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a b s t r a c t

Exposure to chronic stress is a leading pre-disposing factor for several neuropsychiatric disorders as it
often leads to maladaptive responses. The response to stressful events is heterogeneous, underpinning a
wide spectrum of distinct changes amongst stress-exposed individuals'. Several factors can underlie a
different perception to stressors and the setting of distinct coping strategies that will lead to individual
differences on the susceptibility/resistance to stress. Beyond the factors related to the stressor itself, such
as intensity, duration or predictability, there are factors intrinsic to the individuals that are relevant to
shape the stress response, such as age, sex and genetics. In this review, we examine the contribution of
such intrinsic factors to the modulation of the stress response based on experimental rodent models of
response to stress and discuss to what extent that knowledge can be potentially translated to humans.
© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

A stressor is by definition a stimulus that triggers a stress
response. This stress response is generated when our brain per-
ceives something as a potential threat. Perception to stress is
dependent on a combination of factors intrinsic to the stressful
stimulus (e.g. duration and intensity) and intrinsic to the individual.
This perception varies across individuals, being the same stimulus
relatively innocuous for some and a potential threat for others.
Such individuals' variation is based on objective factors (e.g. age,
sex, genetics) but also on subjective factors like stored memories
that influence sensory inputs and respective processing; in this
review, we discuss the relevance of these objective factors.

After processing a certain stimulus as a potential threat, the
sympathetic nervous system is activated leading to the production
of cathecolamines, adrenalin and noradrenaline, that trigger
several physical outcomes to prepare the body to respond to that
threat - the “fight or flight” response, as coined by Walter Cannon
(Cannon, 1915). Increased heart rate, vasoconstriction and
increased expenditure of energy reserves are some of the examples
of this sympathetic stress-response (Jansen et al., 1995). Stress is
however, also embodied by the hypothalamic-pituitary-adrenal
(HPA) axis response, that by primarily activating the hypothala-
mus and the pituitary, triggers the adrenal production of gluco-
corticoids (McEwen, 2005). Glucocorticoids (cortisol in humans
and corticosterone in rodents), in turn, impact several systems in an
attempt to copewith the stressor and reinstate homeostasis, the so-
called resistance phase of Selye's general adaptation theory (Selye,
1950).

Similarly to what happens with stressor perception, the ability
to cope with a stressor is also dependent on individual factors such
as genetics (de Kloet et al., 2005), age and sex (Bale and Epperson,
2015), but also on the aspects of the stressor itself, such as intensity,
unpredictability and duration. The response to an acute stressful
stimulus is for the most part beneficial and is primarily an evolu-
tionary mechanism; in fact, it is a set of events, orchestrated by the
brain, in order to adapt to that environmental challenge. If a
stressor persists in time, or if it is too intense, the ability to cope
with it can deteriorate and eventually become exhausted.
Exhaustion can take form either through neuropsychiatric mani-
festations or other somatic complaints, the so-called maladaptive
response to stress (Sousa and Almeida, 2012), that is the focus of
this review.

In this review, we first center on how the stress response varies
across the individual's lifespan, and the animal models that have
been used to elucidate this subject. Then, we discuss how factors
related to sex can influence stress response, by analyzing studies
that report sex differences on the outcome of stress exposure, and
also the influence of hormonal variability in shaping that response.
Finally, we also compare the stress effects on different rodent
strains, highlighting the impact of the genetic component on the
stress response shaping. Emphasis is given on how the insights
from experimental models can potentially be translated into
humans.

2. The effect of age in the stress response

2.1. Stress exposure during the prenatal period

The origin of many health problems and susceptibility to disease
can be traced back to the uterine life. Fetal development is a period
highly sensitive to environmental factors as cells are proliferating
and differentiating rapidly, in a delicate and precisely orchestrated
process, to give rise to complex systems. Therefore, disturbances by
stress can lead to erroneous developing steps that can either
manifest immediately in the postnatal period (activational effects)
or later in life (programming effects), increasing the susceptibility
to certain disorders during adulthood (Seckl and Meaney, 2004).
These alterations can disclose either directly or through interaction
with other triggers in life.

During the prenatal period, the focus of the research on the
impact of stress has been largely on the fetal exposure to gluco-
corticoids via the placenta, either bymaternal exposure to stressors
or by the administration of glucocorticoids.

2.1.1. Glucocorticoid metabolism across the placenta
Glucocorticoids are important to fetal development and are

associated with organ maturation that is critical for extra-uterine
life. The association of glucocorticoids with rapid tissue matura-
tion has been particularly important for infants at risk of preterm
birth. The administration of glucocorticoids is a widely used
approach to induce rapid surfactant production in the lung and
thereby improve neonatal viability. Excessive glucocorticoids,
however, negatively interfere with fetal growth and maturation
pattern, and imprint alterations that can persist throughout life. A
protective barrier of the placenta to excessive fetal exposure to
either maternal or exogenous glucocorticoids operates through the
action of the enzyme 11b-hydroxysteroid dehydrogenase type 2
(11b-HSD) that metabolizes glucocorticoids to inactive 11-keto
forms. The protective role of placental 11b-hydroxysteroid activity
has been revealed, amongst others, by a study showing that the
offspring from pregnant rats with reduced 11b-HSD activity display
changes associated with increased exposure to glucocorticoids, like
low birth weight and hypertension (Edwards et al., 1993). However,
when glucocorticoids exceed a certain limit, such as in prolonged
stress exposure during maternity or glucocorticoid therapy, the
available 11b-HSD saturates and loses its efficiency. In addition,
some synthetic glucocorticoids, such as dexamethasone, have low
affinity for 11b-HSD, and therefore readily cross the placenta (Seckl
and Holmes, 2007).
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Rodent models of prenatal stress exposure are mainly based on
fetal exposure to excessive levels of glucocorticoids. This can be
modeled by: 1) excessive maternal glucocorticoids production,
such as in the case of maternal exposure to chronic stress para-
digms (Leuner et al., 2014; O'Mahony et al., 2006); 2) exogenous
administration of glucocorticoids, such as dexamethasone, to
pregnant rodents (Borges et al., 2013a, Borges, et al., 2013b; Soares-
Cunha et al., 2014); or 3) breaching the fetoplacental barrier to
maternal glucocorticoids, by carbenoxolone inhibition of 11b-HSD
(Welberg et al., 2000) or using knock-out rodentmodels that do not
express 11b-HSD (Holmes et al., 2006).

