# BJAOpen

BJA Open, 10 (C): 100286 (2024)

doi: 10.1016/j.bjao.2024.100286 Review Article

# REVIEW ARTICLE

# Systematic review and narrative description of the outcomes of group preoperative education before elective major surgery



Imogen Fecher-Jones<sup>1,\*</sup>, Chloe Grimmett<sup>2</sup>, Ben Ainsworth<sup>3</sup>, Frances Wensley<sup>5</sup>, Laura Rossiter<sup>4</sup>, Michael P. W. Grocott<sup>5</sup> and Denny Z. H. Levett<sup>5</sup>

<sup>1</sup>Department of Perioperative Care, University Hospital Southampton NHS Foundation Trust, Southampton, UK, <sup>2</sup>Centre for Psychosocial Research in Cancer: CentRIC+, School of Health Sciences, Southampton, UK, <sup>3</sup>School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK, <sup>4</sup>School of Health Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK and <sup>5</sup>Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK

\*Corresponding author. E-mail: Imogen.fecher@uhs.nhs.uk Twitter: X@IFecherJones

# Abstract

**Background:** Group preoperative education is becoming standard care for patients preparing for surgery, alongside optimisation of exercise, diet, and wellbeing. Although patient education is essential, the effectiveness of group education programmes or 'surgery schools' as a means of delivery is unclear. This review examines whether attending group preoperative education improves patient outcomes.

**Methods:** We systematically reviewed studies of group perioperative education before major elective surgery. Observational or intervention studies with a baseline group or control arm were included. All outcomes reported were collected and, where possible, effect estimates were summarised using random effects meta-analysis.

**Results:** Twenty-seven studies reported on 48 different outcomes after group education. Overall, there was a 0.7 (95% confidence interval 0.27–1.13) day reduction in mean length of stay. The odds ratio for postoperative complications after abdominal surgery was 0.56 (95% confidence interval 0.36–0.85; nine studies). Patient-centred outcomes were grouped into themes. Most studies reported a benefit from group education, but only postoperative physical impairment, pain, knowledge, activation, preoperative anxiety, and some elements of quality of life were statistically significant. **Conclusion:** This review presents a summary of published evidence available for group preoperative education. While

these data lend support for such programmes, there is a need for adequately powered prospective studies to evaluate the effectiveness of preoperative education on clinical outcomes and to evaluate whether behaviour change is sustained. Furthermore, the content, timing and mode of delivery, and evaluation measures of preoperative education require standardisation.

Systematic review protocol: PROSPERO (166297).

Keywords: perioperative medicine; prehabilitation; preoperative education; surgery school; systematic review

Preoperative education is an accepted standard for preparing patients for elective surgery, recommended by the Centre for Perioperative Care.<sup>1</sup> Well prepared patients are less anxious and recover more quickly.<sup>2</sup> Traditionally undertaken one-toone in presurgical clinics, the last decade has seen an increasing shift within the UK towards group-based education, often known as 'surgery schools'.<sup>3</sup> Schools are generally delivered as a single education session by clinicians to groups of patients and cover how to prepare for and recover effectively from surgery. Such schools have the potential to improve clinical outcomes as patients are encouraged to modify lifestyle behaviours that can reduce their risk of

Received: 30 October 2023; Accepted: 14 April 2024

 $<sup>\</sup>label{eq:crown Copyright @ 2024 Published by Elsevier Ltd on behalf of British Journal of Anaesthesia. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).$ 

For Permissions, please email: permissions@elsevier.com

postoperative complications and may also have a lasting effect on their health.

Individual studies of surgery schools have reported benefits such as reduced length of hospital stay, reduced preoperative anxiety, and reduced postoperative pain.<sup>4,5</sup> Previous systematic reviews are limited to single specialty surgery schools,<sup>6,7</sup> or included a diverse range of patient education interventions rather than focusing on group education.<sup>8,9</sup> All have reported inconclusive evidence. In other fields, group education has been shown to be effective at supporting patients to improve their lifestyle behaviours, is cost-effective, and perceived to be of value to patients.<sup>10,11</sup>

Group preoperative education is rapidly becoming standard care for patients<sup>3</sup> alongside preparation for surgery through the optimisation of exercise, diet, and wellbeing.<sup>12</sup> Given the cost of delivering such interventions,<sup>13–15</sup> there is an urgent need to review the outcomes of group preoperative education across all surgical specialties. This review aims to identify whether group preoperative education for adult patients undergoing major elective surgery improves patient outcomes.

# **Methods**

The Preferred Reporting Items for Systematic Reviews Statement<sup>16</sup> and Cochrane's Handbook for Systematic Reviews of Interventions<sup>17</sup> were used to guide the analysis and reporting.

The protocol for the review was registered on PROSPERO ID 166297 in 2020 and updated in 2023.

## Eligibility criteria

To be included in the analysis, the group education intervention was a stand-alone session, delivered to adults and contained core topics including; how to prepare for surgery, what to expect, and description of inpatient stay. For further detail on inclusion and exclusion criteria see <u>Supplementary File 1</u>. Participants were adults preparing for major elective surgery, defined as any invasive repair or resection not routinely undertaken as a day case procedure.

#### Search strategy

A search strategy was devised and piloted using key terms relating to preoperative education and their synonyms. Intervention concepts were explored using database-specific syntax rules and combined with Boolean operators (see Supplementary File 2 for search strategy). The search was initially undertaken on 28 October 2022 and updated on 19 September 2023, using six electronic databases, including MEDLINE, CINAHL, PsychINFO, EMBASE, Pubmed, and the Cochrane Library. Searches through reference lists of included studies and existing reviews were also undertaken.

## Selection process

Electronic search results were imported into the reference management software ENDNOTE, and duplicates removed. The remaining citations were screened by title and abstract and then by full text. A second researcher blindly rescreened 10% of the citations at each stage. On occasions of uncertainty, further discussion ensued until a mutual consensus was reached. When a study provided insufficient detail to assess eligibility, the corresponding author was contacted for clarity.

#### Data collection process

Data, including study design and aims, participant details, primary and secondary outcomes, type of analysis, and overall findings, were extracted. Data describing the intervention were extracted using the Tidier Framework.<sup>18</sup>

## Reporting bias assessment

The methodological quality of the included studies was assessed using the 'Risk of Bias 2' tool<sup>19</sup> for randomised controlled trials and Robins-I<sup>20</sup> for observational studies. The Cochrane GRADE approach<sup>21</sup> was used when summarising the data for each identified outcome.

## Data analysis

Study findings were compared, and differences between interventions summarised. Outcome data were grouped into key areas (themes) under the headings of 'clinical outcomes' and 'patient-centred outcomes'. Where multiple studies reported comparable outcomes (length of hospital stay and complications), effect estimates were combined using random effects restricted maximum likelihood (REML) meta-analyses, weighted by sample size. Results were displayed using forest plots. Most studies reported mean and standard deviation for length of stay; where this was missing, authors were contacted for data and on one occasion,<sup>22</sup> values were estimated from a figure included in the published study. I<sup>2</sup> was used to estimate the extent to which the variation between studies was associated with statistical heterogeneity rather than chance. Quantitative analyses were conducted using Stata version 16 (StataCorp LLC, College Station, TX, USA). A narrative synthesis was undertaken for all other reported outcomes.

# **Results**

The literature search yielded a total of 8414 potentially relevant titles, from which 4775 unique titles and abstracts were screened (Prisma Flow Chart, Fig 1.). One hundred and seventy-nine full texts were reviewed, with 27 studies meeting the inclusion criteria. A summary of studies is provided in Table 1.

#### Study characteristics

Twenty-seven single-centre studies that included 5969 participants were conducted between 1976 and 2022. Four of these were randomised controlled trials,<sup>4,5,26,40</sup> four nonrandomised intervention studies, 13, 27, 33, 36 18 observational studies,<sup>14,15,22,23–25,28,29,31,32,35,37–39,41–43,34</sup> and one qualitative study<sup>30</sup> (Table 1). The sample size ranged from 11 to 1018 participants. The mean age ranged from 28 to 73 yr and all but three studies were mixed gender. One study was women only, one men only, and one transmasculine and non-binary patients. Three studies did not define gender. Two-thirds of the studies originated from four countries: the USA (n=9), the UK (n=7), Ireland (n=2), and Canada (n=2). One study was undertaken in each of Brazil, Netherlands, France, Sweden, Guyana, and Australia. Just over half of the studies were in patients undergoing orthopaedic surgery (n=16). The remaining patient groups were mixed speciality (n=3), colorectal (n=2) and urology, liver transplant, gynaecology, bariatric, breast, and cardiac surgery (n=1).



Fig 1. PRISMA 2020 flow diagram reporting results of literature search. Adapted from Page and colleagues.<sup>16</sup>

The intervention across all studies was a stand-alone faceto-face group preoperative education class, covering the required core content as stated in the inclusion criteria (Supplementary File 1). Seventy percent (n=19) of studies described the session duration, which ranged from 35 min<sup>14</sup> to  $3 h^{5}$ ; the median duration was 90 min (inter-quartile range 60–120 min). The group size was described by 32% (n=9) of the studies, eight of which were delivered to fewer than 15 people at a time (range two<sup>14</sup> to 41<sup>36</sup> patients). Eighty-six percent (n=24) compared their outcomes with a standard care control group which included a consultation with a surgeon, nurse, or anaesthetist or provision of a patient information booklet. The remaining three studies used a pre-post intervention design.

