extent of spatial clustering in risks of drug-related deaths.
A simple summary of spatial clustering is provided by Moran’s I (e.g., [63]), obtained using the
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R program spdep and the moran.test option. We find a high Moran value for estimated relative
risks of drug-related deaths, namely 0.72 (sd 0.01). This partly reflects high spatial correlation in
the risk factors: social capital, unemployment, and ICE indicators have respective Moran values of
0.50 (0.01), 0.63 (0.01), and 0.61 (0.01). Lesser correlation shows for race segregation and rurality,
respectively 0.29 (0.01) and 0.32 (0.01).

Regarding Bayesian estimation of LISA clusters, as part of the estimation process, we can
determine which counties have an over 95% probability of being high risk (i.e., a relative risk over 1)
for drug-related mortality. Similarly, we can determine which areas have a more than 95% probability
of being high risk cluster centers; that is, not only is the county itself a high risk area but so also is the
set of counties adjacent to it. This is a “high mortality area near high mortality” in the terminology of
Wilt et al. [54]. Analogously, we can determine counties which have high probabilities of being low
risk and of being low mortality near low mortality.

4.3. Skew Patterns and Spatial Concentration in Drug Death Risk

Table 2 shows the locations of such counties according to US state. One thing to notice immediately
is that whereas only 585 of 3141 counties (or 19%) are definitively high risk, 1873 (or 60%) are definitively
low risk—that is, the geographic risk pattern is highly skewed. High risk of drug-related death is
highly concentrated geographically in the United States, whereas low risk is the pattern typical of
much of the USA.

High risk counties near other high risk counties account for the majority (429 out of 585) of high
risk counties. There are a relatively small number of counties (125) which are spatial outliers, namely
high risk themselves but surrounded by counties which are not definitively high or low risk. There is
also a small number (31) of high-low counties, where a high risk county is surrounded by low risk areas.

Figure 1 shows that high risk clusters are mainly in the northeast, extending into some adjacent
midwest states (Ohio) and to some southeast states (Kentucky, Tennessee, Delaware, Maryland,
West Virginia) including Appalachia. The exceptions to high risk in the northeast are more rural
counties in New York and Vermont. Other locations of localized high risk are in Arizona, New Mexico,
and Oklahoma.
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Table 2. Distribution of Risk and Risk Cluster Status across US States.

Percent of Counties Which Are

State High Risk Low Risk High-High
Cluster Centers

Low-Low
Cluster Centers

Alabama 7 73 4 66
Alaska 0 86 0 82

Arizona 47 13 20 0
Arkansas 3 68 0 61
California 12 60 2 38
Colorado 6 78 0 55

Connecticut 88 12 88 0
Delaware 100 0 100 0

District of Columbia 100 0 0 0
Florida 27 34 15 18
Georgia 6 72 1 67
Hawaii 0 100 0 100
Idaho 0 82 0 77
Illinois 8 57 1 47
Indiana 37 29 29 16

Iowa 0 95 0 95
Kansas 0 94 0 94

Kentucky 52 24 48 12
Louisiana 14 56 11 52

Maine 56 0 63 0
Maryland 88 12 83 4

Massachusetts 71 7 71 0
Michigan 22 35 5 17
Minnesota 1 87 0 87
Mississippi 4 84 2 79