2.1.2. Effects of prenatal stress exposure
Prenatal stress exposure negatively impacts both the pregnant

dam and the offspring. For instance, the exposure of pregnant dams
to stress is associated with increased susceptibility to develop
postpartum depressive-like behavior, which can impact on
maternal care to the pups (O'Mahony et al., 2006). However, most
studies focus on the offspring. The immediate association of stress
exposure during pregnancy and the consequences to the fetus
comes from studies that associate stress exposure to pregnant
women with prematurity (Lilliecreutz et al., 2016) or low birth
weight (Rondo et al., 2003). However, prenatal stress can also
induce serious long-term effects on adult pathophysiology, the so-
called “glucocorticoid programming”. For instance, prenatal glu-
cocorticoids exposure leads to metabolic dysfunction in the adult-
hood, such as hypertension, hyperinsulinemia and hyperglycemia,
but also to hyperactivity of the HPA axis, brain alterations and
associated behavior (Seckl and Holmes, 2007). In animal models,
rats born from dams prenatally exposed to stress, present in the
adulthood lower responsiveness to glucocorticoids and low
expression of mineralocorticoid receptors (MR) in the hippocam-
pus, impairing the HPA axis negative feedback loop (Barbazanges
et al., 1996). In addition, glucocorticoid exposure during the pre-
natal period also leads to alterations on affective and emotional
behaviors in the adulthood (Borges et al., 2013a, Borges, et al.,
2013b; Oliveira, et al., 2006; Roque et al., 2011). For instance, pre-
natal exposure to synthetic glucocorticoids results in hyperanxiety,
increased fear and hyperactivity to negative stimuli, which corre-
lates with an increased mesopontine cholinergic activity (Borges
et al., 2013b; Oliveira, et al., 2006). Moreover, prenatal exposure
to glucocorticoids leads to deficits in motivational drive by inter-
fering with the mesocorticolimbic dopaminergic circuitry, leading
to a reduction in the attribution of the incentive salience to cues, in
a dopamine-D2/D3-dependent manner (Soares-Cunha et al., 2014).

In addition to studies using rodents, prenatal stress exposure
has also been addressed using non-human primates. These studies
demonstrate that prenatal dexamethasone administration impairs
proliferation of new neurons but not neuronal differentiation
(Tauber et al., 2006). However, prenatal dexamethasone adminis-
tration does not impair neurogenesis at the long-term in non-
human primates (Tauber et al., 2008).

Finally, it is important to note that while the animal model
based on the administration of synthetic glucocorticoid (e.g.
dexamethasone) is very useful, it lacks the complexity given by
other molecules that also participate in the stress response. In
addition, synthetic dexamethasone or corticosterone (such as the
one produced upon stress exposure) presents different affinity to
corticosteroid receptors. While corticosterone has higher affinity
for MR, dexamethasone is a glucocorticoid receptors (GR) agonist
(Reul and de Kloet, 1985). This differential affinity may have
important implications into the stress response, since it is known
that the balance between MR and GR receptors activation regulates
HPA activity (including the negative feedback loop) and behavior
(De Kloet et al., 1998; Harris et al., 2013). Therefore, the choice of
the animal model should have into consideration the mechanistic
aspects.

2.1.3. Sex differences in the effects of prenatal stress
Prenatal stress has been shown to impact differently in males

and females and these differences have also been shown to depend
on the animal model used (Weinstock, 2011). Prenatal stress, such
as daily restraining for 30 min during the last week of gestation
(Zagron and Weinstock, 2006), or by maternal exposure to variable
stressors (Nishio et al., 2001), results in cognitive deficits in the
water maze tasks but only in the male, not in the female offspring
(Nishio et al., 2001; Zagron and Weinstock, 2006). Prenatally
stressed males exhibit impairments on learning-induced neuro-
genesis (Lemaire et al., 2000), and reduced hippocampal long-term
potentiation (LTP), together with increased long-term depression
(LTD) (Yang et al., 2006), which potentially correlates with the al-
terations reported on cognitive behavior. Prenatally stressed fe-
males, on the other hand, are more susceptible to a dysfunctional
emotional behavior exhibiting an increase in anxiety and
depressive-like behaviors (Nishio et al., 2001; Weinstock, 2007;
Zagron and Weinstock, 2006). Furthermore, prenatally stressed
females exhibit a reduction in the number of hippocampal granule
cells (Schmitz et al., 2002). These sex differences are likely to
illustrate some relevant interactions with sex-related factors (most
obvious hormones) and stress-related factors that impact on very
specific periods of neurodevelopment. This is certainly, a topic that
needs further attention from researchers in the field.

2.1.4. Studies of prenatal stress in humans
Several clinical studies suggest an association betweenmaternal

exposure to different stressors during pregnancy and an increased
susceptibility of the child to develop emotional and cognitive dis-
orders, such as attention deficits, anxiety and language delays
(Talge et al., 2007). Besides maternal stress exposure, the admin-
istration of glucocorticoids during pregnancy is also a source of
programming effects to the progeny. Glucocorticoid therapy during
pregnancy is not uncommon, and has been widely used to treat
inflammatory disorders of pregnant women (asthma or systemic
lupus), for congenital problems of the fetus (adrenal or lung mal-
formations) or to accelerate lung development in the case of pre-
mature birth risk (Lunghi et al., 2010). Administration of
corticosteroids to pregnant women results in low birth weight
(Nyirenda et al., 1998; Reinisch et al., 1978) that has a perfect par-
allel on animal experimental models. Furthermore, gestational
exposure to betamethasone (week 24e35) has been associated
with brain morphological alterations in children with age 6 to 10,
namely in a thinning of the rostral anterior cingulate cortex (Davis
et al., 2013). The same study showed an association between these
alterations and dysfunctional affective behaviors (Davis et al.,
2013). The interesting parallel between these observations in
humans and the results obtained with animal studies strongly
suggest that the use of rodents is of relevance to elucidate the
molecular mechanisms underlying the short and long-term effects
of prenatal stress exposure.

