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Abstract 

Pre-treatment survival prediction plays a key role in many diseases. We aimed to determine the 
prognostic value of pre-treatment Magnetic Resonance Imaging (MRI) based radiomic score for 
disease-free survival (DFS) in patients with early-stage (IB–IIA) cervical cancer.  
Methods: A total of 248 patients with early-stage cervical cancer underwent radical hysterectomy were 
included from two institutions between January 1, 2011 and December 31, 2017, whose MR imaging data, 
clinicopathological data and DFS data were collected. Patients data were randomly divided into the 
training cohort (n = 166) and the validation cohort (n=82). Radiomic features were extracted from the 
pre-treatment T2-weighted (T2w) and contrast-enhanced T1-weighted (CET1w) MR imagings for each 
patient. Least absolute shrinkage and selection operator (LASSO) regression and Cox proportional 
hazard model were applied to construct radiomic score (Rad-score). According to the cutoff of 
Rad-score, patients were divided into low- and high- risk groups. Pearson’s correlation and Kaplan-Meier 
analysis were used to evaluate the association of Rad-score with DFS. A combined model incorporating 
Rad-score, lymph node metastasis (LNM) and lymphovascular space invasion (LVI) by multivariate Cox 
proportional hazard model was constructed to estimate DFS individually.  
Results: Higher Rad-scores were significantly associated with worse DFS in the training and validation 
cohorts (P<0.001 and P=0.011, respectively). The Rad-score demonstrated better prognostic 
performance in estimating DFS (C-index, 0.753; 95% CI: 0.696-0.805) than the clinicopathological 
features (C-index, 0.632; 95% CI: 0.567-0.700). However, the combined model showed no significant 
improvement (C-index, 0.714; 95%CI: 0.642-0.784).  
Conclusion: The results demonstrated that MRI-derived Rad-score can be used as a prognostic 
biomarker for patients with early-stage (IB-IIA) cervical cancer, which can facilitate clinical 
decision-making. 
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Introduction 
As the fourth leading cause of cancer-derived 

death in women, cervical cancer is a global health 
problem [1], with an estimated 570,000 cases and 
311,000 deaths worldwide in 2018 [2]. During the past 
decades, increasing early-stage cervical cancer has 
been detected largely due to the popularity of cancer 
screening [3, 4]. For early-stage cervical cancer, the 
standard treatment is radical hysterectomy with 
pelvic lymph node dissection. However, locoregional 
recurrence or distant metastasis is not rare in patients 
with early-stage cervical cancer, only about 70% 
patients have a 5-year disease-free survival (DFS) [5]. 
Prediction of patients’ survival can help to determine 
whether more intensive observation and aggressive 
treatment regimens should be administered, which 
might improve clinical outcome. 

Previous studies have identified the depth of 
invasion, lymph node metastasis (LNM) and lympho-
vascular invasion (LVI) as risk factors for recurrence 
and metastasis in cervical cancer patients [6, 7]. These 
risk factors are determined by random sampling 
biopsy or surgery, which have limitations including 
procedure-related complications, sampling error, and 
interobserver variability [8]. In this scenario, 
non-invasively prognostic biomarkers that allow 
assessment of tumor heterogeneity are warranted.  

Radiomics has emerged as a promising method 
to evaluate tumor heterogeneity by extracting large 
set of high-dimensional features from a series of 
medical images, such as computed tomography (CT), 
positron emission tomography-computed tomo-
graphy (PET/ CT) and magnetic resonance imaging 
(MRI) data [9]. It has been conclusively shown that 
radiomic features could be used to diagnose precisely, 
evaluate treatment response, and predict survival in 
various types of cancers [10-15]. 

MRI is routinely used in clinical workup to 
diagnose, stage and monitor cervical cancer, with the 
advantages of lower cost and higher spatial and 
contrast resolution of pelvic tissues and organs, as 
well as no radiation [16-18]. Nevertheless, whether the 
radiomic features extracted from MRI could be used 
to predict survival in patients with early-stage 
cervical cancer remains unclear.  

