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Abstract

Aims

Obesity is an important risk factor for the development of chronic kidney disease. One of the

major factors involved in the pathogenesis of obesity-associated kidney disease is glomeru-

lar hyperfiltration. Increasing salt-delivery to the macula densa is expected to decrease

glomerular filtration rate (GFR) by activating tubuloglomerular feedback. Acetazolamide,

a carbonic anhydrase inhibitor which inhibits salt reabsorption in the proximal tubule,

increases distal salt delivery. Its effects on obesity-related glomerular hyperfiltration have

not previously been studied. The aim of this investigation was to evaluate whether adminis-

tration of acetazolamide to obese non diabetic subjects reduces glomerular hyperfiltration.

Materials and Methods

The study was performed using a randomized double-blind crossover design. Obese non-

diabetic men with glomerular hyperfiltration were randomized to receive intravenously either

acetazolamide or furosemide at equipotent doses. Twelve subjects received the allocated

medications. Two weeks later, the same subjects received the drug which they had not

received during the first study. Inulin clearance, p-aminohippuric acid clearance and frac-

tional lithium excretion were measured before and after medications administration. The pri-

mary end point was a decrease in GFR, measured as inulin clearance.

Results

GFR decreased by 21% following acetazolamide and did not decrease following furose-

mide. Renal vascular resistance increased by 12% following acetazolamide, while it

remained unchanged following furosemide administration. Natriuresis increased similarly

following acetazolamide and furosemide administration. Sodium balance was similar in

both groups.
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Conclusions

Intravenous acetazolamide decreased GFR in obese non-diabetic men with glomerular

hyperfiltration. Furosemide, administered at equipotent dose, did not affect GFR, suggest-

ing that acetazolamide reduced glomerular hyperfiltration by activating tubuloglomerular

feedback.

Trial Registration

ClinicalTrials.gov NCT01146288

Introduction
Obesity is an independent risk factor for chronic kidney disease[1]. Obesity-related glomerulo-
pathy is a well-defined entity, characterized by glomerulomegaly with or without focal segmen-
tal glomerulosclerosis[2]. In addition, increased adiposity also accelerates the progression of
kidney diseases that are not primarily related to obesity, such as IgA nephropathy[3,4], reduced
renal mass[5] and possibly renal transplant nephropathy[6]. Obesity and overweight are asso-
ciated with increased GFR, renal plasma flow and/or filtration fraction[7–15], with central
body fat distribution being a more powerful predictor of hyperfiltration than body mass index
(BMI)[16]. The improvement of these renal hemodynamic abnormalities following weight loss
[17] supports a cause-and-effect relationship between adiposity and glomerular hyperfiltration.

One of the factors involved in the pathogenesis of obesity-associated kidney disease is glo-
merular hyperfiltration[18–25], which is associated with afferent arteriolar vasodilatation and
increased glomerular pressure[11]. Treatment of chronic kidney disease in the obese subject is
oriented, among other things, toward decreasing glomerular pressure by antihypertensive
treatment, inhibition of the renin angiotensin system and weight loss. The latter decreases arte-
rial hypertension and restores renal hemodynamics toward normal, reducing renal plasma
flow, GFR and filtration fraction[7,17]. However, this treatment has its limitations, weight loss
being rarely maintained in the long term in obese subjects.

Activation of tubuloglomerular feedback by increased sodium distal delivery and the conse-
quent decrease in GFR is a yet unexplored way of modulating glomerular hyperfiltration in
obesity. Tucker et al[26] showed that administration of a carbonic anhydrase inhibitor in nor-
mal rats leads to a decrease in single-nephron GFR by inhibiting proximal tubular reabsorp-
tion, increasing salt delivery to the macula densa and thus activating tubuloglomerular
feedback. This GFR reducing effect of carbonic anhydrase inhibition has also been demon-
strated in normal humans[27–33] and in diabetic subjects[31,34]. However, these studies did
not use a control group treated with an equipotent natriuretic agent. Recently, Cherney et al
showed, in lean subjects with type 1 diabetes mellitus and glomerular hyperfiltration, that
increasing solute delivery to the macula densa by inhibition of proximal tubular reabsorption
attenuates hyperfiltration[35]. The effects of inhibition of proximal tubular reabsorption have
not been previously studied in an obese non-diabetic population.