# **Risk of bias**

The risk of bias for three of the four controlled trials was medium, and one was high risk<sup>26</sup> (Table 1). This was primarily because of the inability to blind patients or clinical teams, or where fidelity of the intervention and control groups could not be assured. The non-randomised intervention and observational studies were rated moderate (n=10) or serious (n=9) risk of bias. Three studies did not contain enough information for an assessment to be completed, and we were unable to assess the one qualitative study. Other reasons for elevated risk were possible contamination between intervention and control groups, for example, where care was provided by the same professionals, intervention fidelity, and heterogeneity between participants in the intervention and control groups.

A total of 48 different outcomes were reported (Tables 1 and 2). These were divided into clinical outcomes or patientcentred outcomes, and further grouped under key themes for ease of analysis. An assessment of effect certainty was undertaken using the Cochrane GRADE approach<sup>21</sup> for each outcome (Table 2). Sixty percent of the outcome GRADEs were 'moderate' or 'high' in relation to likelihood of the effect being the true effect.

# **Clinical outcomes**

Hospital length of stay was the most commonly reported outcome (n=13 studies). Eleven studies (85%) reported a reduction in length of stay for patients receiving group preoperative education, although only two of these were statistically significant.<sup>40,43</sup> Five studies (Table 3) presented a difference in mean length of stay without presenting standard deviation or confidence intervals (CIs), and one study used difference in median length of stay. Seven studies of patients undergoing orthopaedic surgery were included in a metaanalysis (Fig 2). Overall, there was a 0.7-day reduction in mean length of stay for patients in the intervention group (95% CI -1.13 to -0.27, I<sup>2</sup>=67%). Although there was minimal heterogeneity between studies of patients undergoing hip surgery  $(I^2=7.63\%)$ , there was substantial heterogeneity between studies of patients undergoing knee surgery ( $I^2=61\%$ ).

Postoperative complications were the second most frequently reported outcome (n=9). Complications included mortality,<sup>4</sup> pulmonary infections,<sup>14</sup> or a composite outcome Table 1 Summary of included studies and outcomes. ADL, activities of daily living; EQVAS, EuropeanQol Group Visual Analogue Scale; IV, intravenous; LoS, length of stay; MDT, Multidisciplinary Team ; N/A, Not applicable; QoL, quality of life; UKEQ5D, EuropeanQol Group 5 Dimensions Scale.

| Study                           | Country | Speciality                         | Aim                                                                                      | Study design           | Sample<br>intervention              | Sample<br>control                  | Outcomes                                                                                                                                              | Method                                                                                                                                                                                                                                                                                                | Analysis                                                   | Results                                                                                                                                                                                                                                                           | Risk<br>of bias                       |
|---------------------------------|---------|------------------------------------|------------------------------------------------------------------------------------------|------------------------|-------------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Fortin, 1976 <sup>4</sup>       | Canada  | Mixed<br>abdominal                 | To assess efficacy<br>and efficiency<br>of group<br>preoperative<br>education            | RCT                    | 37 (Mean age<br>41.8) (16%<br>male) | 32 (Mean age<br>40.5)<br>(9% male) | Primary<br>Functional<br>capacity<br>Secondary<br>Analgesia used,<br>comfort,<br>satisfaction,<br>LoS,<br>readmissions<br>and 33-day<br>mortality.    | Patient interviews<br>with physical<br>function,<br>comfort, and<br>satisfaction<br>questionnaires<br>at postoperative<br>day 2, 10, and<br>33. Patient<br>analgesic<br>utilisation<br>diary.<br>Extraction of<br>clinical<br>outcomes and<br>patient<br>characteristics<br>from clinical<br>records. | Descriptive and<br>statistical<br>analysis                 | Intervention<br>group<br>benefitted from<br>the program<br>regarding<br>physical<br>function,<br>comfort, less<br>pain, and<br>satisfaction.<br>Restored to<br>'normal life'<br>more quickly.                                                                     | Low                                   |
| Phillips,<br>1977 <sup>23</sup> | USA     | Hysterectomy                       | To compare<br>physician<br>individual<br>preoperative<br>education with<br>a group class | Observational<br>study | 15                                  | 27                                 | Primary<br>Understanding of<br>surgery,<br>recovery,<br>impact on post-<br>surgical<br>sexuality, and<br>self-image.<br>Secondary<br>Unresolved fears | Preoperative<br>interview                                                                                                                                                                                                                                                                             | Descriptive<br>statistics and<br>some thematic<br>analysis | Control group<br>cohort had<br>more<br>unanswered<br>questions, had<br>less<br>understanding<br>of impact on<br>sexuality, and<br>expected<br>negative<br>changes in<br>sexuality.<br>Intervention<br>group for<br>positive about<br>after-effects of<br>surgery. | Not enough<br>information<br>reported |
| Crabtree,<br>1978 <sup>14</sup> | USA     | Mixed<br>abdominal<br>and thoracic | To assess<br>whether group<br>or individual<br>teaching is<br>most cost-<br>effective    | Observational<br>study | 15                                  | 15                                 | Primary<br>Cost analysis<br>Secondary<br>LoS, vital capacity,<br>and pulmonary<br>complications.                                                      | Retrospective log<br>of chargeable<br>activity,<br>extraction of<br>clinical<br>outcomes from<br>clinical records.                                                                                                                                                                                    | Descriptive and<br>statistical<br>analysis                 | Group session<br>costs more per<br>patient than<br>individual<br>teaching. Vital<br>capacity and<br>LoS no<br>significant<br>difference.<br>Group<br>intervention<br>patients<br>developed<br>significantly<br>fewer                                              | Not enough<br>information<br>reported |

| Table 1 Contin                                | nued        |                        |                                                                                                                                         |                                                |                                        |                                        |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                            |                                                            |                                                                                                                                                                                                                                                                 |          |
|-----------------------------------------------|-------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Kosik, 1986 <sup>24</sup>                     | USA         | Mixed<br>abdominal     | Evaluation of<br>intervention<br>outcomes                                                                                               | Observational<br>study                         | 60 (12% Male)                          | 77 (16% Male)                          | <b>Primary</b><br>IV analgesia<br>requirements,<br>walking ability<br>at days 1 and 3<br>and LoS.                                                                                                                                                      | Retrospective<br>extraction of<br>clinical<br>outcomes from<br>clinical records.                                                                                                                                                           | Descriptive<br>statistics                                  | pulmonary<br>complications.<br>Intervention<br>group used less<br>IV analgesia,<br>were more<br>likely to walk on<br>day 1, 1 day less<br>LoS                                                                                                                   | Low      |
| Spalding<br>1995 <sup>13</sup>                | UK          | Orthopaedics<br>(hips) | To investigate the<br>benefits to the<br>patient and<br>organisation of<br>the<br>intervention                                          | Non-randomised<br>intervention<br>study        | 20 (Mean age<br>71.1)<br>(43% male)    | 21 (Mean age<br>71.2) (62%<br>male)    | Primary<br>LoS<br>Secondary<br>Postoperative<br>mobility, IV.<br>analgesia<br>requirements,<br>preparedness<br>for home,<br>number of home<br>visits,<br>complications,<br>and cost<br>analysis.                                                       | Data collected<br>after surgery<br>included<br>patient<br>characteristics,<br>preparation<br>checklist,<br>morphine<br>usage, mobility,<br>number of<br>home visits,<br>and<br>postoperative<br>complications<br>from clinical<br>records. | Descriptive<br>statistics                                  | Intervention<br>group used less<br>morphine, were<br>independent<br>with frame and<br>stick earlier,<br>shorter LoS,<br>fewer home<br>visits, fewer<br>complications.<br>Intervention<br>was more cost-<br>effective as a<br>result of<br>improved<br>outcomes. | Moderate |
| Nelson,<br>1996 <sup>25</sup>                 | UK          | Cardiac                | Evaluation of<br>whether the<br>intervention<br>reduced<br>patient<br>preoperative<br>fears and<br>anxiety                              | Observational<br>study (service<br>evaluation) | 20 (Age range 40<br>-79)<br>(70% male) | 20 (Age range 30<br>-89) (70%<br>male) | Primary<br>Preoperative fears<br>Secondary<br>Pain expectation<br>and satisfaction.                                                                                                                                                                    | Questionnaire<br>with closed and<br>open questions,<br>completed 24<br>-48 hours<br>before<br>discharge                                                                                                                                    | Descriptive<br>statistics and<br>some thematic<br>analysis | 100% Of<br>intervention<br>group with fears<br>had them<br>reduced, no<br>difference in<br>pain<br>expectation,<br>and high level<br>of intervention<br>satisfaction.                                                                                           | Moderate |
| Hörchner,<br>1999 <sup>26</sup>               | Netherlands | Bariatric<br>surgery   | To investigate<br>effect of<br>intervention<br>on<br>postoperative<br>pain, analgesic<br>use, vomiting,<br>and nursing<br>care duration | RCT                                            | 11 (Mean age<br>32.6) (100%<br>female) | 14 (Mean age<br>37.9) (100%<br>female) | Primary<br>Pain, frequency of<br>vomiting, and<br>analgesic use<br>and LoS.                                                                                                                                                                            | McGill pain<br>questionnaire<br>with data<br>collected 6, 12,<br>24, and 72 hours<br>after surgery.<br>Extraction of<br>clinical<br>outcomes from<br>clinical records.                                                                     | Statistical<br>analysis                                    | Statistical<br>differences in<br>favour of the<br>intervention in<br>postoperative<br>pain, analgesia<br>use, vomiting<br>and duration of<br>nursing care<br>(LoS).                                                                                             | Moderate |
| Giraudet-Le<br>Quintrec,<br>2003 <sup>5</sup> | France      | Orthopaedics<br>(hips) | To investigate<br>effect of MDT<br>group<br>intervention<br>on<br>preoperative<br>and<br>postoperative<br>anxiety                       | RCT                                            | 48 (Mean age<br>62.7) (50%<br>male)    | 52 (Mean age<br>64.3) (40%<br>male)    | Primary<br>Preoperative and<br>postoperative<br>anxiety.<br>Secondary<br>Preoperative and<br>postoperative<br>pain, morphine<br>usage,1st day of<br>standing up<br>after surgery,<br>LoS, blood<br>transfusion,<br>complications,<br>and satisfaction. | Preoperative and<br>post-surgery<br>self-evaluation<br>functional<br>score, health<br>assessment<br>questionnaire,<br>depression<br>rating scale,<br>anxiety self-<br>evaluation<br>state, and trait<br>inventory.                         | Statistical<br>analysis                                    | Intervention<br>group patients<br>were less<br>anxious and<br>had less<br>preoperative<br>pain and could<br>stand sooner.<br>After surgery,<br>intervention<br>group showed<br>trend toward<br>lower anxiety;<br>this was not<br>statistically<br>significant.  | Low      |