2.2. Stress exposure during the early postnatal period

After birth, the brain continues to develop following a combi-
nation of genetically driven processes and environmental inputs
(Jernigan et al., 2011). Neuronal circuits are actively being refined
through dendritic and axonal growth, synaptic stabilization and
pruning (Hua and Smith, 2004; Jernigan et al., 2011). As such, this
period is particularly sensitive to environmental challenges, such as
stress stimuli, that can disorganize specific circuits and lead to
permanent changes in brain morphology and function (Lee et al.,
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2015).
In the early postnatal period, considering the time since birth

until weaning, a disturbed parent-pup interaction is a particularly
important source of stress, inducing changes in the offspring that
can manifest either immediately or later in life. This interaction can
be affected by behavioral alterations of the mother (and therefore
affect the quality of interactions with the baby) or can be artificially
disrupted (such as in the case of exposure to stressors or through
maternal separation).

2.2.1. Postnatal stress exposure and the critical period for HPA axis
maturation

The timing for HPA axis maturation differs across species and is
associated with brain development milestones. In animals that give
birth to complete mature offspring (e.g. non-human primates and
sheep), most of the HPA axis development occurs during fetal
growth (Kapoor et al., 2006). However, rodents and humans, give
birth to a still immature HPA axis, and so, the postnatal period is
critical for its maturation (Kapoor et al., 2006). The peak of gluco-
corticoids production occurs during the last period of gestation
(third week for rodents) (Dalle et al., 1978; Dupouy et al., 1975) and
is thought to be crucial for fetal development. At postnatal day two,
glucocorticoid levels drop to minimum levels and remain low until
the end of the second week. During this period, the ability to
respond to stressors by secreting glucocorticoids is reduced, the so-
called stress hyporesponsive period (Schapiro et al., 1962).
Although it seems counterintuitive that during the early postnatal
period, in which the presence of stressors is highly probable, the
adaptation mechanism to stress is quite limited, it is likely that it
represents a protective strategy to favor optimal central nervous
system (CNS) development in an environment low in glucocorti-
coids (Sapolsky and Meaney, 1986). Altering glucocorticoids levels
either too high or very low levels is certainly deleterious for post-
natal brain development. As so, the hyporesponsive period ham-
pers the potential harmful effects of extreme variations of
glucocorticoids levels. Curiously, during the first two postnatal
weeks the half-life of circulating glucocorticoids is extended (three
times higher than in the adult), which may represent a mechanism
to sustain stable physiological levels (Sapolsky and Meaney, 1986).

2.2.2. Rodent models of postnatal stress exposure
Despite the fact that during the stress hyporesponsive period

elevation in corticosterone by common stressors is reduced, there is
still a response to stressors. This is particularly true for stressors
involving disturbed maternal care, highlighting the central role of
the quality of maternal care during this period (reviewed in (Lupien
et al., 2009)). Improved maternal care in rodents, such as increased
pup-licking events, grooming or archback nursing, has been asso-
ciated with enhanced synaptogenesis and cognitive abilities of the
offspring (Liu et al., 2000). In contrast, poor maternal care, such as
increased unpredictable and fragmented behaviors, is associated
with the development of anhedonia during adolescence (Molet
et al., 2016). Models of postnatal stress are mostly based on
maternal separation, which consist on temporarily separating the
offspring from the lactating damn daily (usually 3e6 h per day),
during the first two weeks of life. Although the behavioral out-
comes reportedwith thesemodels consistently reveal alterations in
the offspring, some studies report that mice are resistant to 3 h
maternal separation protocols (Savignac et al., 2011). Since mice
might be naturally more stress resistant than rats (George et al.,
2010; Harrison and Baune, 2014; Monteiro et al., 2015), a few ad-
aptations to the rat models of stress during the early postnatal
period could be done to render them applicable to mice; these
include adding an early weaning at postnatal day 17 after maternal
separation (George et al., 2010), or extending the separation time
since it was shown that the main activation of the HPA axis occurs
between 4 h and 8 h after separation from the dam (Schmidt et al.,
2004). Importantly, these adaptations enable modeling maternal
separation stress in mice similarly to rats, namely in terms of its
consequences. Adaptations of maternal separation protocols for
rats were also developed, such as adding 10min of various stressors
such as bright lights, noise, handling, low temperature and pain,
aiming at modeling the neonatal stress of babies in the intensive
care unit (Huppertz-Kessler et al., 2012).

Interestingly, there are also postnatal stress models that target
poor maternal care. In a mouse model, first described by Rice and
colleagues, maternal care disruption is based on limiting bedding
and nesting material. This protocol results in acute and long-lasting
effects of stress on the offspring (Rice et al., 2008). In 2014, Sta-
matakis developed a new paradigm of stressful early experience in
which rat pups (between postnatal day 10e13) are trained in a T-
maze apparatus where they can be rewarded with maternal con-
tact, being the deprivation of this maternal contact used as aversive
stimuli (Stamatakis et al., 2014). This paradigm has been shown to
lead to increased levels of corticosterone and activation of the
amygdala in the pups for which maternal contact is denied, and
also to lead to behavioral alterations in the adulthood
(Diamantopoulou et al., 2013; Stamatakis et al., 2014).

Certainly, different models have advantages and limitations and
consequently the analysis of data generated by using distinct par-
adigms is of relevance to obtain a more comprehensive perspective
of such topic in a complex period of neurodevelopment.

2.2.3. Effects of postnatal stress exposure
Maternal separation leads to a vast spectrum of changes in the

offspring. For example, maternal separation affects hippocampal
neurogenesis by decreasing cell proliferation and the production of
immature neurons (Aisa et al., 2009; Mirescu et al., 2004), or by
decreasing the production of molecules important for synaptic
plasticity such as neural cell adhesion molecules (NCAM), brain-
derived neurotrophic factor (BDNF) or synaptophysin in the hip-
pocampus (Aisa et al., 2009). Maternally separated rats also present
impaired acquisition in the Morris water maze, but interestingly
LTP is intact, and, more importantly, in stressful situations, the LTP
response is even facilitated and contextual learning enhanced
(Oomen et al., 2010). Moreover, in another study, adult rats that
went through maternal separation, when trained in an inescapable
shock paradigm, performed better in consecutive trials where they
were given the chance to escape to the shock (van der Doelen et al.,
2013). These studies suggest that although postnatal stress can
negatively program behavioral and morphological changes in the
adult brain, it can also lead to adaptive programming, improving
coping strategies when facing similar levels of stress in the adult-
hood, a trait that is transmitted through epigenetic mechanisms to
next generations (Gapp et al., 2014).