The present study was designed to test the hypothesis that administration of acetazolamide,
a carbonic anhydrase inhibitor, to obese subjects with glomerular hyperfiltration reduces
hyperfiltration. The effects of acetazolamide on renal hemodynamics were compared to those
of furosemide, a loop diuretic that does not activate tubuloglomerular feedback[28,30,36–38].
We showed that intravenous acetazolamide decreases GFR in non-diabetic obese men with glo-
merular hyperfiltration, while furosemide, administered at equipotent natriuretic dose, does
not affect GFR.
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Materials and Methods

Ethics Statement
The protocol of this study was approved by the Institutional Review Board of the Rabin Medi-
cal Center. Informed consent was signed by the participants.

Study design
Randomized double-blind crossover controlled.

Participants
Eligible participants were men aged 18 to 55 years old with a BMI above 30 kg/m2 and a creati-
nine clearance above 130 ml/min. Creatinine clearance was measured using a 24-hour urine
collection and a serum blood test for creatinine. Exclusion criteria were any of the following
conditions: pharmacologic treatment for diabetes mellitus, hypertension and cardiac disease;
history of kidney disease, heart failure and chronic obstructive lung disease; therapy with corti-
costeroid, antiepileptic and non steroidal anti inflammatory medications; known allergy to
furosemide, acetazolamide, inulin and amino-hippurate.

Interventions
Enrolled patients underwent two renal function studies, one before and after intravenous
administration of acetazolamide and the other before and after intravenous administration of
furosemide, which was used as control. The order of administration was randomized. The
effects of acetazolamide were compared to those of furosemide, since both medications are
natriuretic, but the latter increases natriuresis with no activation of the tubuloglomerular feed-
back[28,30,36–38]. Acetazolamide was administered at a dose of 5 mg/kg BW. Preliminary
studies performed in our lab showed that a furosemide dose of 2 mg was equipotent to that of
acetazolamide dose, as far as natriuresis was concerned.

A 24-hour urine collection was performed before the two renal function studies. Subjects
received 300 mg of lithium carbonate at 22.00 the day before the tests. They were instructed to
drink 250 ml of water at bedtime and at 07.00 am. Renal function tests were started at 08.00
am. after a 10-hour fast, excepting the water drink. Intravenous catheters were placed in each
upper limb for infusion of clearance markers and blood sampling. After blood sampling for
urea, creatinine, proteins, glucose, electrolytes, blood gases, HbA1c and complete blood count,
a priming dose of inulin (40 mg/kg) and p-aminohippuric acid (4 mg/kg) was intravenously
injected followed by ingestion of 10 ml/kg of water. Thereafter, inulin and p-aminohippuric
acid were infused continuously at a rate of 33 and 17 mg/min, respectively. After each voiding,
participants drank an amount of water equal to the amount of urine voided. After the first 60
minutes, 4 accurately timed urine collections of 30 minutes each were obtained by spontaneous
voiding. Peripheral venous blood was drawn to bracket each urine collection. Arterial pressure
was measured by a trained observer, at the end of each urine collection in the supine position,
using an electronic oscillometric blood pressure measuring device (Datascope, Accutorr). The
cuff was appropriately sized to the diameter of the arm and the arm positioned at the heart
level. Each measurement was the mean of 3 readings. After the first 4 timed urine collections,
participants received either intravenous acetazolamide at a dose of 5 mg/kg within 5 min or
intravenous furosemide at a dose of 2 mg within 5 min. The drugs were injected after dilution
in 0.9% sodium chloride as a 20 ml solution. Following the injection, a 0.9% sodium chloride
solution was administered intravenously at a rate of 130 ml/hr and two 30-minute urine collec-
tions were performed. The second study was performed 14 (13–22) days after the first study,
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using the drug that had not been administered during the first study. Blood sampled before
and after each urine collection was assayed for albumin, protein, sodium, inulin and p-amino-
hippuric acid. Each of the urine collections was assayed for sodium, inulin and p-aminohippu-
ric acid. Lithium was measured in 2 urine collections preceding diuretic administration and in
urine samples collected 30 and 60 min following diuretic administration, as well as in blood
samples bracketing these collections. Venous blood gases were measured in blood samples
drawn at the end of the two last baseline urine collections and in samples drawn 30 and 60 min
following diuretic administration.