Missouri 10 63 7 55
Montana 0 96 0 96
Nebraska 0 100 0 100
Nevada 24 59 0 12

New Hampshire 80 0 80 0
New Jersey 57 24 52 19

New Mexico 30 33 12 6
New York 24 37 13 27

North Carolina 38 23 31 6
North Dakota 0 100 0 100

Ohio 65 6 61 0
Oklahoma 26 43 14 23

Oregon 0 78 0 69
Pennsylvania 69 9 69 0
Rhode Island 60 0 60 0

South Carolina 13 43 7 41
South Dakota 0 100 0 100

Tennessee 45 20 34 5
Texas 0 94 0 93
Utah 21 45 3 17

Vermont 7 21 0 0
Virginia 18 57 8 41

Washington 5 64 0 56
West Virginia 62 27 58 4

Wisconsin 8 74 0 65
Wyoming 0 74 0 70

USA 19 60 14 51
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There is evidence from other studies that rates of drug-related death are elevated among males [64].
Here, we find a correlation of 0.55 at state level between the ratio (in 2016) of male to female opioid
age standardized death rates and the proportion of counties in each state classed as high risk cluster
centers in Table 2. This relationship, shown graphically in Figure 2, suggests that analysis of drug
deaths by gender would show high risk clustering as especially apparent for males.Int. J. Environ. Res. Public Health 2020, 17, x 8 of 17 
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Figure 2. Male–female opioid mortality ratio and high risk drug death clustering.

4.4. Spatially Varying Coefficients

When geographic heterogeneity in covariate impacts is allowed for (in the better fitting
unemployment model), we find a major gain in fit, with the WAIC reduced to 18,329. Table 3 summarizes
the coefficient variation (for the five covariates which are observed at county level) in terms of averages
for the nine US Census Divisions.

It can be seen that the average effects of unemployment and segregation are attenuated as
compared to Table 1, whereas average impacts of income disparity, social capital, and rurality are
enhanced. Regarding contrasts between Divisions, one can see a different explanatory pattern in (say)
the Pacific Division, where, compared to the average, social capital and rurality are more important,
and income disparities and segregation less important, as influences on drug death rates.
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Table 3. Varying Predictor Effects according to US Census Divisions (Posterior Mean Effects and
95% Intervals).

Mean 2.5% 97.5% Mean 2.5% 97.5%

Unemployment

Divn 1 0.13 −0.05 0.33

Income
Disparity

(ICE Index)

Divn 1 −0.79 −1.05 −0.48

Divn 2 0.09 −0.07 0.27 Divn 2 −0.78 −0.96 −0.54

Divn 3 0.09 −0.02 0.26 Divn 3 −0.78 −0.93 −0.62

Divn 4 0.11 0.01 0.28 Divn 4 −0.80 −0.99 −0.66

Divn 5 0.05 −0.08 0.22 Divn 5 −0.74 −0.89 −0.57

Divn 6 0.06 −0.05 0.23 Divn 6 −0.75 −0.89 −0.59

Divn 7 0.11 −0.01 0.28 Divn 7 −0.77 −0.94 −0.61

Divn 8 0.14 0.02 0.31 Divn 8 −0.82 −1.02 −0.67

Divn 9 −0.09 −0.32 0.14 Divn 9 −0.51 −0.74 −0.34

US average 0.08 −0.01 0.24 US average −0.75 −0.93 −0.59

Social Capital

Divn 1 −0.54 −1.10 0.04

Rurality

Divn 1 −0.41 −0.52 −0.27

Divn 2 −0.53 −1.10 −0.01 Divn 2 −0.41 −0.51 −0.32

Divn 3 −0.50 −1.05 −0.03 Divn 3 −0.43 −0.50 −0.34

Divn 4 −0.50 −1.04 −0.07 Divn 4 −0.44 −0.53 −0.33

Divn 5 −0.51 −1.07 −0.04 Divn 5 −0.40 −0.45 −0.34

Divn 6 −0.51 −1.06 −0.05 Divn 6 −0.39 −0.45 −0.33

Divn 7 −0.49 −1.02 −0.05 Divn 7 −0.39 −0.48 −0.31

Divn 8 −0.47 −1.02 −0.03 Divn 8 −0.44 −0.55 −0.35

Divn 9 −0.73 −1.45 −0.15 Divn 9 −0.55 −0.72 −0.39

US average −0.53 −1.10 −0.06 US average −0.43 −0.50 −0.36

Segregation

Divn 1 0.22 0.00 0.41 Definitions

Divn 2 0.21 0.04 0.36 Division 1 New England

Divn 3 0.20 0.08 0.32 Division 2 Mid-Atlantic (New Jersey,
New York, Pennsylvania)

Divn 4 0.17 0.05 0.29 Division 3 East North Central
(Illinois, Indiana, Michigan, Ohio, Wisc)