| Study                                      | Country | Speciality                          | Aim                                                                                              | Study design                            | Sample<br>intervention               | Sample<br>control                    | Outcomes                                                                                                                                                                       | Method                                                                             | Analysis                                                                   | Results                                                                                                                                                                                                                                                       | Risk<br>of bias |
|--------------------------------------------|---------|-------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Guimaro,<br>2007 <sup>27</sup>             | Brazil  | Liver<br>transplant                 | To compare<br>knowledge<br>levels before<br>and after<br>intervention                            | Non-randomised<br>intervention<br>study | 113 (Mean age<br>48.7) 47% male      | N/A                                  | Primary<br>Knowledge pre-<br>and post-<br>intervention                                                                                                                         | Pre- and post-<br>intervention<br>knowledge<br>questionnaire.                      | Descriptive and<br>statistical<br>analysis                                 | Knowledge in all<br>areas increased,<br>knowledge<br>regarding what<br>to expect while<br>in hospital was<br>statistically<br>significant.                                                                                                                    | Moderate        |
| Jones, 2011 <sup>28</sup>                  | υκ      | Orthopaedics<br>(knees)             | To evaluate the<br>impact of<br>intervention<br>on LoS                                           | Observational<br>study                  | 322 (Mean age<br>69.5)<br>(46% male) | 150 (Mean age<br>69.2)<br>(44% male) | Primary<br>LoS, in-patient<br>complications,<br>and hospital<br>readmissions.                                                                                                  | Prospective<br>extraction of<br>clinical<br>outcomes from<br>clinical records.     | Statistical<br>analysis                                                    | The mean LoS was<br>reduced by 2<br>days in the<br>intervention<br>group. Some<br>20% more of the<br>intervention<br>group were<br>discharged<br>within 1–4<br>days. No<br>difference in<br>complications<br>and<br>readmissions<br>between the<br>two groups | Moderate        |
| Papanas-<br>tassiou,<br>2011 <sup>29</sup> | USA     | Orthopaedics<br>(spines)            | To compare<br>intervention<br>and control<br>group<br>perceptions of<br>their pain<br>management | Observational<br>study                  | 77 (Mean age 55)<br>14% male         | 78 (Mean age 55)<br>14% male         | Primary<br>Overall<br>satisfaction and<br>pain relief<br>satisfaction                                                                                                          | Retrospective<br>analysis of a<br>post-discharge<br>satisfaction<br>questionnaire. | Statistical<br>analysis                                                    | Intervention<br>group reported<br>better<br>satisfaction<br>with pain<br>control which<br>was statistically<br>significant. No<br>statistical<br>difference was<br>found in overall<br>satisfaction.                                                          | Serious         |
| Lane-<br>Carlson,<br>2012 <sup>30</sup>    | USA     | Orthopaedics<br>(hips and<br>knees) | To compare<br>surgery<br>experiences<br>between<br>intervention<br>and control<br>group          | Qualitative study                       | 16<br>38% Male                       | 8<br>25% Male                        | Primary<br>Experience<br>Secondary<br>Differences in<br>perception of<br>physical, social,<br>and<br>psychological<br>needs and what<br>facilitated<br>surgery<br>preparation. | Semi-structured<br>interviews.                                                     | Narrative<br>analysis                                                      | The Total Joint<br>Replacement<br>Class promoted<br>a sense of social<br>connectedness<br>and engaged<br>participants in<br>fostering<br>independence.<br>Attendees<br>exercised more<br>and were more<br>mentally<br>prepared than<br>those who did<br>not   | N/A             |
| Collin, 2015 <sup>31</sup>                 | USA     | Prostates                           | To evaluate the<br>impact of<br>intervention<br>on<br>postoperative<br>calls to nurses           | Observational<br>study                  | 123 (Mean age 61)                    | 69 (Mean age 62)                     | <b>Primary</b><br>Postoperative calls<br>by patients to<br>specialist<br>nurses.                                                                                               | Calls logged 7–12<br>days after<br>surgery until<br>catheter<br>removed.           | Statistical<br>analysis and<br>thematic<br>analysis of<br>reason for calls | No significant<br>difference in<br>the number of<br>calls, but<br>reassurance-<br>related calls                                                                                                                                                               | Serious         |

|                               |                     |                                     |                                                                                                                  |                                         |                                                      |                                                         | Secondary                                                                                                                                                                |                                                                                                                                                                                                           |                                            | were                                                                                                                                                                                                                                                                             |          |
|-------------------------------|---------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|                               |                     |                                     |                                                                                                                  |                                         |                                                      |                                                         | Type of call                                                                                                                                                             |                                                                                                                                                                                                           |                                            | lower in<br>intervention<br>group                                                                                                                                                                                                                                                |          |
| im, 2015 <sup>32</sup>        | USA                 | Orthopaedics<br>(hips and<br>knees) | Impact of<br>intervention<br>on adherence<br>to preoperative<br>instructions                                     | Observational<br>study                  | 104 (Mean age 64)<br>35% male                        | 140 (Mean age 63)<br>36% male                           | Primary<br>Attendance,<br>adherence to<br>preoperative<br>protocol,<br>warfarin,<br>celecoxib,<br>mupirocin,<br>chlorhexidine<br>wash, no<br>shaving, and no<br>marking. | Adherence to<br>protocol<br>questionnaire<br>administered<br>on day of<br>surgery.                                                                                                                        | Statistical<br>analysis                    | Attendance 46%,<br>no difference in<br>medication<br>adherence, and<br>no relationship<br>between<br>adherence and<br>time difference<br>between class<br>and surgery.                                                                                                           | Serious  |
| oulton,<br>2015 <sup>22</sup> | UK                  | Orthopaedics<br>(hips and<br>knees) | To assess the<br>impact of<br>intervention<br>on patient<br>outcomes                                             | Observational<br>study                  | 233 (Mean age 70)                                    | 85 (Mean age 73)                                        | Primary<br>LoS<br>Secondary<br>Hip scores and<br>mobilisation on<br>day of surgery.                                                                                      | Retrospective<br>analysis of<br>Oxford Hip<br>Scores collected<br>before surgery,<br>6 months and 2<br>yr after surgery.<br>Extraction of<br>LoS from<br>clinical records.                                | Statistical<br>analysis                    | Significant<br>reduction in LoS<br>for intervention<br>3.53 vs 4.27.<br>Positive effect<br>on mobilisation<br>and outcome<br>scores.                                                                                                                                             | Moderate |
| Reilly,<br>2018 <sup>33</sup> | Southern<br>Ireland | Orthopaedics<br>(hips and<br>knees) | To assess<br>knowledge<br>levels pre- and<br>post-<br>intervention                                               | Non-randomised<br>intervention<br>study | 57 (Mean age<br>64.5)<br>47% male                    | N/A                                                     | Primary<br>Patient knowledge                                                                                                                                             | Pre- and post-<br>intervention,<br>knowledge<br>questionnaire                                                                                                                                             | Descriptive and<br>statistical<br>analysis | Aside from<br>questions<br>regarding<br>anaesthesia and<br>physiotherapy,<br>knowledge<br>improved in all<br>other areas<br>after<br>intervention<br>with statistical<br>significance.                                                                                           | Serious  |
| stwood,<br>2019 <sup>34</sup> | Canada              | Orthopaedics<br>(spines)            | To evaluate<br>whether<br>intervention<br>reduced<br>patient<br>dissatisfaction<br>with surgical<br>expectations | Observational<br>study                  | 103                                                  | 103                                                     | Primary<br>Postoperative<br>satisfaction<br>Secondary<br>Postoperative pain,<br>disability,<br>emergency<br>department<br>admissions.                                    | Pre- and post-<br>intervention (12<br>weeks<br>postoperative)<br>back pain, leg<br>pain, and<br>disability scale.<br>Postoperative<br>satisfaction<br>survey,<br>postoperative<br>expectations<br>survey. | Descriptive and<br>statistical<br>analysis | Intervention<br>group more<br>satisfied with<br>outcomes at 12<br>weeks after<br>surgery. Control<br>less likely to<br>have<br>expectations<br>met.<br>Intervention<br>group also had<br>significantly<br>lower back pain<br>and fewer<br>emergency<br>department<br>admissions. | Serious  |
| isak, 2019 <sup>35</sup>      | UK                  | Orthopaedics<br>(hips and<br>knees) | To investigate<br>whether<br>intervention<br>decreased LoS                                                       | Observational<br>study                  | 1018<br>Hip: (Mean age<br>69.9) (35%<br>male). Knee: | 215<br>Hip: (Mean age 71)<br>(37% male).<br>Knee: (Mean | Primary<br>LoS and<br>attendance                                                                                                                                         | Data on<br>attendance at<br>class and mean<br>LoS collected                                                                                                                                               | Statistical<br>analysis                    | Intervention hip<br>patients' mean<br>LoS reduced by<br>0.37 days and<br>0.77 days for                                                                                                                                                                                           | Moderate |