The study was performed using a randomized double-blind crossover comparative design.
The order of administration was randomized. Fig 1 shows the investigation's flowchart. Nine-
teen subjects were assessed for eligibility. Twelve subjects received the allocated treatment.
Data obtained from the studies of all 12 subjects were analyzed.

Fig 1. Investigation's flowchart.

doi:10.1371/journal.pone.0137163.g001
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Randomization and masking
Participants were assigned to receive either acetazolamide or furosemide during the first renal
function test using a simple randomization procedure (computerized random numbers) pre-
pared by a pharmacist not otherwise involved in the study. Medications were prepared by a
nurse not otherwise involved in the study and injected by one of the authors (BZ) who was
unaware of the medication administered. The participants, the coauthors and everyone
involved in the laboratory procedures and data analysis were blinded to the medication admin-
istered until completion of data analysis.

Outcome
The primary endpoint of this study was a change in GFR following diuretic administration.

Date range for participants' recruitment
2011.01.31 to 2012.08.27

Laboratory procedures
Plasma and urinary concentrations of inulin and p-aminohippuric acid were analyzed by color-
imetric methods. Lithium in the serum and urine was measured using the ICP-OES (Induc-
tively Coupled Plasma Optical Emission Spectrometer) method. Urine albumin was measured
using chemiluminescence. HbA1c, plasma glucose, sodium, creatinine, albumin, protein and
bicarbonate and urine sodium, creatinine and urea nitrogen were measured using standard lab-
oratory methods. HbA1c was measured in 11 out of the 12 obese subjects. The subject with
missing HbA1c had a fasting blood glucose level of 96 mg/dl.

Calculations
GFR and renal plasma flow were calculated as inulin and p-aminohippuric acid sodium clear-
ance, respectively. Baseline GFR and renal plasma flow were calculated from the average value
of the four inulin and p-aminohippuric acid sodium clearance measurements performed before
diuretic administration. BMI was calculated as: Body weight/Height2, body weight being
expressed in kg and height expressed in m. The fractional lithium excretion was calculated as:
lithium clearance/GFR. Baseline fractional lithium excretion was determined as the average
value for two measurements performed before diuretic administration. Renal blood flow was
calculated as: Renal plasma flow/(1—Hematocrit), flow being expressed in ml/min and hemat-
ocrit as a fraction. Mean arterial pressure was calculated as: (Systolic arterial pressure+-
2xDiastolic arterial pressure)/3, pressure being expressed in mm Hg. Renal vascular resistance,
expressed in mm Hg/(ml/min), was calculated as: Mean arterial pressure/ Renal blood flow.
Albumin excretion rate was calculated as the mean value from the two 24-hour urine collec-
tions. Protein intake was calculated as[39]: (Urine urea nitrogen + [Body weight x 0.031]) x
6.25, protein intake being expressed in g/d, urine urea nitrogen in g/d and body weight in kg.
Sodium balance during renal function studies, i.e. from the time of inulin and p-aminohippuric
acid injection to that of the end of the last urine collection, was calculated as: Intravenous
sodium intake + Oral sodium intake (as drinking water)–Urinary sodium excretion, expressed
in mmol.

Statistical Analysis
Normally distributed data are expressed as mean±SD, unless otherwise specified. Variables
with skewed distribution are expressed as median (range). Analysis was performed according
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to the intention-to-treat principle, with all subjects who received the allocated medication
being included in the analysis. The significance of differences between groups was evaluated by
ANOVA with repeated measures. The effect of administration order of the drugs was evaluated
for the primary outcome. When ANOVA showed a significant treatment-by-time interaction,
a paired t-test was applied. Regression analysis between variables was performed after log-
transformation for non-normally distributed variables. Missing data: serum albumin and
serum bicarbonate data were unavailable for one subject each. Analysis for these two variables
was performed for 11 out of the 12 subjects.

All tests were two-sided. P<0.05 was considered as significant. The analyses were carried
using SPSS software version 21.