Divn 5 0.19 0.03 0.33 Division 4 West North Central

Divn 6 0.18 0.05 0.33 Division 5 South Atlantic

Divn 7 0.14 0.02 0.29 Division 6 East South Central
(Alab., Kentucky, Miss., Tennessee)

Divn 8 0.16 −0.02 0.31 Division 7 West South Central
(Ark., Louisiana, Okl., Texas)

Divn 9 0.10 −0.20 0.37 Division 8 Mountain

US average 0.17 0.03 0.31 Division 9 Pacific (Alaska, California,
Hawaii, Oregon, Washington)

5. Discussion

Analysis of small area contrasts in drug-related deaths has raised differing themes according to
the country where research takes place. In the US, where there is extensive ecological research into
drug-related deaths, different phases (with different causal influences) have been identified [41,65].

Thus, Zoorob [65] highlights the role of fentanyl in recent increases in drug-related mortality.
Since fentanyl access is higher in the Eastern US, Zoorob argues that “the epicenter of the overdose
crisis shifted towards the eastern United States over these years” as part of the third wave of the
overdose epidemic. A similar trend, looking at changes in the clustering of high risk of drug death,
is identified by Wilt et al. [51].

In terms of implications for intervention and funding, drug law enforcement [66], and drug abuse
prevention, the locations of high risk clusters are important. The analysis above (e.g., see Figure 1) is
consistent with findings by other studies in showing a geographic skew in high risk clustering towards
the east and northeast of the US, while most of the rest of the US is low risk. A spatial concentration of
drug-related deaths appears in studies of other countries [28].
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The clustering analysis in our US study is conditional on a particular regression model. In this
model, relative risks of drug death in different US counties are modeled as a function of income
disparity within counties, job availability, social capital, levels of rurality, racial segregation, and
measures of supply. None of these risk factors have a predominant influence. By contrast, many
explanations are predominantly uni-causal. For example, the “deaths of despair” concept places a
strong emphasis on the loss of traditional employment opportunities.

Regarding the research evidence on employment availability, a number of US studies find
unemployment, or unemployment increases, to be associated with drug-related mortality or related
outcomes [19,67], and there are reports of similar findings in other high-income societies such as
Australia [68]. At the individual level, psychological distress is proposed as a mediator variable [69].

However, the analysis here, while finding unemployment, and increases in unemployment, to
have a significant influence on raising drug-related deaths (at least before allowing for coefficient
variation), does not show an overwhelming impact for these variables. Rather, factors such as social
capital, income levels, race segregation, and drug supply are also important. An urban bias to US
drug-related deaths is also confirmed. Thus, the evidence here is of a set of relevant area risk factors,
as against a uni-causal explanation.

Support for a more nuanced multifactorial explanation of US trends is provided by recent
overviews [29,70,71], stressing the impact of social as well as economic conditions, of community
resilience, and of supply as well as demand factors. Thus, quoting [29], “strong communities offer
resilience against drug epidemics”.

The same relevance of social environment is true of other high-income countries where ecological
studies of drug death have been carried out. A study of drug deaths in Scotland [28], where drug-related
deaths have risen as fast as they have in the US, showed that the impact of deprivation on drug-related
deaths is moderated by social cohesion, which is measured inversely by an index of social fragmentation.
Work on opioid use in Australia stresses the role of both demand and supply factors [72] and community
resilience [73].

The analysis in this paper has had to allow for a relatively high rate of missing data (non-release
of small death counts, namely counts under 10). The counties affected are mainly rural counties
with small populations. One strategy [74] is to omit such counties from the analysis, but such a
“complete cases” analysis may lead to bias [75], and may in particular affect inferences about area
characteristics which affect missing data rates. Thus, [74] report higher drug deaths in rural counties,
whereas the present analysis, which explicitly models the missing data mechanism, finds rural areas to
have lower drug mortality.

6. Conclusions

Pronounced intra-national variations in drug-related mortality parallel international differences;
see, for example, the studies [32,76] on Canada and Italy, respectively. There are unique national
aspects to explaining contextual variations. For example, fentanyl supply is most important in
the US and Canada [76], whereas in Germany, supplies of methamphetamine are important [77].
However, common themes are also apparent, such as community resilience offsetting impacts of job
loss, area socioeconomic status, or area poverty.