Therefore, this study aimed to develop a radi-
omic score by pre-treatment MRI to estimate 3-year 
DFS in patients with early-stage cervical cancer, and 
to further construct a combined model incorporating 
the radiomic score and the clinicopathological 
features for the individual prediction of DFS.  

Methods 
Patients  

Institutional ethics review board approval was 
acquired for this study, and written informed consent 
was not required for this retrospective study. This 
study was conducted in agreement with the 
Declaration Helsinki.  

This retrospective study included patients with 
confirmed early-stage cervical cancer from two 
tertiary centers in a large metropolitan setting of 
China (Yunnan Cancer Hospital and Sun Yat-sen 
University Cancer Center) between January 1, 2011 
and December 31, 2017. The patient demographics, 
laboratory test results, pretreatment MRI imaging 
data, pathologic results and survival outcome data 
were reviewed. All the patients met the following 
inclusion criteria: (a) patients with pathologically 
confirmed early-stage cervical cancer (Federation of 
Gynecology and Obstetrics [FIGO] stages IB-IIA); (b) 
patients underwent contrast-enhanced pelvic MRI 
scans within two-week period before surgery; and (c) 
patients underwent radical hysterectomy and bilateral 
pelvic lymph node dissection. The exclusion criteria of 
this study were as following: (1) patients treated with 
neoadjuvant chemotherapy or radiotherapy pre-
operatively; (2) patients with diagnosis of other 
cancers meanwhile; and (3) patients without clinical 
data including age, neutrophils, lymphocyte, platelet, 
squamous cell carcinoma antigen (SCCA) and human 
papillomavirus (HPV), pretreatment T2-weighted 
(T2w) and contrast-enhanced T1-weighted (CET1w) 
images. Finally, 248 patients (mean age of 47.77 ± 9.89 
years) were included in this study. Supplementary 
Methods 2 showed the patient selection flowchart 
from the two centers. Eligible patients’ data were 
randomly divided into a training cohort (n = 166) and 
an independent validation cohort (n = 82) at a ratio of 
2:1.  

Treatments and follow-up 
Radical hysterectomy and bilateral pelvic lymph 

node dissection were conducted for all patients. 
Adjuvant chemoradiotherapy after radical surgery 
was administered in 181 patients. Regular follow-up 
was conducted every 3-6 months during the first two 
years after operation, 2 times annually for 3–5 years, 
and then once a year thereafter. The endpoint of our 
study was DFS, which is defined as the period from 
the date of surgery to the date of the first locoregional 
recurrence, distant metastasis, death, or the last visit 
in follow up. Locoregional recurrences and distant 
metastasis were confirmed by gynecological examina-
tion, imaging modalities such as CT, MRI and posi-
tron emission tomography-computed tomography 
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(PET/CT), or biopsy-proven. The available informa-
tion was collected from patients’ medical records. 

MR Image acquisitions 
Abdomen and pelvic MRI examinations were 

conducted at least two weeks after biopsy to avoid the 
impact of post-biopsy inflammation and within two 
weeks before surgery. The MRI images were obtained 
by different MR devices at two institutions. To avoid 
the possibility of image information loss, we acquired 
the Digital Imaging and Communications in Medicine 
(DICOM) images from Picture Archiving and 
Communication System (PACS) directly without any 
compression or down sampling. Details regarding the 
acquisition parameters and MRI retrieval procedure 
were presented in Supplementary Methods 1. 

Radiomic analysis 
The radiomic analysis workflow included four 

steps as illustrated in Figure 1: tumor image 
segmentation, radiomic feature extraction, feature 
selection and model building. 

Tumor image segmentation 
We used open-source ITK-SNAP software 

(www.itksnap.org) for three-dimensional manual 
segmentation in axial T2w and sagittal CET1w 
images. Regions-of-interest (ROIs) were manually 
delineated by a radiologist who had 8 years of 
experience in gynecological MR imaging interpreta-
tion, and validated by a senior radiologist with 10 
years of experience in segmentation results validation. 