Of notice, the temporal dynamics of such penhomena are of
extreme importance (see for review (Sousa, 2016)). In the early
postnatal period, this dynamic is certainly crucial, as revealed by
data showing the distinct impact of the maternal separation period
during early life. In fact, when comparing the outcomes of maternal
separation during the complete period of the glucocorticoid
hyporesponsiveness (postnatal days 2e15) to the outcomes of a
partial period (postnatal days 7e20), data revealed that although
both time windows lead to increased levels of corticosterone in the
sera, only the maternal separation for postnatal day 2e15 leads to
anxiety, depressive-like behavior and immunological alterations in
adulthood (Roque et al., 2014).

There are also studies showing that the long-term effects of
early-life experience, including stressful experiences, can also differ
between sexes. For instance, Diamantopoulou and colleagues
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demonstrated thatmale rats, but not female, postnatally exposed to
a paradigm of expected reward through maternal contact in a T-
maze, exhibit enhanced fear memory during adulthood
(Diamantopoulou et al., 2013). Furthermore, male rats exposed
postnatally to the denial of an expected reward of maternal contact
(stressful stimuli) exhibit increased activation of the amygdala
during adulthood, an effect not observed in females
(Diamantopoulou et al., 2013). In a different study, Oomen and
colleagues compared the impact of a single episode of maternal
separation, performed on postnatal day 3, on hippocampal struc-
tural plasticity at postnatal day 21, and found opposite effects in
males and female rats. While hippocampal neurogenesis was
increased in males, a reduction was observed on females (Oomen
et al., 2009), showing once again that the same stressful stimuli
can lead to divergent outcomes in a sex-dependent manner.

2.2.4. Studies of postnatal/early life stress in humans
Several studies revealed that early life stress in humans, namely

through the follow-up of infants from mothers with depression or
neglected/abused infants, is associated with increased susceptibil-
ity to the effects of stress later in life and vulnerability to develop
stress-related psychiatric disorders (Graham et al., 1999; Nugent
et al., 2011) and cardiovascular diseases (Loria et al., 2014).
Indeed, in a prospective longitudinal study, 38 participants (mean
age 22 years) born from mothers that suffered from postpartum
depression, showed increased stress reactivity, measured by
increased cortisol levels, to a social-evaluative threat (Trier Social
Stress Test) when compared to controls (Barry et al., 2015).
Whether this result is aligned, or not, with rodent data is, as
described above, disputable and clearly illustrates the complexity
of the topic. Certainly, higher integrated research projects are
needed to address this issue in humans; fortunately, the field seems
to be moving in that direction by supporting such multimodal and
longitudinal research efforts.

The serious long-term effects caused by maternal separation
stress in rodent models, even during reduced daily periods (3 h per
day), raised the concern on the importance of the mother-baby
contact after birth. A standard medical practice in western coun-
tries is to place neonates sleeping alone shortly after birth to allow
the mother to rest, what is a form of maternal separation. An
interesting study compared the physiological response of neonates
sleeping alone to that of the ones sleepingwith skin-to-skin contact
with theirs mothers. This study found that the first presented 176%
increased autonomic activity and 86% decreased quiet sleep dura-
tion (Morgan et al., 2011) when compared with the latter. While
these studies highlight how much we can learn about maternal
separation using rodent models, the effects of early life stress in
adult human behavior and susceptibility to neuropsychiatric dis-
orders are controversial. There are at least two conflicting frame-
works: on one side, the cumulative stress theory in which early life
stress predisposes for increased stress reactivity (Power et al.,
2013), and on the other, the adaptive programming, in which
early life adversity prepares the individual to better cope when
exposed to stress in adulthood (Chen and Miller, 2012). One pos-
sibility for a unifying theory is based on the fact that effects of stress
follow a non-linear U-shaped curve as a function of stress intensity
and latter performance, with exposure to low-to-moderate levels of
stress increasing general performance (adaptation) and high levels
of stress leading to worst performance (maladaptive) (Boyce and
Ellis, 2005; Russo et al., 2012; Sapolsky, 2015). Experimental ani-
mal models may be useful to dissect the factors that could be on the
origin of early-life stress-induced adaptation or maladaptation,
since, as described before, they do exhibit behavioral and
morphological outcomes that could fit either one or the other
theory.
2.3. Stress exposure during adolescence

Adolescence is a vulnerable period for the onset of many stress-
related psychopathologies such as anxiety, depression and eating
disorders. Extrinsic factors, such as changes in lifestyle and be-
haviors are often accompanied by shifts in the nature and quantity
of stressors encountered. In addition, this period heightened
vulnerability to the effects of stress is also due to intrinsic factors
that occur during puberty. Stress-responsive brain regions, such as
fronto-cortical and limbic areas, are still maturating during puberty
(Morrison et al., 2014). Moreover, close interactions between stress
hormones and gonadal hormonal axes occur in adolescence
(Marceau et al., 2015) and, as a consequence, many sex-differences
on stress responses emerge in this period of life (Ver Hoeve et al.,
2013).

2.3.1. Effects of stress exposure during adolescence
It is known that the susceptibility to stress differs between the

pre-pubertal and the adult brain (Hamilton et al., 2014; Romeo and
McEwen, 2006). Although adrenocorticotropin hormone (ACTH)
and glucocorticoids levels remain similar to that of other periods,
when exposed to stress, the amount and duration of glucocorti-
coids are heightened during puberty (McCormick et al., 2008;
Romeo et al., 2014). Injections of ACTH to pre-pubertal rats lead
to increased levels of circulating corticosterone when compared to
that observed using the same procedure in adult rats (Romeo et al.,
2014). Furthermore, adolescent male rats exhibit impairments in
the HPA axis negative feedback loop response to an acute stress,
failing to shut down corticosterone production even 90 min after
stress cessation (McCormick et al., 2008). These studies suggest
that puberty is another critical period for shaping the HPA axis
responsiveness.

Behaviorally, the impact of stress in rodents seems to differ
between adolescence and adulthood. Adolescent female rats when
facing a resident female exhibit “play and avoidant behaviors”,
which contrast with adult females that in the same context exhibit
active and aggressive behaviors toward the resident female (Ver
Hoeve et al., 2013). Moreover, the stress impact on anxiety seems
to differ between adolescent and adult rats when submitted to
social defeat stress: while adolescent female rats exhibit less anx-
iety in response to stress and males show no effect of stress, the
same stress procedure in adults (both sexes) results in increased
anxiety (McCormick et al., 2008). On the other hand, the pro-
gramming effects of stress during puberty are quite similar to those
observed in earlier periods of life, in that adolescent rats exposed to
stress exhibit increased anxiety-like (Vidal et al., 2007) and
depressive-like (Tsoory et al., 2007) behaviors in the adulthood.