The present study on US small area variations supports a multifactorial explanation, with area
income levels (and income disparity within areas) and social capital as paramount influences. Rurality
is also a significant influence and has a negative impact when other area risk factors are controlled
for (i.e., when correlations between area predictors are controlled in regression). The analysis here
downplays the impacts of unemployment or unemployment change, especially when geographic
heterogeneity in predictor impacts is allowed for in a spatially varying coefficients model. We also find
a considerable geographic skew in the location of high risk clustering in the US [78].

The analysis is subject to certain limitations. The first, and one that must always be acknowledged
with regard to ecological (area) studies, is that causal influences regarding individual health risk factors
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cannot be inferred from ecological studies. On the other hand, there is strong evidence that place
(or contextual) effects per se, and interactions between individuals and environments, are relevant to
explaining geographic variations in drug deaths [9,79].

A further caveat to making international comparisons in contextual effects is that the international
evidence base on contextual variation in drug-related mortality is relatively limited. There are
considerable research gaps in the small area study of drug-related deaths, with the great majority of
studies being for the US.

Other caveats with regard to the US analysis concern especially the available data. First, and as
noted by [80], “the methods used to classify deaths on death certificates may be leading to a substantial
undercount of these deaths [in the US]”, and later, “about 25% of U.S. overdose deaths had no drugs
specified on the death certificate, so it is likely that national statistics underestimate by a substantial
fraction the number of opioid analgesic- and heroin-related deaths”. The second problem with the data
is the non-release of small death counts (counts under 10), so conclusions obtained may be affected by
the strategy used to deal with this.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Regression Methods

We adopt Bayesian disease mapping, namely a form of generalized linear model to estimate
relative risks of drug-related mortality in different areas. The response is the number of deaths in
each county over a 3-year period (2015–2017), and a Poisson regression is adopted, with a log link
model incorporating risk factors Xi for county i (e.g., unemployment rates) [78]. For some counties,
the death data are missing (see Appendix B), necessitating specialized techniques. The regression
includes random effects to reflect spatially structured but unobserved risk factors, and also a separate
set of random effects to take account of Poisson over-dispersion—since the variance of the death counts
(50,987) exceeds the average count (105).

Thus, for counts Yi of drug-related deaths for counties i = 1, . . . , N

Yi ~ Poisson(Eiρi) (A1)

log(ρi) = Xiβ + si + ui (A2)

where Ei are expected drug deaths, ρi is the relative risk of drug death for county i, β are regression
coefficients for risk factors, si are random effects representing unobserved but spatially correlated risk
factors, and ui are iid random effects. Expected deaths are known offsets obtained by multiplying
county populations in 2016 by US-wide age-specific drug death rates. The random effects si are
assumed to follow the scheme of Besag et al. [81], in which the spatial effect for area i depends on
spatial effects in adjacent areas. The predictors X are all converted to a [0,1] scale, so that their relative
importance as risk factors can be assessed.

In the spatially varying coefficients model, the regression effect for predictor p and county i is
specified as bpi = βp + spi, where the spi are zero mean spatial effects as in [81], and βp is a fixed effect.
This is implemented in WINBUGS using the car.normal function for spatially correlated effects.

The data are overdispersed relative to the Poisson, with mean death count exceeding the variance.
One option is a negative binomial model instead. However, the negative binomial is one of a broader
class that can be obtained by introducing multiplicative random effects into a Poisson model [82,83].
Thus, one has that the Poisson means for incidence are specified by

µi = Eiρi λi
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where λi are positive random effects. For the Poisson-gamma model (equivalent to a negative binomial),
the λi are gamma distributed with mean 1. Another option is to take log(λi) as normally distributed,
leading to a Poisson-lognormal model for overdispersion. Specifically, under the log-link in (A1)–(A2),
we have that ui = log(λi) is normal, giving a Poisson-lognormal.