Continued

| Study                          | Country   | Speciality                          | Aim                                                                                        | Study design                            | Sample<br>intervention                                                        | Sample<br>control                                                                | Outcomes                                                                                          | Method                                                                                                                                                                            | Analysis                                   | Results                                                                                                                                                                                                                                                                                                                                                          | Risk<br>of bias                       |
|--------------------------------|-----------|-------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
|                                |           |                                     |                                                                                            |                                         | (Mean age 70.9)<br>(41% male)                                                 | age 72.2) (38%<br>male)                                                          |                                                                                                   | from medical<br>notes.                                                                                                                                                            |                                            | intervention<br>knee patients,<br>statistically<br>significant.<br>High-risk<br>intervention<br>knee patients<br>mean LoS of<br>2.59 days less in<br>hospital than<br>control.                                                                                                                                                                                   |                                       |
| Solano,<br>2020 <sup>36</sup>  | Guyana    | Orthopaedics<br>(hips and<br>knees) | To assess if the<br>intervention<br>improved<br>knowledge and<br>anxiety before<br>surgery | Non-randomised<br>intervention<br>study | 41 patients (Age<br>range 61–70)<br>59% male<br>15 carers                     | N/A                                                                              | Primary<br>Knowledge and<br>anxiety                                                               | Pre- and post-<br>intervention<br>questionnaires,<br>16-question<br>knowledge<br>survey and<br>State and Trait<br>Anxiety<br>inventory Score.                                     | Statistical<br>analysis                    | Knowledge scores<br>for patients and<br>carers both<br>increased<br>significantly.<br>State anxiety<br>improved, no<br>change in trait<br>anxiety; both<br>significant<br>findings.                                                                                                                                                                              | Serious                               |
| Walming,<br>2022 <sup>37</sup> | Sweden    | Colorectal                          | To explore and<br>compare<br>intervention<br>and control<br>group patient<br>experiences   | Observational<br>study                  | 37 (Median age<br>68) 29% male                                                | 72 (Median age<br>67) 57% male                                                   | Primary<br>Patient experience<br>Secondary<br>Characteristics of<br>two groups<br>including QoL.  | Satisfaction with<br>information<br>source<br>questionnaire,<br>provided to<br>both groups<br>with EQ5D &<br>EQVAS.<br>Experience<br>questionnaire<br>given to<br>attendees only. | Descriptive                                | Both groups felt<br>they received<br>sufficient<br>information,<br>but more of the<br>control group<br>sought<br>alternative<br>information<br>sources,<br>including the<br>internet.<br>Patient<br>characteristics<br>of note: control<br>group more<br>often<br>experienced<br>pain, anxiety/<br>depression, and<br>difficulties with<br>ADLs pre-<br>surgery. | Serious                               |
| Tong, 2021 <sup>38</sup>       | USA       | Female top<br>surgery               | To investigate<br>whether<br>intervention<br>improved<br>surgical<br>outcomes              | Observational<br>study                  | 130 (Mean age<br>28.3)                                                        | 488 (Mean age<br>26.9)                                                           | Primary<br>Complications<br>Secondary<br>Patient experience                                       | Patient<br>satisfaction<br>survey and<br>extraction of<br>clinical<br>outcomes from<br>clinical records.                                                                          | Statistical<br>analysis                    | Patients attending<br>group sessions<br>were 16.5% less<br>likely to<br>experience<br>minor<br>complications.                                                                                                                                                                                                                                                    | Serious                               |
| Lewis, 2020 <sup>15</sup>      | Australia | Orthopaedics<br>(hips and<br>knees) | To assess impact<br>of intervention<br>on clinical<br>outcomes                             | Observational<br>study                  | 166<br>Knee: (Mean age<br>70.1) 42% male.<br>Hip: (Mean age<br>67.9) 43% male | 160<br>Knee (Mean age<br>70.2) 43% male.<br>Hip (Mean age<br>64.4)<br>(65% male) | Primary<br>LOS, costs,<br>discharge<br>destination and<br>complications.<br>Secondary<br>Possible | Extraction of<br>clinical<br>outcomes from<br>clinical records<br>from clinical<br>record data.                                                                                   | Descriptive and<br>statistical<br>analysis | LoS 1 day less and<br>fewer<br>complications<br>in the<br>intervention<br>group, but<br>neither are                                                                                                                                                                                                                                                              | Not enough<br>information<br>reported |

| Table 1 Contin                   | ued                 |                                     |                                                                                                                                    |                        |                                   |                                   |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                      |                                            |                                                                                                                                                                                                                                                                                    |           |
|----------------------------------|---------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|                                  |                     |                                     |                                                                                                                                    |                        |                                   |                                   | contributing<br>factors to non-<br>attendance:<br>distance from<br>hospital, lead<br>time.                                                                                                                                               |                                                                                                                                                                                                                                                                      |                                            | statistically<br>significant<br>findings.                                                                                                                                                                                                                                          |           |
| Ahmad,<br>2021 <sup>39</sup>     | Southern<br>Ireland | Orthopaedics<br>(hips &<br>knees)   | To investigate<br>whether<br>intervention<br>reduced LoS                                                                           | Observational<br>study | 226<br>48% Male                   | 294<br>50% Male                   | Primary<br>LoS                                                                                                                                                                                                                           | Extraction of<br>clinical<br>outcomes from<br>clinical record<br>data                                                                                                                                                                                                | Descriptive and<br>statistical<br>analysis | 0.3-day reduction<br>in LoS. Not<br>statistically<br>significant<br>findings                                                                                                                                                                                                       | Moderate  |
| Koet, 2021 <sup>40</sup>         | Netherlands         | Colorectal                          | To assess<br>whether the<br>intervention<br>improved QoL<br>and clinical<br>outcomes                                               | RCT                    | 36 (Mean age<br>72.6)<br>69% male | 39 (Mean age<br>70.5)<br>56% male | Primary<br>QoL<br>Secondary<br>LOS and<br>complications                                                                                                                                                                                  | Pre-intervention:<br>EORTC-QLQ-30,<br>EORTC-QLQ-<br>CR29, and<br>EORTC-QLQ-<br>info25.<br>Post-intervention,<br>1, 3, and 6-<br>month follow-<br>up: EORTC-<br>QLQ-C30 and<br>EORTC-QLQ-<br>CR29.<br>Extraction of<br>clinical<br>outcomes from<br>clinical records. | Descriptive and<br>statistical<br>analysis | Intervention<br>group<br>developed more<br>realistic<br>expectations<br>resulting in<br>improved QoL<br>and body image<br>1 month after<br>surgery. No<br>significant<br>difference in<br>other domains<br>of QoL.<br>Statistically<br>significant<br>reduction in LoS<br>(2 durp) | Low       |
| Pelkowski,<br>2021 <sup>41</sup> | USA                 | Orthopaedics<br>(hips and<br>knees) | To assess<br>whether the<br>intervention<br>reduced the<br>number of<br>postoperative<br>phone calls to<br>nurses                  | Observational<br>study | 50 (Mean age<br>69.5)<br>52% male | 50 (Mean age<br>71.3)<br>50% male | Primary<br>Patient experience<br>and number of<br>calls made.<br>Secondary<br>Anxiety                                                                                                                                                    | Patient experience<br>survey and call<br>log                                                                                                                                                                                                                         | Descriptive<br>statistics                  | Intervention<br>group reported<br>reduced anxiety<br>(but no<br>baseline, only<br>retrospective<br>self-report),<br>called nurses<br>less and felt<br>better prepared                                                                                                              | Critical  |
| Blong, 2023 <sup>42</sup>        | UK                  | Orthopaedics<br>(hips and<br>knees) | To evaluate if<br>patient<br>activation<br>could be<br>improved<br>through a<br>preoperative<br>group<br>education<br>intervention | Observational<br>study | 109 (Mean age 71)<br>48% male     | N/A                               | Primary<br>Pre- and post-<br>intervention<br>patient<br>activation<br>measure.<br>Secondary<br>Subgroup analysis<br>based on initial<br>activation<br>scores.<br>Correlation<br>between Hip/<br>knee scores and<br>patient<br>activation | Patient activation<br>measure.                                                                                                                                                                                                                                       | Descriptive and<br>statistical<br>analysis | Increase in<br>patients'<br>activation<br>across levels 1<br>-3 post-<br>intervention.<br>Only patients<br>with pre-<br>intervention<br>activation level<br>1 and 2<br>increases were<br>statistically<br>significant.                                                             | Moderate  |
|                                  |                     |                                     |                                                                                                                                    |                        |                                   |                                   |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                      |                                            |                                                                                                                                                                                                                                                                                    | Continued |