A note tomention sex differences in the effects of pubertal stress
exposure. Puberty comes along with the rise of the hypothalamus-
pituitary-gonadal (HPG) axis responsiveness, and it is a critical
phase for interactions between stress hormones and gonadal hor-
monal axes to occur. Such interactions might be critical to under-
stand the relevance of sex in the etiopathogenesis of important
neuropsychiatric disorders, such as depression. Indeed, depression
is twice more prevalent in females than in males, and importantly,
this sex difference is not evident during childhood, emerging with
puberty (Wade et al., 2002). These facts highlight the importance of
puberty for sex-differences on stress-reactivity (Andersen and
Teicher, 2008; Wade et al., 2002). Moreover, when juvenile rats
are submitted to stress, females and males show a different profile
of adaptation, which continues to reflect later in adulthood
(Horovitz et al., 2014). For example, juvenile stress reduces
sacharinne preference only in females; however, pre-exposed male
rats to juvenile stress present a higher sacharine preference loss
when re-exposed to stress in adulthood. Furthermore, stressed



A. Novais et al. / Neurobiology of Stress 6 (2017) 44e56 49
juvenile male rats, but not females, present deficits on avoidance
learning (Horovitz et al., 2014). These studies reveal that sex dif-
ferences in stress-related disorders in adulthood can be substan-
tially modified, namely enhanced, by stress in puberty.

2.3.2. Studies of pubertal stress exposure in humans
The increased HPA axis responsiveness during puberty observed

in rodents seems to exist also in humans. In fact, it was reported
that individuals between 15 and 17 years of age display higher
cortisol levels in response to stress than those in late childhood or
earlier stages of adolescence (9e13 years old) (Gunnar et al., 2009).
In addition, there is a significant interaction between HPA axis
reactivity to a stressor during puberty and the onset of major
depression (MDD); yet, this association is highly dependent on the
level of pubertal development. A hyper-responsive HPA axis in girls
exhibiting early pubertal development was associated with higher
probability to develop MDD, whereas a late pubertal development
in girls exhibiting a hypo-responsive HPA reactivity predicts MDD
onset (Colich et al., 2015). Lastly, it is relevant to highlight that the
exposure to stress during puberty can induce long-lasting changes
in the expression of hormone receptors in the brain, and therefore
impact on the behavioral responses regulated by hormones
throughout life (Blaustein and Ismail, 2013).

2.4. Stress response in adulthood

The vast majority of the stress research focuses on its effects in
the adult brain. Thus, it is not surprising that our knowledge of the
impact of stress on the structure and function of the CNS is mostly
based on data derived from adult subjects. Many reviews on this
topic are available (Gold, 2015; McEwen et al., 2015; Sousa, 2016;
Sousa and Almeida, 2012), and so herein we only provide a short
summary of the main effects of stress in the structure and function
of the adult brain.

2.4.1. Effects of chronic stress exposure in the adult brain
Several studies have shown that the adult brain under chronic

stress exposure undergoes structural and functional changes that
translate into behavioral dysfunction. Cognitive and emotional al-
terations correlate with neuroplastic events occurring in stress-
responsive areas such as the hippocampus, amygdala and pre-
frontal cortex (PFC) (Chattarji et al., 2015), but not exclusively.
Hippocampal dendritic atrophywas observed after chronic stress in
CA3 (Watanabe et al., 1992) and CA1 (Sousa et al., 2000) pyramidal
neurons, together with loss of synapses, and impaired LTP in this
brain region (Diamond and Rose, 1994), which correlates with
impairments in learning and memory in the Morris water maze
(Sousa et al., 2000). Likewise, decreased synaptic plasticity was also
reported in the PFC. For instance, it was shown that upon exposure
to chronic stress the PFC suffers reorganization, with reduction on
the total length and branch numbers of PFC neurons (Radley et al.,
2004). The stress-induced neuronal atrophy supports the concept
that chronic stress leads to a disconnection syndrome by ending
synapses and impairing connections between brain regions (Sousa
and Almeida, 2012). For instance, the PFC neuronal atrophy was
shown to affect the hippocampal-PFC pathway, by reducing the LTP
response that disrupts working memory and behavioral flexibility
(Cerqueira et al., 2007) as well as attentional set-shifting (Liston
et al., 2006). It may also underlie the loss of coherence observed
between the ventral hippocampus and the medial PFC after chronic
stress exposure (Oliveira et al., 2013). Another example of the
impact of chronic stress on synaptic plasticity is that the dendritic
atrophy seen in the medial PFC is also accompanied by atrophy on
the associative striatum and hypertrophy of the sensorimotor
striatum, which correlates with a shift between goal-direct to
habit-based behaviors (Dias-Ferreira et al., 2009). The amygdala, in
clear contrast, exhibits a stress-induced increase on synaptic phe-
nomena. Neurons from the basolateral complex of the amygdala
exhibit enhanced dendritic arborization and spine density in
response to chronic stress (Mitra et al., 2005; Vyas et al., 2002).
These neuroplastic enhancements in the amygdala have been
associated with increased emotional behavior such as anxiety and
fear (Vyas et al., 2002). Moreover, after chronic stress the orbito-
frontal cortex, a brain region involved in decision-making, also
exhibits hypertrophy and an increase on apical dendrites (Dias-
Ferreira et al., 2009; Liston et al., 2006). In rats submitted to
chronic mild stress (CMS) and exhibiting anhedonia, hypertrophy
of medium spiny neurons and increased spine densities are
observed in the core division of the nucleus accumbens (NAc)
(Bessa et al., 2013); interestingly, in this brain region, the expres-
sion genes encoding for BDNF, NCAM and synapsin 1 is increased in
rats submitted to CMS (Bessa et al., 2013). Noticeable, all the
morphologic and genetic alterations induced by CMS in the NAc can
be reverted with antidepressant treatment (Bessa et al., 2013). All
those different functional and morphologic alterations observed in
different brain regions upon stress highlight the complexity of the
neuronal networks involved in the stress response.