Sample size
Sample size calculation was based on the results of a study by Hannedouche et al31 on the
effects of intravenously administrated acetazolamide on renal hemodynamics in healthy and
diabetic subjects. GFR decreased by 14±10% following acetazolamide. The SD of the treatment
effect was calculated using data appearing in Fig 1 of this publication. Using these data, we cal-
culated that it would be necessary to include 15 subjects in the present investigation in order to
demonstrate a 14% decrease in GFR, assuming an alpha of 0.005, a power of 90% and a drop-
out of up to 20% after randomization.

Interim Analysis
Due to slow enrollment, an interim analysis was performed after 13 subjects had been random-
ized and 12 had completed the study. This analysis showed that the primary endpoint was
reached. Due to this result and the slow enrollment rate, the study was stopped before comple-
tion of the randomization of 15 subjects, as initially planned.

Results
Twelve obese male subjects, aged 36 (32–53) received the allocated medications. Body weight was
122±19 kg and height – 1.78±0.09 m. Body mass index was 38.8±5.7 kg/m2 (range: 31.6–49.5)
and waist circumference – 124±12 cm (range: 109–141). Serum creatinine was 69.8±6.2 μmol/L.
Fasting blood glucose was 5.05 (4.55–6.49) mmol/L and HbA1c – 5.5 (5.3–6.2)%. Creatinine
clearance was 177±27 ml/min. Albumin excretion rate was 12.4 (range: 5.9–39.7; lower quartile:
9.8; upper quartile: 21.9) mg/d. Calculated protein intake, assessed during the day preceding acet-
azolamide and furosemide studies using 24-hour urine collections, was 115±21 and 111±22 g/d
respectively (P NS).

Sodium intake during the day preceding acetazolamide and furosemide studies, as assessed
by a 24-hour urine collection, was 248 (105–399) and 262 (123–344) mmol, respectively
(P = 0.9). During baseline renal function studies, systolic arterial pressure was 122±11 mm Hg
before both acetazolamide and furosemide administration; diastolic arterial pressure was
80±11 and 80±10 mm Hg before acetazolamide and furosemide administration, respectively
(P = 0.9).

Renal Hemodynamics
Table 1 and Fig 2 show the renal hemodynamic changes occurring after acetazolamide and
furosemide administration. Repeated-measures analysis of variance of GFR (Table 1) showed a
significant interaction between treatment and time (P = 0.001), i.e. the effect of acetazolamide
on GFR differed from that of furosemide. GFR decreased by 21% following acetazolamide
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(P<0.001), while it remained unchanged following furosemide administration (Fig 2). Order
of administration of the study medications did not affect GFR change. Repeated-measures
analysis of variance revealed no significant effect of time on RPF. However, the P value from a
paired t-test before, as compared to after, acetazolamide was 0.03, suggesting a trend toward
significance. Repeated-measures analysis of variance showed a significant effect of time on
renal vascular resistance (P = 0.03) with no significant interaction between treatment and time.
Renal vascular resistance increased by 12% following acetazolamide (P = 0.01), while it
remained unchanged following furosemide administration (P = 0.1). Fig 3 shows that baseline
GFR and the change in GFR following acetazolamide were inversely correlated (r = -0.69,
P = 0.01), baseline GFR accounting for 48% of the effect of acetazolamide on GFR. Baseline
albuminuria and the change in GFR following acetazolamide were not correlated (r = 0.36,
P = 0.25).

Sodium handling
Table 2 and Fig 4 show renal sodium handling before and after acetazolamide and furosemide
injection. Serum sodium remained constant during the whole study. Natriuresis was similar
during the two baseline renal function studies preceding medications administration.

Table 1. Renal Hemodynamics before and after Acetazolamide and Furosemide in Obese Subjects.

Acetazolamide Furosemide

Pre Post Pre Post

Glomerular filtration rate (ml/min) 151±22 120±16* 152±18 150±28

Renal plasma flow (ml/min) 735±167 675±168 783±75 775±190

Renal vascular resistance (mm Hg/[ml/min]) 0.078±0.017 0.088±0.021† 0.073±0.010 0.080±0.019

* P = 0.000

† P = 0.015

doi:10.1371/journal.pone.0137163.t001

Fig 2. GFR before (Baseline) and after (Post) acetazolamide and furosemide administration.GFR
decreased by 21% following acetazolamide and remained unchanged following furosemide.