Systematic review of outcomes of group preoperative education | 9

| ī | 10                | Fecher-Jones et al.                                                                                                                                                                                                            |
|---|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Risk<br>of bias   | Moderate<br>S<br>n                                                                                                                                                                                                             |
|   | Results           | Significant<br>reduction in Lo<br>2 days less tha<br>baseline.<br>Significant<br>difference<br>towards greate<br>surgical<br>preparation,<br>procedural<br>familiarity, and<br>less anxiety<br>pre- and post-<br>intervention. |
|   | Analysis          | Descriptive and<br>statistical<br>analysis                                                                                                                                                                                     |
|   | Method            | Pre and post Likert<br>scales for<br>preparedness,<br>familiarisation,<br>anxiety.<br>Extraction of<br>clinical records.<br>clinical records.                                                                                  |
|   | Outcomes          | Primary<br>LoS<br>Secondary<br>Readmission (6<br>months),<br>complications<br>(up 0 6<br>months),<br>preparedness,<br>familiarisation,<br>anxiety.                                                                             |
|   | Sample<br>control | Prospective: 85<br>(Mean age 55.9)<br>32% male<br>Historic: 100<br>(Mean age 56.4)<br>45% male                                                                                                                                 |

intervention

Sample

Study design

Aim

Speciality

Country

Study

**Fable 1** Continued

65 (Mean age 57.3) 46% Male

Observational

To evaluate if the

Orthopaedics (spines)

¥

Edwards, 2022<sup>43</sup>

intervention was safe and reduced LoS

study

comprising 'all complications',<sup>5,13,15,40,28,38,43</sup> All but one study<sup>5</sup> suggested a reduction in postoperative complications for patients undergoing group education. The combined odds ratio (95% CI) for three studies of postoperative complications in patients undergoing major abdominal surgery was 0.32 (95% CI 0.15–0.67,  $I^2$  25%, Fig 3). In five studies of patients undergoing orthopaedic surgery, the combined odds ratio was 0.73 (95% CI 0.49–1.10,  $I^2$ =0%). The overall effect across all studies of postoperative complications was 0.56 (95% CI 0.36-0.85,  $I^2$ =25%, Fig 3). Again, there was minimal heterogeneity across studies of patients undergoing orthopaedic surgery, with slightly more between studies of patients having major abdominal surgery.

Readmissions were reported by four studies<sup>4,28,43,34</sup>; the time from discharge to readmission was different in all studies and so not amenable to meta-analysis. No difference was noted between the intervention and control groups in any of studies aside from Eastwood and colleagues,<sup>34</sup> who reported fewer postoperative visits to the emergency department in their intervention group.

Cost was reported by four studies.<sup>13–15,22</sup> All acknowledged that group education costs more to deliver than standard care, although a comparison in costs was not possible because of the different staffing and educational resources used. Three studies<sup>13,14,22</sup> suggested that the reduction in length of stay and complications seen in their intervention groups offset the additional cost of delivering the session. However, limited quantitative data were provided to support this, and in the most recent study<sup>15</sup> no significant difference was found in the total cost of education and inpatient stay between the two groups despite a length of stay reduction.

Three studies reported on health professional utilisation. The intervention groups made significantly fewer phone calls to nurses for reassurance<sup>31,41</sup> (not amenable to meta-analysis because of differing time points in data collection) and required fewer postoperative home visits.<sup>13</sup> Although fewer reassurance calls were reported, only Collin<sup>31</sup> presented statistical analysis, and no difference was found in relation to calls concerning complications.

## Patient centred outcomes

Satisfaction was the most frequently reported patient-centred outcome. Eleven studies measured patient satisfaction using a variety of tools. Overall, patients who received preoperative group education reported a high level of satisfaction with the intervention,<sup>4,25,37,38,41,30</sup> although, only one study compared satisfaction with a control group (P<0.05<sup>4</sup>). Three studies reported on levels of satisfaction with subsequent hospital stay<sup>4,5,29</sup> and found no significant effect of group education. However, one of the most recent studies<sup>34</sup> reported a significant increase (P=0.001) in satisfaction with outcome of surgery in their intervention group. They also found that those who received group education were more likely to report a fulfilment of their expectations after surgery with performance of activities of daily living, walking capacity, and reduced back pain. This finding is supported by Pelkowski and colleagues,<sup>4</sup> who reported that 84% of their intervention group had their postoperative expectations met, although they did not compare this with control group expectations. Two studies used attendance as a marker of acceptability.<sup>32,35</sup> However, the variation in attendance (>80% and 42%) makes it difficult to draw any conclusions.

| Themes                          | Outcomes                                                                 | Total number<br>of participants | Effect of intervention                                                                                                                                                                    | Quality of evidence<br>(Using GRADE <sup>21</sup> ) |
|---------------------------------|--------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Clinical outcomes               |                                                                          |                                 |                                                                                                                                                                                           |                                                     |
| Length of hospital stay         | Length of hospital stay <sup>4,5,13</sup><br>-15,22,26,40,24,28,35,39,43 | 3732                            | 0.7-Day reduction on meta-<br>analysis (95% CI –1.13 to<br>0.27)<br>(2866<br>participants) <sup>5,13,15,22,28,35,39</sup>                                                                 | MODERATE                                            |
| Postoperative complications     | 33-Day mortality <sup>4</sup><br>Pulmonary complications <sup>14</sup>   | 69<br>30                        | No effect<br>Significant reduction in<br>nulmonary complications                                                                                                                          | MODERATE<br>VERY LOW                                |
|                                 | Complications up to 90 days <sup>38</sup>                                | 618                             | Significant reduction in minor<br>complications                                                                                                                                           | VERY LOW                                            |
|                                 | Complications up to 6<br>months <sup>43</sup>                            | 200                             | No effect                                                                                                                                                                                 | MODERATE                                            |
|                                 | In-patient complications <sup>28</sup>                                   | 472                             | No effect                                                                                                                                                                                 | LOW                                                 |
|                                 | Complications unspecified<br>time period <sup>5,13,15,40</sup>           | 542                             | No effect seen in meta-<br>analysis                                                                                                                                                       | MODERATE                                            |
| Readmission                     | Post-discharge visits to the emergency department <sup>34</sup>          | 206                             | Less post discharge visits to<br>emergency department                                                                                                                                     | VERY LOW                                            |
|                                 | 24-h and 3-month readmission <sup>28</sup>                               | 472                             | No effect                                                                                                                                                                                 | MODERATE                                            |
|                                 | 33-Day readmission <sup>4</sup>                                          | 69                              | No effect                                                                                                                                                                                 | MODERATE                                            |
|                                 | 6-Month readmission <sup>43</sup>                                        | 200                             | No effect                                                                                                                                                                                 | MODERATE                                            |
| Cost                            | Cost per patient/session <sup>13</sup><br>-15,22                         | 715                             | Intervention greater cost than standard care                                                                                                                                              | LOW                                                 |
|                                 | Cost effectiveness <sup>13–15</sup>                                      | 397                             | Inconclusive                                                                                                                                                                              | LOW                                                 |
| Health professional utilisation | Postoperative calls to<br>nurses <sup>31,41</sup>                        | 292                             | Significant reduction in<br>postoperative calls to nurses                                                                                                                                 | LOW                                                 |
|                                 | Home visits <sup>13</sup>                                                | 41                              | Reduction in postoperative<br>home visits                                                                                                                                                 | LOW                                                 |
| Patient-centred outcomes        | 22.25                                                                    |                                 |                                                                                                                                                                                           |                                                     |
| Satisfaction                    | Acceptability (attendance) <sup>32,35</sup>                              | 1377                            | Inconclusive because of<br>variability                                                                                                                                                    | VERY LOW                                            |
|                                 | Satisfaction with intervention <sup>4,25,37,38,41,30</sup>               | 1432                            | High level of satisfaction with experience of intervention                                                                                                                                | MODERATE                                            |
|                                 | Satisfaction with hospital experience <sup>4,5,29</sup>                  | 324                             | Inconclusive                                                                                                                                                                              | MODERATE                                            |
|                                 | Satisfaction with outcomes of surgery <sup>34</sup>                      | 206                             | Increase in satisfaction                                                                                                                                                                  | MODERATE                                            |
|                                 | Fulfilment of postoperative<br>expectations <sup>41,34</sup>             | 306                             | Intervention more likely to<br>have expectations fulfilled<br>in performance of ADLs and<br>walking capacity, reduced<br>back pain. Some 84% of<br>intervention felt<br>expectations met. | LOW                                                 |
| Physical function               | Functional capacity <sup>4</sup>                                         | 69                              | Significantly less functional impairment at all stages.                                                                                                                                   | HIGH                                                |
|                                 | Vital capacity <sup>14</sup>                                             | 30                              | No effect                                                                                                                                                                                 | VERY LOW                                            |
|                                 | Mobilisation day of<br>surgery <sup>22,24</sup>                          | 455                             | No effect                                                                                                                                                                                 | MODERATE                                            |
|                                 | Mobilisation postoperative<br>days 1 and 3 <sup>24</sup>                 | 137                             | More likely to mobilise by day 1 and 3.                                                                                                                                                   | MODERATE                                            |
|                                 | Oxford Hip scores 6 months<br>and 2 yr <sup>22</sup>                     | 318                             | No significant effect                                                                                                                                                                     | LOW                                                 |
|                                 | Time to standing <sup>5</sup>                                            | 100                             | No significant effect                                                                                                                                                                     | HIGH                                                |
|                                 | Days to independence with stick/frame <sup>13</sup>                      | 41                              | Independence regained sooner.                                                                                                                                                             | VERY LOW                                            |
|                                 | Discharge destination <sup>15</sup>                                      | 326                             | No significant effect                                                                                                                                                                     | VERY LOW                                            |
| Comfort                         | Preoperative pain <sup>5</sup>                                           | 100                             | Significantly less preoperative pain                                                                                                                                                      | HIGH                                                |
|                                 | Postoperative IM analgesia<br>requirements <sup>4</sup>                  | 69                              | Significantly less requirement for intramuscular analgesia                                                                                                                                | HIGH                                                |
|                                 | Postoperative IV analgesia<br>requirements <sup>13,26,24</sup>           | 193                             | Inconclusive                                                                                                                                                                              | MODERATE                                            |
|                                 | Oral analgesia requirements <sup>4</sup>                                 | 69<br>100                       | No significant effect<br>No significant effect                                                                                                                                            | HIGH<br>HIGH                                        |
|                                 |                                                                          |                                 |                                                                                                                                                                                           | Continued                                           |