2.4.2. Studies of the stress response during adulthood in humans
In humans, as observed in animal models, there seems to be an

association between hippocampal atrophy and high levels of
cortisol; in addition this also correlates with deficits in
hippocampal-dependent learning tasks (Lupien et al., 1998).
Moreover, the chronic stress biasing effect on decision-making is
also observed in stressed individuals. Using functional imaging
techniques, it was shown that chronic stress shifts activation from
associative to sensorimotor circuits and this is accompanied by
atrophy of the medial prefrontal cortex and caudate and hyper-
trophy of the putamina (Soares et al., 2012). Importantly, these
volumetric changes are associated with an increased behavioral
strategy towards habits and decreased sensitivity to changes in
outcome value (Soares et al., 2012).

2.5. The impact of stress exposure in aging

Exposure to different stressors throughout life can have an
impact in the aging process. In fact, the way individuals' age can be
highly influenced by major life events and stressors of daily life and
their interactionwith other modulating factors. Several hypotheses
have been put forward to explain the relation between aging and
the response to stress; one of the most well-known is the so-called
“glucocorticoid cascade hypothesis of aging” (Sapolsky et al., 1986).
In line with this hypothesis, although immobilization stress in-
crease corticosterone secretion in a similar profile in aged and
young animals, aged rats cannot re-establish their levels at least for
the subsequent 4 h, showing impairments in the negative feedback
control of the HPA axis (Sapolsky et al., 1983). Nowadays the
glucocorticoid cascade hypothesis has been strengthened by the
causal relationship established between longevity genes expression
(e.g. sirtuin-1) or shorter telomeres and response to chronic stress
(Sanchez-Hidalgo et al., 2016; Zhang et al., 2014) and, with modi-
fications that have been clearly incorporated in the aging clinical
algorhythms and even on aging predictive models.

2.5.1. Challenges on studying the effects of chronic stress in aged
rodents

Although rodents physiologically age in a different manner than
humans, studying animal models is of great importance to under-
stand aging-related diseases. The evolution of genetic engineering
in mice allowed the generation of rodent models of
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neurodegenerative disorders crucial to understand such aging-
related disorders. Importantly, such models have enabled the
study of the impact of stress in the etiology of these disorders (Yuan
et al., 2011). Aging-related changes observed in aged rodents mimic
hallmarks of the effect of chronic stress in humans such as cognitive
decline, immune system dysregulation and decreased synaptic
plasticity in stress-related regions (Barrientos et al., 2012). How-
ever, there are some practical issues when studying the effects of
stress on aging animals. With aging, there is increasing sensorial
loss, such as sight or olfaction, which can interfere with stress
perception (Tikhonova et al., 2015; Zeng and Yang, 2015). Likewise,
it is important to adequate the intensity and nature of the stressors
(as well as the stress read-out behavioral tests) when studying
chronic stress in aged rodents (Prusky et al., 2000). The lack of
standardization across studies brings limitations to the analysis of
stress effects in aging. For instance, the use of different endpoints
across studies, combined with the lack of a necropsy report, can
render an aging study incomplete (Santulli et al., 2015; Treuting
et al., 2016). Similarly, the use of different paradigms of chronic
stress render inter-study consistency even more difficult to achieve
(Allard and Duan, 2011). These are some of the critical challenges
for the field in the near future; hopefully, more multi-centric
collaborative research efforts may allow for the overcome of such
critical obstacles.

3. The effect of sex in the stress response

The prevalence of neuropsychiatric disorders is higher in
women (WHO, 2012). This and other sources of evidence created an
incentive coming from national funding agencies, such as the Na-
tional Institute of Health, for the inclusion of groups of females or
for the justification of the choice of the sex of the animals in pre-
clinical research (Clayton and Collins, 2014). Since stress is a
precipitating factor for neuropsychiatric disorders, such as
depression, it is important to unravel the basis of the dimorphic
response to stress. Throughout the years, several authors have
described sex differences in behavior, neuroendocrine, neuron
morphology, immune, and neurochemical systems in response to
different stress protocols (acute, repeated or chronic).

In this section, we approach the fundamental sex differences in
stress response by discussing the dimorphism that underlies it and
by reviewing the impact of hormonal variability in the stress
response.

3.1. Dimorphism in the stress response

The brain of males and females shows anatomic differences that
can impact on the stress response, in both fast and slow phases of
the response. For instance, females have bigger locus coeruleus, the
brain region that produces noradrenaline (Pinos et al., 2001), an
important initiator of the arousal in the fast phase of the stress
response (Bangasser and Valentino, 2012). On the other hand, the
brain has also been described to have a dimorphic expression of GR
(Kitraki et al., 2004), with potential impact in the HPA axis negative
feedback loop. These sex differences are likely to underlie the
higher levels of glucocorticoids observed in females compared to
males in response to acute and repeated stress (Seale et al., 2004a).

3.1.1. Sex differences in the neuroendocrine response
The HPA axis can modulate the HPG axis and vice-versa

(Toufexis et al., 2014). Males and females differ at the level of the
reproductive axis (or HPG) and therefore animals from each sex can
perceive stress differently and develop distinct coping mechanisms
(Wingfield and Sapolsky, 2003). The bi-directional influence be-
tween the HPA and HPG axis starts centrally, in the hypothalamus.
The secretion of corticotrophin-releasing factor (CRF) inhibits the
HPG through CRF1 and 2 (Li et al., 2006) and, on the other hand,
estrogen response elements are present at the CRF gene
(Vamvakopoulos and Chrousos, 1993). Evidences of different levels
of CRF expression in the paraventricular nucleus were reported
along the estrous cycle, which also suggests that the HPG can in-
fluence the outcome of the HPA response (Bohler et al., 1990).

At the level of the anterior pituitary, where ACTH secretion takes
place, physiological replacement with estrogens at pro-estrus
levels has been shown to increase ACTH and therefore glucocorti-
coid levels after restraint stress. Higher levels of ACTH were also
observed at the peak (not basal levels) in cycling rat females in pro-
estrus compared to estrous and di-estrus (Viau and Meaney, 1991).
A distinct sensitization of the anterior pituitary to exogenous fe-
male hormones reveals estrogens to display an exacerbation effect,
opposite to progesterone, in response to acute stress. In males,
testosterone was observed to decrease ACTH and glucocorticoid
levels after stress (Viau and Meaney, 1996), revealing an inhibitory
effect over the anterior pituitary that is reverted by gonadectomy of
male rats (Seale et al., 2004b). Briefly, during a stress response, the
body activates processes essential for survival mechanisms and
therefore inhibits the non-surviving (such as reproduction) in a
non-sex dependency. Consequently, glucocorticoids inhibit the
production of gonadotropin hormone-releasing hormone (GnRH)
by hypothalamic neurons by blocking the expression of GnRH gene
(Chandran et al., 1994; Oakley et al., 2009). In the pituitary, go-
nadotrophins' secretion is repressed (Sakakura et al., 1975) and
finally the gonadal function is blocked (Sapolsky, 1985). Summari-
zing, chronic dysregulation of the HPA axis can inhibit the release of
GnRH, pituitary luteinizing hormone and ovarian estrogens and
progesterone (Chrousos, 1993). The hippocampus is richly endow-
edwith GR, which play an important role in shutting down the
stress response (the HPA axis negative feedback loop); interest-
ingly, also here a dimorphic expression of sex hormone receptors
can be observed (McEwen et al., 1995; Weiland et al., 1997) and
both adrenal and gonadal hormones have been shown to re-
arrange hippocampus plasticity (McEwen, 2010; McEwen et al.,
1995).