doi:10.1371/journal.pone.0137163.g002

Acetazolamide, Obesity & Glomerular Hyperfiltration

PLOS ONE | DOI:10.1371/journal.pone.0137163 September 14, 2015 7 / 16



Repeated-measures analysis of variance revealed no significant interaction between treatment
and time for natriuresis, while the effect of time was significant, indicating that acetazolamide
and furosemide affected sodium excretion. Urinary sodium excretion increased similarly fol-
lowing administration of the 2 medications. Natriuresis increased by 141% following acetazol-
amide (P<0.001) and by 151% following furosemide injection (P<0.001). Lithium clearance, a
marker of sodium reabsorption by the proximal tubule, was similar during the baseline renal
function studies preceding drugs administration. It increased 1.7 times more following acet-
azolamide than following furosemide (30% vs 18%, P<0.03). Fractional lithium excretion, was
similar during the baseline renal function studies preceding drugs administration. It increased
2.3 times more following acetazolamide than following furosemide (61% vs 27%, P = 0.002).
Sodium balance during renal function studies was similar following acetazolamide and furose-
mide, -30±20 mmol and -35±26 mmol, respectively (P = 0.35).

Table 3 shows serum protein and arterial pressure during the study. Systolic and diastolic
arterial pressures were similar during baseline studies. Systolic arterial pressure remained con-
stant following both acetazolamide and furosemide administration. Diastolic arterial pressure
increased by 3 mm Hg following furosemide injection (P = 0.02) and remained constant fol-
lowing acetazolamide administration (P = 0.9). Serum albumin and total protein remained
constant before and after acetazolamide and furosemide administration. Plasma bicarbonate
was 24.2±1.4 and 24.7±1.4 mEq/L before and after furosemide (P = 0.1). It decreased from
24.2±1.1 to 23.1±1.1 mEq/L following acetazolamide (P = 0.002).

Fig 3. Change in GFR following acetazolamide administration as a function of baseline GFR. Baseline
GFR and the change in GFR following acetazolamide were inversely correlated.

doi:10.1371/journal.pone.0137163.g003

Table 2. Renal SodiumHandling before and after Acetazolamide and Furosemide in Obese Subjects.

Acetazolamide Furosemide

Pre Post Pre Post

Serum sodium (mmol/L) 138.8±1.5 139.0±1.6 138.7±1.7 138.5±1.9

Urine sodium excretion rate (μmol/min) 216±76 521±139* 239±84 600±202*

Fractional lithium excretion 0.166±0.056 0.267±0.058* 0.167±0.050 0.212±0.062‡

Lithium clearance (ml/min) 24.6±8.3 31.9±8.9* 24.8±7.1 29.2±8.7‡

* P = 0.000

‡ P = 0.02

doi:10.1371/journal.pone.0137163.t002

Acetazolamide, Obesity & Glomerular Hyperfiltration

PLOS ONE | DOI:10.1371/journal.pone.0137163 September 14, 2015 8 / 16



Adverse effects of allocated medications
Adverse events occurred in 3 subjects following acetazolamide administration: hand paresthe-
sia (two subjects), lip paresthesia (one subject) and alteration of the sense of taste (two sub-
jects). These adverse events resolved spontaneously. No adverse events were recorded
following furosemide administration.

Discussion
This randomized controlled investigation shows that acetazolamide reduces GFR in obese non
diabetic subjects with glomerular hyperfiltration. A distally acting diuretic injected at an equi-
potent dose was used as control and showed no effect on GFR.

Previous studies showed that acetazolamide decreases GFR in animal models[40–43], in
healthy humans[27–33] and in diabetic subjects[31,34]. The present investigation is the first to
compare the effects of acetazolamide to those of an equipotent natriuretic agent and the first to
investigate these effects in hyperfiltrating non-diabetic obese subjects.

Fig 4. Urinary sodium excretion rate before (Baseline) and after (Post) acetazolamide and furosemide
administration. Natriuresis increased similarly following acetazolamide and furosemide administration.

doi:10.1371/journal.pone.0137163.g004

Table 3. Serum Protein and Arterial Pressure before and after Acetazolamide and Furosemide in
Obese Subjects.