Appendix B. Missing Death Data

In counties with death counts Yi not supplied (the CDC Wonder site does not release death
totals under 10), the sampling of the missing totals Yi is subject to an upper threshold of 9. Expected
counts are known for these counties, and sampling is from the relative risk model (A1), so taking
account of known covariates for these counties, and also borrowing strength from neighboring counties,
thereby accounting for spatial correlation in unknown factors affecting relative risks. A model for
informative (or non-ignorable) missing data is also adopted [84], since the chance of death data being
missing is clearly related to the size of the death count that would have been observed in the absence
of thresholding. The probability of a count being missing is related to two covariates: Z1, a binary
indicator, from (A1), of whether ρi exceeds 1; and Z2, the proportion rural in the county, since rural
counties tend to have both low relative risks and low populations.

We carry out a logit regression with response Mi = 1 for missing mortality counts,
and Mi = 0 otherwise. We expect the chance of a missing response to be negatively related to
the binary indicator of high relative risk, and positively related to the county percent rural. Note that
this is a selection model [84], with the chance of missing data conditional on the modeled mortality
outcome. Thus, for the best fitting model under (A1), with unemployment rates to represent
employment opportunities, we find posterior means (sd) for coefficients on Z1 and Z2 to be −4.15 (0.26)
and 4.83 (0.22), respectively.

One way of gauging the success of the modeling strategy is to compare estimated relative risks
at state level (from the model) with the age-adjusted death rates (over 2015–2017) from the CDC
Wonder site. State death totals are not affected by any thresholding of death counts. The estimated
state level relative risks are obtained by summing the Poisson county level model means µi = Eiρi and
expected deaths Ei within states j = 1, . . . , 51 and comparing the resulting two summed totals. We find
a correlation of 0.996 between the 51 age-adjusted death rates and the estimated state relative risks of
drug death (see Appendix B Table A1). There is a correlation of 0.999 between the moment estimators
Yj/Ej of relative risk at state level and the modeled estimates µj/Ej.
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Table A1. Age Adjusted Death Rates and Modelled Relative Risks for US States (2015–2017).

Deaths Age Adjusted Death
Rate per 100,000 Total µ Total

Expected Deaths
Modelled

Relative Risk

Alaska 397 17.7 387.0 437.8 0.88
Alabama 2327 16.6 2389.0 2814.6 0.85
Arkansas 1239 14.4 1288.2 1693.8 0.76
Arizona 4188 20.5 4185.0 3811.6 1.10

California 14,181 11.4 14,188.2 22,966.6 0.62
Colorado 2826 16.5 2796.7 3219.3 0.87

Connecticut 2843 26.8 2838.9 2127.2 1.33
Distr. Columbia 704 33.9 695.1 430.8 1.61

Delaware 818 29.9 822.5 543.8 1.51
Florida 13,044 21.7 13,032.9 11,544.2 1.13
Georgia 4233 13.6 4294.6 5958.2 0.72
Hawaii 563 12.6 560.1 827.8 0.68

Iowa 964 10.8 994.8 1760.4 0.57
Idaho 697 14.6 681.4 913.9 0.75
Illinois 7024 18.2 7043.5 7595.5 0.93
Indiana 4623 24.3 4661.5 3801.5 1.23
Kansas 975 11.6 974.3 1642.4 0.59

Kentucky 4258 33.6 4223.5 2580.1 1.64
Louisiana 2965 21.8 2943.1 2708.6 1.09

Massachusetts 6119 30.1 6117.3 4047.6 1.51
Maryland 5576 30.1 5555.0 3574.3 1.55

Maine 1046 28.1 1074.9 786.8 1.37
Michigan 7021 24.2 7089.5 5754.9 1.23
Minnesota 1986 12.1 1993.3 3189.8 0.62
Missouri 3804 21.6 3828.9 3508.5 1.09

Mississippi 1057 12.2 1106.3 1709.6 0.65
Montana 376 12.4 369.1 586.4 0.63

North Carolina 5937 19.9 5977.8 5829.5 1.03
North Dakota 206 9.5 187.0 421.1 0.44