Radiomic feature extraction 
After manually segmenting the tumor ROI, we 

standardized the T2w and CET1w images by z-score 
normalization to obtain a standard normal 
distribution of the image intensities. This procedure 
was aimed at reducing the image intensity shift 
caused by different equipments and scanning 
parameters. Afterward, we resampled CET1w and 
T2w images into 1 mm × 1 mm and 0.65 mm × 0.65 
mm, respectively. Here, 1 mm × 1 mm and 0.65 mm × 
0.65 mm were the median voxel spacing of CET1w 
and T2w images in this dataset. Then we extracted 
radiomic features from T2w and CET1w images 
respectively through an open-source software 
PyRadiomics [19]. Considering the relatively low 
resolution and large variance between different 
equipments for axial MR images, we extracted two 
dimensional (2D) features in axial T2w images and 
sagittal CET1w images instead of three dimensional 
(3D) features to increase the robustness of features. 
Specifically, we extracted 2D features from all the 2D 
slices of tumor ROI, and averaged the feature values 

in all the image slices as the final results for each 
patient [20-21]. 

For each slice, we extracted 1299 2D radiomic 
features including: i) intensity features (n = 19): these 
features were the first-order statistics calculated from 
the tumor intensities such as entropy, reflecting the 
signal intensity of different tumors, ii) shape features 
(n = 16): these features represented the size and shape 
information of tumors, which showed prognostic 
value in cervical cancer, iii) texture features (n = 74): 
these features measured the relationship between 
each tumor voxel and its surrounding environments, 
which can quantify intra-tumor heterogeneity and the 
use of complex tumor patterns such as size-zone 
matrix, iv) wavelet features (n = 736): we decomposed 
MR images into low and high frequencies and 
extracted the features in group i and ii from each 
frequency range. The wavelet transformation enabled 
us to quantify high-dimensional multi-frequency 
tumor information that is difficult to be visually 
interpreted, and v) Laplacian of Gaussian (LoG) 
features (n = 454): these features were textural 
features extracted through a Laplacian of Gaussian 
spatial band-pass filter. These features described the 
tumor information from multi-scale space that 
combined both the very detailed and macroscopic 
tumor texture patterns. 

Radiomic feature selection 
Although the radiomic features reflected tumor 

information from various perspectives, not all of them 
were associated with the DFS in cervical cancer. 
Consequently, we used a two-step feature selection 
method to retain only the most strong features that 
are significantly associated with DFS. First, we 
evaluated the predictive performance of each 
radiomic feature by univariate Cox regression in the 
training cohort. Specifically, we built a univariate Cox 
proportional hazards model (Cox model) for each 
radiomic feature in the training cohort, and calculated 
the P value of the feature in predicting DFS. 
Afterward, the features with P value less than 0.05 
were treated as significant prognostic factors and 
selected as candidate features. Second, we used 
regularized multivariate logistic regression with the 
LASSO penalty for multivariate feature selection. The 
LASSO regularization involved a parameter λ to 
control the number of selected features where a larger 
λ retains more features. To obtain an optimal feature 
number and avoid over-fitting, we used 5-fold 
cross-validation in the training cohort to choose the 
optimal λ. The λ value that maximized the C-index in 
the training cohort was selected as the optimal 
regularization parameter, and the feature number was 
therefore determined automatically by the λ. 
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Figure 1. Radiomics framework of predicting the DFS of patients with cervical cancer. DFS: disease-free survival.  

 
Creation of clinicopathological model for DFS 
prediction 

We included 7 candidate clinicopathological 
findings which showed potential prognostic values to 
build the clinicopathological model, including age, 
histological type, differentiation grade, HPV, SCCA 
level, LNM and LVI status. Among the clinico-
pathological findings, we firstly used the univariate 
Cox proportional hazards model to select the 
significant prognostic factors in the training cohort. 
Then, significant variables in the univariate Cox 
model (P <0.05) were included in the multivariate Cox 
model to build a clinicopathological model for DFS 
prediction. Detailed calculating process of the Cox 
model and the Rad-score were provided in 
Supplementary Methods 3. The performance of the 
model was evaluated by C-index. The C-index 
indicates the concordance between the model- 
predicted DFS and the actual DFS on all the patients, 
where a C–index around 0.5 means poor predictive 
value and a C-index around 0.7 indicates good 
predictive value. 