Several studies showed that exogenous replacement of estro-
gens leads to an enhanced response of the HPA axis while testos-
terone leads to an inhibition (Lund et al., 2004; Viau et al., 2005).
Interestingly, testicular-secreted testosterone that enters the brain
is converted into estrogen (aromatization hypothesis) (Roselli et al.,
2009) and it regulates several processes such as memory, cognition
and mood (Gillies and McArthur, 2010). Progesterone, on the other
hand, has sedative and anxiolytic effects (Gulinello et al., 2003).

3.1.2. Sex differences in the behavioral response to stress
Biobehavioral studies of rodents exposed to stress have

described the sympathetic response to a stressor as a “fight or
flight” conflict, due to the release of noradrenaline and adrenaline.
Controversial evidences suggest that most males adopt an aggres-
sive or fleeing behavior, while females evolved to a “tend-or-
befriend” response (Taylor et al., 2000). Studies allege that oxytocin
released during childbirth labor and lactation, program the
response to stress to act in favor of the progeny safety, by pro-
moting a calm and protective (tending) response or to social or seek
for help (befriending) response (Carter et al., 2001). These differ-
ences might contribute to the distinct behavioral responses to an
aggressive male resident intruder (social defeat protocol); in fact,
since females do not show such an obvious fight or flight response
to stress, this influence the study of this response in this sex
(Jacobson-Pick et al., 2013).

At the behavior level response, acute uncontrolled stress has
been shown to enhance associative learning and induce learned
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helplessness in males, but the opposite in females (Wood and
Shors, 1998). Depressive-like behavior evaluated through the re-
exposure to the forced swim test (FST) showed that males in-
crease the immobilization time, corticosterone level and seroto-
nergic inputs to the limbic system revealing an adaptive response
to uncontrollable acute stress. However, females increase signifi-
cantly the immobility time compared to males, which indicates
higher levels of behavioral despair, suggestive of a depressive-like
phenotype that is not followed by coping serotonergic inputs
(Drossopoulou et al., 2004). It should be highlighted that this is not
observed when different controllable and uncontrollable acute
stress paradigms are applied (Dalla et al., 2008; Dalla and Shors,
2009), that might even show opposite differences between the
two sexes (Dalla et al., 2010).

Regarding chronic stress, the disruption of both HPA and HPG
axis in both sexes reveals less inter-sex variability than acute stress
exposure (Baker et al., 2006; Dalla et al., 2005). As any rodent
model, chronic stress models have strengths and limitations that
need to be accounted for the correct interpretation of the data. The
choice of the inaccurate stress model (as well as the behavioral
assessment) can lead to misinterpretation of resilience, adaptation
or recoverymechanisms. As an example, Kokras, et al. described the
latency to immobility on the FST to be different in females from
males (Dalla et al., 2010; Kokras et al., 2009); thus, the tools used to
assess it in males may not be completely transversal to females
(Kokras et al., 2016).

3.2. Female response to stress across lifespan

The natural hormonal variations occurring across lifespan in
females is accompanied by differences in the stress response. The
adult female before pregnancy (nulliparous) has been shown to
adapt differently to stress when compared with dams and
multiparous females (Rima et al., 2009). The hormonal environ-
ment experienced through pregnancy and post-partum are known
to change hormonal receptors in the brain, hippocampal neuro-
genesis and spatial memory (Barha et al., 2015), in such away that it
re-formats the brain to be better prepared to cope with stressors.
Indeed, multiparous females increase exploration time and reduce
corticosterone levels compared to nulliparous females in a cued-
contextual fear conditioning paradigm (Rima et al., 2009). Studies
comparing the vulnerability of nulliparous and damswhen stressed
and treated with antidepressants also reveal that pregnancy con-
fers stress resilience (Workman et al., 2016).

A good example of the interaction of the HPA and HPG axes is
the etiology of post-partum depression, which can develop up to 4
weeks after birth and has an incidence of around 15% of all preg-
nancies (First, 2013). Although one of the main risk factors is
depression history for the women (First, 2013), changes in the HPA
axis might also play a triggering role. For example, fluctuations in
the HPA axis during pregnancy are hypothesized to play a part in
the etiology of post-partum depression (Glynn et al., 2013), which
fits with the observation that after reaching a peak in the third
trimester there is a significant drop in CRF and cortisol levels 5 days
after birth (with the total expel of the placenta) (Hendrick et al.,
1998).

With the advance of menopause, a dysregulation of the HPA
occurs, which results in increased cortisol production (Seeman
et al., 1997; Woods et al., 2006). Mimicking the natural steps of
menopause in animal models is a challenge; as a consequence,
most studies use artificial menopause manipulations, such as
ovariectomy or through the administration of toxins that induce
accelerated ovarian failure (Diaz Brinton, 2012). Despite their lim-
itations, both models have been very useful to study the effects of
chronic stress in this phase of life (Takuma et al., 2007).
Nevertheless, due to great variations in the age time windowwhen
the procedures are performed, it is difficult to separate the effects of
sex hormones from the ones of menopause itself.

4. The effect of genotype in the stress response

Like humans, rodents also use distinct stress coping strategies
that determine their degree of resilience or susceptibility to stress.
One of the most consistent observations is the fact that the genetic
background of rodents plays a crucial role in the resilience/sus-
ceptibility to stress. In this section, we address the impact of
different genetic backgrounds of mice and rats in the response to
stress.