Nebraska 398 7.2 406.2 1066.4 0.38
New Hampshire 1370 36.8 1372.1 796.9 1.72

New Jersey 6195 23.2 6195.3 5310.5 1.17
New Mexico 1494 25.1 1456.4 1183.6 1.23

Nevada 1960 21.2 1930.5 1686.5 1.14
New York 10,313 17 10,370.9 11,799.5 0.88

Ohio 12,750 38.5 12,811.0 6730.3 1.90
Oklahoma 2313 20.2 2265.4 2212.0 1.02

Oregon 1541 12.1 1570.6 2352.8 0.67
Pennsylvania 13,279 36.1 13,305.5 7479.3 1.78
Rhode Island 956 30 960.1 625.6 1.53

South Carolina 2648 18.1 2698.7 2805.4 0.96
South Dakota 207 8.4 194.4 477.8 0.41

Tennessee 4863 24.5 4878.3 3836.3 1.27
Texas 8408 10 8459.9 15,645.0 0.54
Utah 1931 22.6 1910.3 1611.7 1.19

Virginia 3951 15.7 3999.4 4969.9 0.80
Vermont 358 20.7 371.3 369.2 1.01

Washington 3365 14.8 3354.9 4215.7 0.80
Wisconsin 3129 18.6 3131.8 3351.2 0.93

West Virginia 2583 50.3 2525.5 1075.8 2.35
Wyoming 264 15.4 258.7 338.8 0.76

USA 186,273 19.3 186,726.7 186,726.7 1.0
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The WINBUGS code for the model is
model { for (i in 1:N) {Y[i] ~ dpois(mu[i]) I(,U[i])
mu[i] < −E[i] * rho[i]
# Indicator for high relative risk
high.rho[i] < −step(rho[i]−1)
# Clustering indicators (posterior means are estimates of probabilities)
hihi[i] < −step(rho[i]−1) * step(Locality.rho[i]−1)
lolo[i] < −step(1−rho[i]) * step(1−Locality.rho[i])
hilo[i] < −step(rho[i]−1) * step(1−Locality.rho[i])
lohi[i] < −step(1−rho[i]) * step(Locality.rho[i]−1)
# Locality average relative risk. cum.num are cumulative locality sizes
Locality.rho[i] < −sum(rho.adj[cum.num[i] + 1:cumnum[i + 1]])/num[i])
# Relative Risk Model
log(rho[i]) < −alpha + inprod(beta[], X[i,]) + s[i] + u[i]
# unstructured (iid) random errors
u[i] ~ dnorm(0,tau.u)
# Missing Data Model
M[i] ~ dbern(pi[i])
Z[i,1] < −high.rho[i]
logit(pi[i]) < −alpha.M + inprod(gamma[], Z[i,])}
# % of residual variation spatially structured
shspat < −100 * (sd(s[]) * sd(s[]))/(sd(s[]) * sd(s[]) + sd(u[]) * sd(u[]))
# Model for spatial random errors s[i]
# num[i] are numbers of neighbours of county i, adj is adjacency list
# NN is sum of num[i].
for (i in 1:NN) {weights[i] < −1; rho.adj[i] < −rho[adj[i]]}
s [1:N] ~ car.normal(adj[], weights[], num[], tau.s)
# Priors on Hyperparameters
tau.u ~ dgamma(1,0.01); tau.s ~ dgamma(1,0.01)
alpha ~ dnorm(0,0.01); alpha.M ~ dnorm(0,0.01)
for (j in 1:2) {gamma[j] ~ dnorm(0,0.1)}
for (j in 1:7) {beta[j] ~ dnorm(0,0.1)}}
The vector Y[] has NA for counties with missing responses; the vector U is set to 9 for these counties

and to Yi when the death count is above the threshold of 9. The vectors adj and num can be derived in
R by first inputting a shapefile using the maptools command, shape = readShapePoly((“shape.shp”),
then using commands poly = poly2nb(shape) and WB = nb2WB(poly) to create lists WB$adj and
WB$num. The vector cum.num can be obtained in R as

cum.num = c(); cum.num[1] = 0
cums=cumsum(WB$num)
for (j in 1:N) {cum.num[j + 1] = cums[j]}
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