Table 2 Summary of outcome findings. ADL, activities of daily living; CI, confidence interval; IM, Intramuscular; IV, Intravenous.

| Table 2 Continued |                                                                                                              |                              |                                                                                                                                            |                                                     |
|-------------------|--------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Themes            | Outcomes                                                                                                     | Total number of participants | Effect of intervention                                                                                                                     | Quality of evidence<br>(Using GRADE <sup>21</sup> ) |
| Clinical outcomes |                                                                                                              |                              |                                                                                                                                            |                                                     |
|                   | Morphine and psychotropics<br>use <sup>5</sup>                                                               |                              |                                                                                                                                            |                                                     |
|                   | Pain intensity and site <sup>26</sup>                                                                        | 15                           | No significant effect                                                                                                                      | MODERATE                                            |
|                   | Postoperative pain<br>perceptions⁵                                                                           | 100                          | Significantly less perceived<br>pain.                                                                                                      | HIGH                                                |
|                   | Pain expectation <sup>25</sup>                                                                               | 40                           | No significant effect                                                                                                                      | VERY LOW                                            |
|                   | Pain relief satisfaction <sup>29</sup>                                                                       | 155                          | Significantly more satisfied with pain relief.                                                                                             | VERY LOW                                            |
|                   | Vomiting <sup>4,26</sup>                                                                                     | 84                           | No significant effect                                                                                                                      | MODERATE                                            |
| Knowledge         | Knowledge and<br>understanding of<br>preoperative care,<br>procedure, and<br>recovery <sup>27,33,36,23</sup> | 253                          | Significant increase in knowledge.                                                                                                         | MODERATE                                            |
|                   | Patient activation <sup>42</sup>                                                                             | 109                          | Significant increase in activation level, for those with a baseline of 1 and 2.                                                            | MODERATE                                            |
| Anxiety           | Preoperative anxiety <sup>5,36,25,41,43</sup>                                                                | 381                          | Significant reduction in<br>preoperative anxiety.                                                                                          | MODERATE                                            |
|                   | Postoperative anxiety <sup>4,5</sup>                                                                         | 169                          | No effect                                                                                                                                  | HIGH                                                |
| Quality of life   | General quality of life 1, 3, and<br>6 months <sup>40</sup>                                                  | 75                           | Quicker return to the<br>preoperative global health<br>status, and persistent<br>improved body image after<br>surgery.                     | MODERATE                                            |
|                   | Impact on sexuality and self-<br>image <sup>23</sup>                                                         | 42                           | Less unanswered questions<br>and better understanding of<br>impact on sexuality, more<br>positive outlook on after-<br>effects of surgery. | VERY LOW                                            |
| Preparedness      | Differences in perception of<br>physical, social, and<br>psychological needs <sup>30</sup>                   | 24                           | More physically and mentally prepared for surgery.                                                                                         | MODERATE                                            |
|                   | Pre- and post-intervention<br>preparedness and<br>familiarisation <sup>43</sup>                              | 100                          | Significantly more prepared post-intervention and more procedurally familiar.                                                              | MODERATE                                            |
|                   | Preparedness for home<br>checklist <sup>13</sup>                                                             | 41                           | Better prepared                                                                                                                            | VERY LOW                                            |
|                   | Compliance with preoperative preparation protocols <sup>32</sup>                                             | 244                          | No effect                                                                                                                                  | LOW                                                 |

| Table 5 Length of Stay data not antenable to meta-analysis. Los, length of Stay. | Table 3 Length of sta | y data not amenable to meta-anal | ysis. LoS, length of stay. |
|----------------------------------------------------------------------------------|-----------------------|----------------------------------|----------------------------|
|----------------------------------------------------------------------------------|-----------------------|----------------------------------|----------------------------|

| Study                        | Total number<br>participants | Intervention<br>mean LoS   | Control<br>mean LoS   | Mean difference<br>in days | Significance   |
|------------------------------|------------------------------|----------------------------|-----------------------|----------------------------|----------------|
| Fortin, 1976 <sup>4</sup>    | 69                           | 6.35                       | 6.44                  | -0.09                      | P>0.5          |
| Crabtree, 1978 <sup>14</sup> | 30                           | 9                          | 8.5                   | +0.5                       | Not calculated |
| Kosik, 1986 <sup>24</sup>    | 137                          | 8.4                        | 9.7                   | -1.3                       | Not calculated |
| Hörchner, 1999 <sup>26</sup> | 26                           | 3.73                       | 4.5                   | -0.77                      | P=0.105        |
| Koet, 2021 <sup>40</sup>     | 75                           | 6                          | 8                     | -2                         | P=0.033        |
|                              | Total number<br>participants | Intervention<br>median LoS | Control<br>median LoS | Difference<br>in days      |                |
| Edwards, 2022 <sup>43</sup>  | 150                          | 3                          | 4                     | -1                         | P=0.014        |

Seven studies reported on outcomes related to postoperative physical function. These included degree of physical impairment (functional capacity) on postoperative days 2, 10, and 33,<sup>4</sup> days off work,<sup>4</sup> vital capacity,<sup>14</sup> postoperative mobility,<sup>5,13,22,24</sup> discharge destination,<sup>15</sup> and Oxford Hip scores at 6 months and 2 yr.<sup>22</sup> Each study measured different levels of mobility at different time points, which made the outcomes less amenable to meta-analysis. There were, however, several positive findings; patients receiving the intervention were less likely to experience functional impairment



Fig 2. Meta-analysis of length of hospital stay of participants attending group preoperative education vs control. Random effects metaanalysis model. Study design: +RCT, \*non-randomised intervention study, •observational study. Mean difference l<0 days supports a reduction in length of stay in the intervention group. Overall, 66.9% of variation across studies is as a result of heterogeneity rather than chance ( $I^2$ ). CI, confidence interval; SD, standard deviation.

up to 1 month after surgery (P<0.05).<sup>4</sup> They were also more likely to mobilise on postoperative day  $1^{24}$  and regain their independence sooner,<sup>13</sup> although no statistical analysis was reported. There was no association reported between group preoperative education and vital capacity,<sup>14</sup> mobilisation on day of surgery,<sup>22,24</sup> Oxford Hip scores,<sup>22</sup> time to standing,<sup>5</sup> or discharge destination.<sup>15</sup>

Seven studies presented outcomes related to patient comfort, such as pain and vomiting. One study showed that patients in the intervention group experienced less preoperative pain (P=0.04).<sup>5</sup> Five studies reported on postoperative analgesia use, but all measured this at different time points and with different tools. Fortin and Kirouac<sup>4</sup> reported that patients receiving group education required less IM analgesia (P=0.025), although an effect on IV analgesia usage reported by three studies<sup>13,26,24</sup> was less conclusive. Patients in all three intervention groups used less IV analgesia, but only one<sup>26</sup> study published a statistical analysis, which did not show a significant effect at any of their three time points. Use of other analgesia, including oral preparations, morphine, or psychotropics, did not differ significantly between groups.<sup>4,5</sup> However, the experience of pain, including intensity, site, perceptions, and satisfaction were all improved in patients receiving the intervention; this effect was statistically significant in two studies (P=0.04,<sup>5</sup>  $P=0.01^{29}$ ). Only one study<sup>25</sup> reported no effect of the intervention on participants' expectations of pain. No studies reported a positive association with postoperative vomiting.4,26

Patient knowledge and understanding of their surgery and recovery increased after group education in four studies,<sup>27,33,36,23</sup> of which three reported a significant effect.<sup>27,33,36</sup> Knowledge was measured using study-specific post-session surveys, the content of which varied extensively. 'Patient activation' levels (measurement of knowledge, skills, and confidence to manage one's own health) increased significantly in one study for patients who scored at the lower end of the activation scale before the intervention.<sup>42</sup>

Six studies reported that patients who received the intervention had reduced preoperative fear and anxiety compared with baseline, with a control group, or both. Two studies<sup>5,36</sup> used a validated tool (State and Trait Anxiety Scale<sup>44</sup>), one of which found a statistically significant improvement (P=0.047).<sup>36</sup> Two used their own questionnaires for patients to self-report anxiety,<sup>25,41</sup> and another interviewed patients.<sup>23</sup> Two studies<sup>4,5</sup> that reported on postoperative anxiety found no statistical difference between the two groups.

Quality of life was measured by two studies.<sup>40,23</sup> The first collected data from patients after colorectal surgery and stoma formation, using nine different quality of life questionnaires at four time points covering global health, physical, cognitive, social, role, body image, and stoma. Although almost all scores were higher in the intervention group, only a higher global health status at 1 month (P=0.047) and body image at 6 months after surgery was statistically significant (P=0.010).<sup>40</sup> The second study<sup>23</sup> explored the impact on sexuality and self-image after hysterectomy and found that the intervention group had a more positive outlook than the control.