4.1. The impact of mouse genotype on stress response

Distinct mouse strains have been shown to present different
responses to stress, which clearly indicates that genetic background
impacts on the behavioral response [(Anisman et al., 2001;
Anisman and Zacharko, 1992; Miller et al., 2010) and extensively
reviewed in (Crawley et al., 1997; Jacobson and Cryan, 2007;
Millstein and Holmes, 2007)]. Acute stress typically induces an
obvious anxiety-like behavior and HPA axis activation in some
strains, such as BALB/cJ and DBA/2J, but less in others such as
C57BL/6J (Belzung and Griebel, 2001; Jacobson and Cryan, 2007;
Miller et al., 2010). Even using slightly different protocols of
chronic stress (with distinct types and duration of stressors) it is
quite consistent that mice from the Balb/c strain are among the
most susceptible to stress whereas C57BL/6 mice are the most
resistant. Thus, we focus this section mainly in this two mouse
strains since they represent very interesting animal models to
study stress related disorders and are the two strains more widely
used. After exposure to stress, Balb/c mice present a more pro-
nounced anxious-like behavior when compared with C57BL/6
mice. Those behavioral alterations were observed in different
behavioral paradigms (Anisman and Matheson, 2005; Belzung and
Griebel, 2001). After stress, Balb/c mice also present a more evident
depressive-like behavior compared to C57BL/6 mice (Ducottet and
Belzung, 2005; Griffiths et al., 1992; Mineur et al., 2003; Shanks and
Anisman, 1988; Zacharko and Anisman, 1991). In accordance with
the behavioral alterations observed, HPA axis activation is more
pronounced in Balb/c mice upon stress than in C57BL/6 (Anisman
et al., 1998; Shanks et al., 1990). Also in line with this pattern of
susceptibility, Balb/c mice submitted to stress display greater
changes in noradrenaline levels when compared with C57BL/6
mice (Shanks et al., 1994); interestingly, the noradrenergic system
of Balb/c also presents a slower adaptation to chronic unpredictable
stress, comparing to the one of C57BL/6 (Shanks et al., 1994).
Moreover, a comparative hippocampal gene expression study on
the effects of chronic unpredictable mild stress on BALB/cJ and
C57BL/6J mice revealed that BALB/cJ animals present more alter-
ations in genes with higher probability of association to stress
response. The several candidate genes and gene networks identi-
fied are associated with inflammation and neurogenesis (Malki
et al., 2015).

The comparison between mouse strains also revealed that the
innate predisposition of Balb/c strain to be more susceptible to
stress, when compared with C57BL/6, is also associated with
epigenetic markers in the brain (Franklin et al., 2012; Uchida et al.,
2011).

An interplay between the genetic background and microbiota in
the response to stress has also been suggested (Rabot et al., 2016;
Rea et al., 2016). In fact, the more anxiety-prone Balb/c germ free
(GF) mice, when inoculated with microbiota from anxiety-resistant
Swiss mice, showed a decreased anxious-like behavior.
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Accordingly, the transfer of microbiota from Balb/c mice to Swiss GF
mice also increases their anxious-like behavior phenotype (Bercik
et al., 2011). The mechanisms underlying these interactions
remain to be deciphered.

4.2. The impact of rat genotype on stress response

The study of the different rat strains demonstrated that the
heterogeneity of the responses to stress is very complex, even
though few papers compare several rat strains using the same
stress protocol. For example, F344 and Lewis rats, both inbred
strains, do not differ very much in baseline HPA axis activity.
However, Lewis rats show a blunted HPA axis response to a variety
of stressors while F344 present a strong HPA axis response
(Ellenbroek et al., 2005). Interestingly the stress response in those
animals seems also to be modulated by gut microbiota. F344 rats
(genetically more susceptible to stress) present an exacerbated
neuroendocrine and behavioral response to stress in the absence of
gut microbiota (Crumeyrolle-Arias et al., 2014).

Studies using the forced swim test (FST) also revealed that
different inbred rat strains present distinct behavior phenotypes.
The F344, Lewis and SHR present lower immobility time in the FST
when compared to Brown Norway and to Wistar Kyoto (the most
immobile rat strain) (Gomez et al., 1996). In fact, several authors
showed thatWistar Kyoto rats exhibit a pronounced pro-depressive
phenotype including behavioral despair, social avoidance and
anhedonia (Nam et al., 2014; Solberg et al., 2004), as well as
enhanced physiological responses to repeated stress (Morilak et al.,
2005). Another rat strain that is widely used to study depression is
the Flinders sensitive line (FSL) (reviewed in Overstreet and
Wegener, (2013)). Originally this rat strain was created to study
the cholinergic system. However, the selective breeding program of
the original animals resulted in two different strains: one that is
super-sensitive to cholinergic agonist (FSL rats) and other, the
Flinders resistant line (FRL), that resembles control Sprague Dawley
rats. Interestingly, the FSL rat when subjected to CMS shows
increased anhedonia compared with FRL, and present several
similarities with depression in humans (Ayensu et al., 1995;
Overstreet and Wegener, 2013; Pucilowski et al., 1993). Taken into
account the origin of the FSL strain it was proposed as a genetic
model of depression.

Interestingly most of the stress-response behavioral research in
rats is performed in outbred strains. For example, after CMS, Lister
hooded andWistar rats (outbred strains) present decreased sucrose
preference when compared with Sprague Dawley (also outbred)
(Marona-Lewicka and Nichols, 1997). A similar protocol demon-
strated that chronic stress induces an increased immobility in the
FST of the Long Evans strain when compared with Sprague Dawley
(Bielajew et al., 2003). Such differences in the stress response are
certainly of relevance when studying this topic and it would be of
great interest to promote global studies using similar stress pro-
tocols, in different strains, to ascertain for the importance of the rat
genotype in the distinct outcomes.

5. Conclusions

The origin of individual differences in the stress response is a
long-held question still puzzling the stress research field. The stress
response, as a process orchestrated by the brain, varies across the
lifespan. The early exposure to stressful events can trigger imme-
diate changes, or re-shape the way the brain reacts to stress in the
adulthood towards maladaptive responses. In addition, maladap-
tive responses can also be triggered by exposure to stress later in
life, particularly chronic stress, which increases the susceptibility to
psychiatric disease. Adaptive or maladaptive responses to chronic
stress depend also on other intrinsic factors like sex and genetics or
extrinsic factors (e.g. the nature of the stressors or the microbiota
among several others). Remarkably, the study of such inter-
dependent factors, rather than an obstacle, might constitute a
valuable opportunity to dissect the mechanisms underlying stress-
related disorders.
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