Acetazolamide Furosemide

Pre Post Pre Post

Serum albumin 46.3±3.1 46.1±3.0 46.2±2.9 45.9±3.2

(g/L)

Serum total protein 72.3±3.1 72.2±3.6 71.6±3.9 71.4±3.9

(g/L)

Systolic arterial pressure (mm Hg) 127±11 128±10 127±11 130±10

Diastolic arterial pressure (mm Hg) 80±11 80±11 80±10 83±10§

§ P = 0.025

doi:10.1371/journal.pone.0137163.t003
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Acetazolamide, a carbonic anhydrase inhibitor, acts on the proximal tubule by decreasing
bicarbonate, sodium and chloride reabsorption. The increased solute delivery to the macula
densa activates tubuloglomerular feedback leading to a reciprocal change in single nephron
GFR, mostly resulting from changes in glomerular arterioles resistance[44]. The decrease in
GFR has also been attributed to an increase in Bowman's space hydrostatic pressure secondary
to inhibition of proximal reabsorption[45]. These changes result in a diminished transcapillary
pressure gradient and a lowered single nephron GFR. GFR decreased following acetazolamide
and remained unchanged following furosemide administration. Sodium balance, slightly nega-
tive following diuretic administration, was similar in both groups. Hence, changes in sodium
balance did not account for the renal hemodynamic changes. Protein intake, a potential mod-
ulator of renal hemodynamics, was similar during the 24 hours preceding the two renal func-
tion studies.

The effects of acetazolamide on renal hemodynamics were compared to those of furose-
mide, a loop diuretic that increases natriuresis by inhibiting the sodium-potassium-2chloride
co-transporter in the thick ascending limb of the loop of Henle. Acetazolamide and furosemide
both increase solute distal delivery. However, the latter does not activate tubuloglomerular
feedback[28,30,36–38] since it inhibits the sodium-potassium-2chloride co-transporter and
therefore blocks solute transport into macula densa cells and the consequent decrease in glo-
merular filtration rate. A possible additional explanation for the lack of effect of furosemide on
glomerular hyperfiltration may also be related to the cortical or global renal vasodilation dem-
onstrated by some studies following intravenous administration of furosemide[46–50]. This
effect may theoretically contribute to maintaining GFR. In the present study, renal vascular
resistance did not change following furosemide. This finding does not support a role for a
direct effect of furosemide on the renal vasculature in the settings of the present investigation,
performed using low-dose furosemide in water-repleted subjects with high baseline renal
plasma flow.

The dose of acetazolamide used in this investigation is similar to that used for clinical indi-
cations. Furosemide was administered at a low dose in order to match the natriuretic effect of
acetazolamide. Preliminary studies showed that furosemide doses of 10 and 5 mg resulted in a
more pronounced natriuretic effect than acetazolamide during the 60 min period following
injection. We empirically determined that a 2 mg furosemide dose provides the sought natri-
uretic effect. A single study by Andreasen et al[51] reported the pharmacodynamics and kinet-
ics of a 5 mg furosemide dose in young healthy adults, along with the effects of higher doses.
As far as we know, no published data are available concerning the effects of lower doses. In this
publication[51], the results for the 60 min period following injection of the 5 mg dose were pro-
vided as urine sodium excretion rate for the 0–15 min period and as fractional excretion of
sodium (FENa) for the 15–30 and 30–60 min periods. By backcalculating natriuresis from
FENa for the 15–30 and 30–60 min periods in that study, we obtain a urine sodium excretion
rate of about 1.4 mmol/min. These findings are consistent with those of the present study,
where the 2 mg dose induced about half the natriuresis generated by the 5 mg dose, i.e. 0.6
mmol/min. The authors noted that the median effective dose (ED50) of furosemide is "well
below 5 mg", i.e. that the natriuretic response appears at doses much lower than 5 mg. These
low doses are not used clinically in adults since the diuretic response wanes rapidly owing to
the drug’s short half-life.