The final outcome was preparedness for surgery. Patients undergoing group education interventions were reportedly better prepared for surgery<sup>43,30</sup> or specifically for discharge<sup>13</sup> compared with controls. Preparedness was measured



Fig 3. Complications distribution of participants attending group preoperative education vs control. Random effects meta-analysis. Study design: +RCT, \*non-randomised intervention study,  $\circ$  observational study. A lower odds ratio (OR) supports a reduction in complications for the intervention group. Any variation across orthopaedics studies is likely because of chance rather than heterogeneity ( $l^2=0.00\%$ ). Some 25.14% of the variation across studies of major abdominal surgery is as a result of heterogeneity rather than chance. CI, confidence interval.

through non-validated questionnaires and interviews. Edwards and colleagues<sup>43</sup> reported a significant increase in patient-preparedness (P=0.001) after a group education intervention. Finally, no difference was found in compliance with preoperative medication regimes.<sup>32</sup>

## Discussion

This systematic review comprises the most comprehensive review of published data evaluating group preoperative education across a wide range of clinical and patient-centred outcomes. Attending a group preoperative education class is associated with a shorter length of hospital stay and may reduce the risk of complications. Other benefits include a reduction in health professional support required and improved postoperative physical function, knowledge, and preparedness. Reductions were also seen in perception of pain and anxiety.

As internationally accepted markers for quality of care,<sup>45</sup> length of stay and complications perhaps carry the most weight for organisations considering implementing such programmes. However, patient-centred outcomes, in particular those with 'moderate' or 'high' GRADE assessment (satisfaction, knowledge, comfort, anxiety and preparedness), are no less relevant given their relationship with clinical outcomes. For example, well-informed, prepared patients feel less anxious,<sup>46</sup> and evidence suggests less anxious patients experience less pain and have a better recovery.<sup>47,48</sup> Patients

with higher activation levels are also known to have better health outcomes.  $^{\rm 49}$ 

Interestingly, although the outcomes relating to satisfaction identified that patients were very satisfied with the intervention itself and felt more prepared for their surgical admission as a result (Table 2), there was little difference between intervention and control groups in terms of satisfaction with surgery and hospital stay. One would expect better informed and less anxious patients to have a better inpatient experience, especially as the data suggest they are more comfortable and less anxious. Further work is needed to understand why this does not appear to be the case.

Of the many studies reporting positive outcomes, none suggested why they thought their intervention was effective (mechanism of action). One likely mechanism is lifestyle behaviour change.<sup>10</sup> Our previous work<sup>50</sup> (excluded from this review because of the absence of a control group), identified that 86% of patients attending group education intended to make a lifestyle change. Those changes, including preoperative smoking cessation, breathing exercises, and physical activity, are all known to improve postoperative outcomes.<sup>51–53</sup> However, none of the studies measured possible mechanisms of behaviour change (e.g. increase in physical activity, participation in self-management exercises) as an outcome.

The number of different outcomes reported in the literature (n=48) is substantial, and the degree of variation within the 11 themes makes synthesis challenging. Consensus is required as to which outcomes are the most useful to measure the effectiveness of surgery schools, not only as a stand-alone intervention but also as part of an integrated perioperative pathway.

This review has several limitations. Of the 27 included studies, only four were randomised controlled trials. Of the remaining 23, only 17 (74%) used inferential statistics to address whether their findings were statistically significant. Without these analyses, it is difficult to quantify any meaningful change resulting from the intervention.

There are limitations with the reliability of the data. The risk of bias assessments (Table 1) identified that 33% of the studies were a serious risk of bias, 37% moderate risk, and 11% not containing enough information to make an assessment. Although the risk was elevated primarily because most of the studies were observational, other methodological issues were also identified. When assessing the certainty of the evidence, over a third of the 48 outcome effects were identified to be 'low' or 'very low' meaning that the true effect of the intervention on these outcomes is likely to be markedly different from the estimated effect.<sup>21</sup> The reasons for the lower GRADE was because of small sample sizes and significant variation in how the research was conducted, the tools used, and when data were collected. The selection and inclusion criteria for the intervention and control groups also varied. For example, high-risk patients were not included consistently, perhaps because of the likely complexity of their recovery and potentially longer lengths of stay. Furthermore, where patients were not randomised to study groups, bias may be introduced in the selection of controls, for example, those who chose not to attend the class, those who did not have time to attend, or a historic group before the intervention was implemented.

There is also no consensus regarding the 'standard care' given to control groups, resulting in considerable heterogeneity. Experience from practice suggests that although some surgeons provide extensive preoperative information and support, others may adopt a more limited approach. This may be because of the allocated time in clinic, the nature of the surgery, or preconceived notions of the relevance of lifestyle information for patients before operation. However, this is likely to impact the potential benefits of preoperative group education.

Although the interventions all contained the core content outlined in the inclusion criteria (Supplementary File 1), only 70% provided the full educational content and delivery of their intervention, and considerable variation is noted in both content and duration. This finding was supported by a UK surgery school survey<sup>3</sup> and an international review of orthopaedic surgery schools,<sup>54</sup> and is acknowledged to make evaluation of outcomes across institutions difficult. There was also likely to be variation in what was delivered within studies where data were collected over significant time frames. The time between the group education intervention and patients having surgery is also relevant, as recall of information will decrease as time from intervention to surgery increases. Furthermore, time is needed to realise the benefit of any lifestyle change.

There is a risk of publication bias, as studies generally reported positive outcomes. Furthermore, there is a trend towards reporting small studies with non-significant positive effects over the past 50 yr. This highlights the need for further work using robust methodology with clearly defined outcomes.

Despite these limitations, this review highlights the positive impact group education programmes may have on both patient experience and clinical outcomes. This work is supported by empirical qualitative research in this area and personal observations from clinical practice. Patients value and perceive the benefits of attending group education and particularly value the in-person element, which establishes trust with the clinicians caring for them.<sup>46,50,55,56</sup>

## Suggestions for future research

Notwithstanding the lack of robust evidence, surgery schools appear to be here to stay. There is therefore an urgent need for larger-scale prospective evaluation of these interventions. Standardisation in how and what is currently delivered within surgery schools, and minimum standards for reporting outcomes, would reduce variability and help improve the reliability of future meta-analysis. There is also a need for comprehensive cost-effectiveness analysis given the costs associated with delivering these interventions.

# Conclusions

This systematic review provides evidence that group preoperative education improves clinical and patient-centred outcomes. However, the studies were small, single centre, and at moderate-to-high risk of bias. There is therefore a need for an adequately powered prospective study to evaluate the effectiveness of preoperative group education on clinical outcomes, and to evaluate whether behaviour change is sustained. Furthermore, the content, timing, and mode of delivery, and evaluation measures of preoperative education require standardisation.

## Authors' contributions

Study design: IFJ, CG, DL

Study execution, primary author of manuscript: IFJ

Protocol development; verified 10% of literature search results: CG

Informed analysis and discussion; editing final draft: BA Statistical calculations, manuscript editing: FW Data extraction from half of the final papers; editing final manuscript: LR

Interpretation of data: MG

Drafting of manuscript: MG, DL

## Acknowledgements

P. Sands, University of Southampton, Health Service Library.

# **Declarations of interest**

The authors declare that they have no conflicts of interest.

## Funding

IFJ is undertaking a doctoral clinical fellowship supported by University Hospital Southampton Research and Development and Southampton Academy of Research. She was supported by a National Institute for Health Research (NIHR) pre-doctoral fellowship during the early execution of this study. Open access publication costs were supported by the NIHR through the NIHR Southampton Biomedical Research Centre.

# Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.bjao.2024.100286.

# References

- 1. Centre for Perioperative Care. Preoperative assessment and optimisation for adult surgery. Available from Preoperative Assessment and Optimisation for Adult Surgery. Centre for Perioperative Care; 2021. cpoc.org.uk), . [Accessed 19 March 2024]
- Kruzik N. Benefits of preoperative education for adult elective surgery patients. AORN J 2009; 90: 381–7
- **3.** Fecher-Jones I, Grimmett C, Carter FJ, Conway DH, Levett DZH, Moore JA. Surgery school-who, what, when, and how: results of a national survey of multidisciplinary teams delivering group preoperative education. *Perioper Med* (Lond) 2021; **10**: 20
- Fortin F, Kirouac S. Randomized controlled trial of preoperative patient education. Int J Nurs Stud 1976; 13: 11–24
- 5. Giraudet-Le Quintrec JS, Coste J, Vastel L, et al. Positive effect of patient education for hip surgery: a randomized trial. Clin Orthop Relat Res 2003; **414**: 112–20
- **6.** Guo P, East L, Arthur A. Preoperative education interventions to reduce anxiety and improve recovery among cardiac surgery patients: a review of randomised controlled trials. *J Clin Nurs* 2015; **24**: 34–46
- Louw A, Diener I, Butler DS, Puentedura EJ. Preoperative education addressing postoperative pain in total joint arthroplasty: review of content and educational delivery methods. Physiother Theory Pract 2013; 29: 175–94
- 8. McDonald S, Page MJ, Beringer K, Wasiak J, Sprowson A. Preoperative education for hip or knee replacement. *Cochrane Database Syst Rev* 2014; 2014, CD003526
- Groller KD. Systematic review of patient education practices in weight loss surgery. Surg Obes Relat Dis 2017; 13: 1072–85
- Borek AJ, Abraham C, Greaves CJ, Tarrant M. Group-based diet and physical activity weight-loss interventions: a systematic review and meta-analysis of randomised controlled trials. Appl Psychol Health Well Being 2018; 10: 62–86
- Stead LF, Carroll AJ, Lancaster T. Group behaviour therapy programmes for smoking cessation. Cochrane Database Syst Rev 2017; 3: CD001007
- Macmillan. Principles and guidance for prehabilitation within the management and support of people with cancer. Available from: https://www.macmillan.org.uk/dfsmedia/1a6f2353 7f7f4519bb0cf14c45b2a629/13225-source/prehabilitationfor-people-with-cancer. [Accessed 19 February 2024]
- Spalding NJ. A comparative study of the effectiveness of a preoperative education programme for total hip replacement patients. Br J Occup Ther 1995; 58: 526–31
- Crabtree M. Application of cost-benefit analysis to clinical nursing practice: a comparison of individual and group preoperative teaching. J Nurs Adm 1978; 8: 11–6
- 15. Lewis D, Fullard K, Kolbe T, et al. Does face-to-face preoperative joint replacement education reduce hospital costs in a regional Australian hospital? A descriptive retrospective clinical audit. Eur J Orthop Surg Traumatol 2020; 30: 257–65

- Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021; 372: n71
- Cochrane Handbook for systematic reviews of interventionsHiggins JPT, Thomas J, Chandler J, et al., editors. version 6.4 Cochrane 2023. Available from: www. training.cochrane.org/handbook. [Accessed 19 February 2024]
- Hoffmann TC, Glasziou PP, Boutron I, et al. Better reporting of interventions: template for intervention description and replication (TIDieR) checklist and guide. BMJ 2014; 348: g1687
- Sterne JAC, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 2019; 366: 14898
- **20.** Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. *BMJ* 2016; **355**: i4919
- 21. Schünemann HJ, Vist GE, Glasziou P, Akl EA, Skoetz N, Guyatt GH. Chapter 14: completing 'Summary of findings' tables and grading the certainty of the evidence. In: Higgins JPT, Thomas J, Chandler J, editors. Cochrane Handbook for systematic reviews of interventions version 6.4 Cochrane; 2023. Available from: www.training.cochrane. org/handbook. [Accessed 19 February 2024]
- 22. Moulton LS, Evans PA, Starks I, Smith T. Pre-operative education prior to elective hip arthroplasty surgery improves postoperative outcome. Int Orthop 2015; 39: 1483–6
- Phillips CR. The hysterectomy patient in the obstetrics service: a presurgery class helps meet her needs. JOGN Nurs 1977; 6: 45–9
- 24. Kosik SL, Reynolds PJ. A nursing contribution to cost containment: a group preoperative teaching program that shortens hospital stay. J Nurs Staff Dev 1986; 2: 18–22
- Nelson S. Pre-admission education for patients undergoing cardiac surgery. Br J Nurs 1996; 5: 335–40
- 26. Hörchner R, Tuinebreijer W. Preoperative preparatory program has no effect on morbidly obese patients undergoing a Lap-Band operation. Obes Surg 1999; 9: 250–7
- Guimaro MS, Lacerda SS, Bacoccina TD, et al. Evaluation of efficacy in a liver pretransplantation orientation group. *Transplant Proc* 2007; 39: 2522–4
- 28. Jones S, Alnaib M, Kokkinakis M, Wilkinson M, St Clair Gibson A, Kader D. Pre-operative patient education reduces length of stay after knee joint arthroplasty. Ann R Coll Surg Engl 2011; 93: 71–5
- 29. Papanastassiou I, Anderson R, Barber N, Conover C, Castellvi AE. Effects of preoperative education on spinal surgery patients. SAS J 2011; 5: 120–4
- **30.** Lane-Carlson M-L, Kumar J. Engaging patients in managing their health care: patient perceptions of the effect of a total joint replacement presurgical class. *Perm J* 2012; **16**: 42–7
- **31.** Collin C, Bellas N, Haddock P, Wagner J. Pre-operative education classes prior to robotic prostatectomy benefit both patients and clinicians. *Urol Nurs* 2015; **35**: 281–5
- 32. Kim K, Chin G, Moore T, Schwarzkopf R. Does a preoperative educational class increase patient compliance. Geriatr Orthop Surg Rehabil 2015; 6: 153–6
- **33.** O'Reilly M, Mohamed K, Foy D, Sheehan E. Educational impact of joint replacement school for patients undergoing total hip and knee arthroplasty: a prospective cohort study. *Int Orthop* 2018; **42**: 2745–54

- **34.** Eastwood D, Manson N, Bigney E, et al. Improving postoperative patient reported benefits and satisfaction following spinal fusion with a single preoperative education session. *Spine J* 2019; **19**: 840–5
- 35. Sisak K, Darch R, Burgess LC, Middleton RG, Wainwright TW. A preoperative education classes reduced length of stay for total knee replacement patients identified at risk of an extended length of stay. J Rehabil Med 2019; 51: 788–96
- 36. Solano MA, Ramcharran KK, Jones LC, Sterling RS, Samaroo DR, Khanuja HS. Preoperative patient education class during an orthopedic mission trip: effects on knowledge, anxiety, and informed consent. J Arthroplasty 2020; 35: 2410–7
- 37. Walming S, Angenete E, Bock D, et al. Preoperative group consultation prior to surgery for colorectal cancer - an explorative study of a new patient education method. J Cancer Educ 2022; 37: 1304–11
- 38. Tong E, Lakhardt K, Wenzel CF, Tong W. A study on the effectiveness of a multidisciplinary class for genderaffirming chest surgery in transmasculine and nonbinary patients and their support persons. J Plast Reconstr Aesthet Surg 2021; 74: 3168–77
- **39.** Ahmad M, Ur Rehman H, Shaikh AA. Enhanced recovery program: does preoperative education reduces length of hospital stay in primary hip and knee arthroplasty? *Cureus* 2021; **13**, e18639
- 40. Koet LL, Kraima A, Derksen I, et al. Effectiveness of preoperative group education for patients with colorectal cancer: managing expectations. Support Care Cancer 2021; 29: 5263–71
- Pelkowski JN, Saunjoo LY, Adams S. Benefits of implementation of preoperative education classes for hip and knee arthroplasty. Curr Orthop Pract 2021; 32: 112–7
- 42. Blong J, Hoggett L, Robinson H, Bokhari SA, Sloan A. Improving Patient Activation Measure® in lower limb arthroplasty: quantitative assessment of patient activation following a pre-operative patient education programme. Musculoskelet Care 2023; 21: 143–7
- **43.** Edwards R, Gibson J, Mungin-Jenkins E, Pickford R, Lucas JD, Jones GD. A Preoperative Spinal Education intervention for spinal fusion surgery designed using the Rehabilitation Treatment Specification System is safe and could reduce hospital length of stay, normalize expectations, and reduce anxiety: a prospective cohort study. *Bone Jt Open* 2022; **3**: 135–44
- 44. Spielberger CD, Gorsuch RL, Lushene R, Vagg PR, Jacobs GA. In: Manual for the state-trait anxiety inventory. Palo Alto, CA: Consulting Psychologists Press; 1983

- 45. Bottle A, Middleton S, Kalkman CJ, Livingston EH, Aylin P. Global comparators project: international comparison of hospital outcomes using administrative data. *Health Serv* Res 2013; 48: 2081–100
- **46**. Spalding NJ. Reducing anxiety by pre-operative education: make the future familiar. *Occup Ther Int* 2003; **10**: 278–93
- 47. Geoffrion R, Koenig NA, Zheng M, et al. Preoperative depression and anxiety impact on inpatient surgery outcomes: a prospective cohort study. Ann Surg Open 2021; 2: e049
- 48. Tadesse M, Ahmed S, Regassa T, et al. Effect of preoperative anxiety on postoperative pain on patients undergoing elective surgery: prospective cohort study. Ann Med Surg (Lond) 2022; 73, 103190
- 49. Gilbert H, Supporting people to manage their health: an introduction to patient activation, The Kings Fund, London. Available from: https://www.kingsfund.org.uk/ insight-and-analysis/reports/supporting-people-tomanage-their-health (Accessed 20 February 2024), 2014.
- 50. Fecher-Jones I, Grimmett C, Edwards MR, et al. Development and evaluation of a novel pre-operative surgery school and behavioural change intervention for patients undergoing elective major surgery: fit-4-Surgery School. *Anaesthesia* 2021; 76: 1207–11
- Tønnesen H, Nielsen PR, Lauritzen JB, Møller AM. Smoking and alcohol intervention before surgery: evidence for best practice. Br J Anaesth 2009; 102: 297–306
- 52. Pu CY, Batarseh H, Zafron ML, Mador MJ, Yendamuri S, Ray AD. Effects of preoperative breathing exercise on postoperative outcomes for patients with lung cancer undergoing curative intent lung resection: a meta-analysis. Arch Phys Med Rehabil 2021; 102: 2416–27
- 53. Perry R, Herbert G, Atkinson C, et al. Pre-admission interventions (prehabilitation) to improve outcome after major elective surgery: a systematic review and metaanalysis. BMJ Open 2021; 11, e050806
- 54. Pitaro NL, Herrera MM, Stern BZ, et al. Synthesis of 'joint class' curricula at high volume joint replacement centres and a preliminary model for development and evaluation. J Eval Clin Pract 2024; 30: 46–59
- 55. Mezzanotte EJ. Group instruction in preparation for surgery. Am J Nurs 1970; 70: 89–91
- 56. Conradsen S, Gjerseth MM, Kvangarsnes M. Patients' experiences from an education programme ahead of orthopaedic surgery – a qualitative study. J Clin Nurs 2016; 25: 2798–806

Handling editor: Phil Hopkins