Baseline natriuresis was similar before acetazolamide and furosemide administration. Natri-
uresis increased likewise during the 60 min following administration of the two diuretics. The
slightly negative sodium balance was similar in the two groups. During this time period, GFR
decreased by 21% following acetazolamide, while it remained constant following furosemide.
These findings suggest that the renal hemodynamic changes which occurred after
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acetazolamide were due to tubuloglomerular feedback activation and not to a systemic hemo-
dynamic effect, nor to differences in natriuretic potency between furosemide and acetazol-
amide. Previous human studies on the effects of acetazolamide on renal hemodynamics were
performed in diabetic and healthy subjects[27–34]. None of them included a control group
that received a diuretic with similar effect on sodium excretion as the acetazolamide group.
Fractional excretion of lithium was used in this study to evaluate renal sodium handling. Lith-
ium is freely filtrated by the glomeruli, undergoes proximal tubular reabsorption by the same
transport system as sodium, and is thereafter excreted without further significant reabsorption
or secretion at more distal segments of the nephron[52]. Thus, fractional lithium excretion is a
marker of proximal tubular sodium handling and its increase reflects a decrease in proximal
sodium reabsorption. An exception to this rule is in the case of subjects under sodium restric-
tion, where this relationship loses its validity[53]. This was not the case in the present investiga-
tion, where participants consumed a normal sodium diet. In this study, fractional lithium
excretion increased by 61% following acetazolamide, reflecting a marked decrease in proximal
sodium reabsorption. This marked increase is accounted for by the combined effect of a 30%
increase in lithium clearance and the resulting 21% decrease in GFR. Fractional excretion of
lithium increased also following furosemide, albeit more moderately. This probably reflects the
fact that some lithium reabsorption occurs in the loop of henle[31,36,54,55]. To a lesser extent,
a small inhibitory acute effect of furosemide on proximal tubular sodium reabsorption[55,56]
might also account for the increase in lithium clearance. However, the evidence for this effect is
conflicting[57]. The change in GFR following acetazolamide was inversely correlated with
baseline GFR. Hannedouche et al31 previously showed that acetazolamide decreases GFR in
diabetic and healthy subjects, the change in GFR being inversely correlated with baseline GFR.
Similarly, Guidi et al[30] showed that the decrease in GFR following administration of acet-
azolamide to healthy individuals is more pronounced in subjects with high, as compared to
those with low, baseline GFR. The present investigation confirms these findings in an obese
population.

Most enrolled subjects had a urinary albumin excretion rate spanning within a range associ-
ated with increased risk for cardiovascular mortality[58]. The effects of acetazolamide and
furosemide on albuminuria could not be estimated owing to the diluted state of the urine dur-
ing the renal function studies, resulting in undetectable urinary albumin levels. Thus we were
unable to determine whether acetazolamide affects this risk marker, in addition to its effects on
glomerular hyperfiltration. The effects of acetazolamide on albumin excretion rate may not
necessarily match those on glomerular filtration rate. It is of interest that baseline GFR pre-
dicted the effects of acetazolamide on glomerular hyperfiltration, while albuminuria did not.
Thus, further investigations are required in order to assess the effects of acetazolamide on the
latter.

Glomerular hyperfiltration is one of the factors responsible for the increased prevalence of
chronic kidney disease in obese sujects[18–24,59]. Thus, decreasing glomerular pressure and
single nephron GFR may protect the kidney from hyperfiltration-mediated injury. The avail-
able therapeutic tools aimed at decreasing glomerular filtration pressure are antihypertensive
treatment, inhibition of the renin angiotensin, weight loss[7,17] and low salt diet[13]. Ogna
et al[60] recently showed in a population-based survey that overweight and obesity, and to a
lesser extent salt intake, are independent predictors of glomerular hyperfiltration in the general
population. These findings raise the hypothesis that decreasing salt intake may attenuate
hyperfiltration. Krikken et al[13], measuring glomerular function in healthy lean and over-
weight subjects on a low- and a high-sodium diet, demonstrated that the change from low- to
high-sodium diet led to an increase in filtration fraction in the overweight group, while no
change was found in the lean group, suggesting that a low salt diet may attenuate glomerular
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hyperfiltration in subjects with increased adiposity. It should, however, be noted that this study
was performed in normotensive subjects and that the glomerular hemodynamic response to a
change in salt intake may differ in hypertensive and in normotensive subjects[61], irrespective
of the obesity status.

Abating hyperfiltration through tubuloglomerular feedback activation provides a new
approach to this issue, by directly acting on one of the mechanisms causing obesity-induced
hyperfiltration. Non diabetic obese subjects have increased fractional sodium reabsorption in
the proximal tubule[14,62,63]. This abnormal tubular sodium handling also occurs in diabetic
murine models and diabetic humans[64–66]. Vallon et al[66,67] presented data obtained in a
murine diabetic model suggesting that a primary proximal tubular factor leads to enhanced
proximal tubular reabsorption, decreased solute delivery to the macula densa and deactivation
of the tubuloglomerular feedback, with consequent glomerular hyperfiltration. The results of
the present study are compatible with this concept, although do not disprove the involvement
of primary vascular factors[24] in the pathogenesis of glomerular hyperfiltration. The present
study is the first to investigate the effects of tubuloglomerular feedback manipulation in obese
non diabetic subjects. This effect, which was previously demonstrated in diabetic and healthy
subjects[27–34], is not specific to the obese population.

The short term design of the present study does not allow inferring about the effectiveness
of acetazolamide in the long-term in obese subjects. Recently, Cherney et al[35] studied in type
1 diabetic subjects, the effects of an eight-week treatment with empagliflozin, a sodium glucose
co-transporter 2 inhibitor that decreases proximal tubular glucose and sodium reabsorption
and thus increases solute delivery to the macula densa. The authors showed that this treatment
leads to a decrease in GFR in type 1 diabetic subjects with glomerular hyperfiltration. This
result suggests that in this population, attenuation of glomerular hyperfiltration by tubuloglo-
merular feedback manipulation using a sodium glucose co-transporter 2 inhibitor is feasible
during a 2-month period. Is the hypofiltrating effect of acetazolamide maintained in the long-
term? Acetazolamide is rarely used as a diuretic since its long-term natriuretic effect is modest.
The main factors accounting for this are the increased reabsorption of the excess solute and
fluid delivered distally[68], the decrease in GFR, consequent to tubuloglomerular feedback acti-
vation, leading to a decline in the filtered sodium load[45,68] and the decrease in plasma bicar-
bonate and consequent reduction in glomerular filtrate bicarbonate concentration to a level
lower than the maximal reabsorptive capacity of the nephron, thus abating distal delivery of
sodium and bicarbonate. Does the short-term diuretic effect of acetazolamide imply an ephem-
eral effect on GFR? Lorenz et al68 studied knockout mice for the Na/H exchanger isoform 3
which mediates 60% of salt reabsorption in the proximal tubule. Single nephron GFR of these
knockout mice was lowered owing to tubuloglomerular feedback activation. This long-term
hypofiltrating effect in animals with Na/H exchanger isoform 3 deficiency suggests that chronic
carbohydrase inhibition would similarly result in long-term glomerular hypofiltration.

Skott et al[69] showed that a 3-day treatment course of oral acetazolamide decreases GFR in
diabetic patients with mild chronic renal insufficiency and in healthy subjects. The 24-hour
urine sodium excretion, which was markedly increased at Day 1 of the treatment, as compared
to the pre-treatment level, decreased at Day 3 to a level similar to the pre-treatment level. This
suggests that the hypofiltrating effect of acetazolamide still persists at a time when the diuretic
effect has vanished. However, no conclusive data are available regarding its long-term effect on
glomerular filtration. Therefore, the long-term effects of natriuretic agents acting on the proxi-
mal tubule, such as carbohydrase inhibitors and sodium glucose co-transporter 2 inhibitors,
should be investigated in hyperfiltrating subjects at risk for advanced chronic kidney disease.
Of note, if the long-term hypofiltrating effect of acetazolamide was demonstrated, its side
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effects[70]— nephrolithiasis, lethargy, paresthesia and mainly the ineluctable metabolic acido-
sis—may preclude its use as a chronic treatment for glomerular hyperfiltration.

The strengths of the present study are its randomized double blind design, the use of a
diuretic injected at equipotent dose, the exclusion of diabetic subjects and attainment of a simi-
lar sodium balance in the acetazolamide and furosemide groups. Its limitations are the small
number of subjects involved and its short term design. The cross over design of the study
enabled us to demonstrate the effect of the study drug despite a small number of participants.

In summary, manipulating tubuloglomerular feedback with acetazolamide is effective in
acutely abating glomerular hyperfiltration in obese non diabetic subjects.
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