Development and validation of radiomic score 
and combined model on DFS prediction 

In the training cohort, we used a multivariate 
Cox proportional hazard model to predict a radiomic 
score (Rad-score) indicating the relative disease 
progression hazard for each patient. For a given 
patient, the Cox model used the radiomic feature of 
this patient to generate a Rad-score larger than zero. A 
small Rad-score means that the disease progression 
risk is relatively low, and the DFS for this patient is 
consequently long; a large Rad-score means high-risk 
of disease progression, and a relatively short DFS. As 
described in Supplementary Methods 3, the Cox 
model used an exponential combination of the 

selected radiomic feature to generate the Rad-score. 
To further evaluate whether the clinicopatho-

logical findings can improve the performance of the 
Rad-score, we used the Rad-score and the significant 
clinicopathological features to build a combined 
multivariable Cox model (combined model) for DFS 
prediction. The prognostic performance of the Rad- 
score and the combined model were also evaluated by 
C-index.  

3-year DFS probability prediction of various 
models 

Considering the Cox model is capable of 
predicting the DFS probability at a given time point, 
we also used the Cox model to estimate 3-year DFS. 
Receiver-operating characteristic (ROC) analyses 
were performed to estimate the prognostic 
performance of the three models in predicting 3-year 
DFS.  

Statistical Analysis  
All the statistical analyses in this study were 

performed with SPSS 21 and python 2.7. The t test or 
Mann–Whitney U test of independent samples were 
conducted to assess the significance of age, neutro-
phils, lymphocyte, platelet, Histological type, HPV 
and SCCA level between the training cohort and the 
validation cohort. The Chi-squared test was 
conducted to evaluate the significance of the 
categorical variables such as FIGO stage, 
differentiation grade, LNM and LVI between the 
training and validation cohorts. The LASSO-based 
feature selection and Cox proportional hazards model 
building were implemented using “scikit-learn” and 
“lifelines” package. Kaplan-Meier curve was analyzed 
using the "rms" package and Log-rank test. A 
two-tailed P-value less than 0.05 was considered 
statistically significant. 
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Results  
Patient characteristics 

A total of 248 patients were included from two 
cohorts. The patient characteristics were presented in 
Table 1. The mean age of patients was 47.77 ± 9.89 
years. The median follow-up time was 30 months 
(range, 6-96 months). The results demonstrated that 
there was no significant difference between the 
training cohort and the validation cohort (P = 
0.151-0.990). 

DFS prediction performance of the radiomic 
score 

A total of 18 radiomic features were selected for 
radiomic score building (Supplementary Table S1, 
Figure S1). In the training cohort, the radiomic score 
showed good performance on DFS prediction 
(C-index, 0.786; 95% CI: 0.753–0.820). In the validation 
cohort, the performance of the radiomic score was 
further confirmed (C-index, 0.753; 95% CI: 0.696–
0.805). The hazard ratio (HR) for radiomic score was 
2.259 (95%CI: 2.124-2.394) in the training cohort.  

Kaplan-Meier analysis of radiomic score 
According to the Rad-score, we further divided 

patients into high-risk and low-risk groups, and 
performed Kaplan-Meier analysis to validate the 
prognostic value of the Rad-score. We used the mean 
hazard score of the training cohort as a cut-off value to 
divide patients into high-risk and low-risk groups. As 
shown in Figure 2, higher Rad-scores were 
significantly associated with worse DFS in the 
training cohort and the validation cohort (both with P 
<0.001). Figure 4 showed two representative patients 
with distinctly different DFS time (14 months vs 64 
months). Although they had almost the same 
clinicopathological features, their Rad-scores (2.046 vs 
0.237) were significantly different. 

Performance and validation of the combined 
model on DFS prediction 

Only two clinical features (LNM and LVI) were 
selected to create a clinicopathological model. This 
model achieved a poor performance in DFS 
estimation, with a C-index of 0.711 (95% CI: 
0.671-0.753) in the training cohort and 0.632 (95%CI: 
0.567-0.700) in the validation cohort. The combined 
model incorporating the radiomic score and the two 
clinicopathological features showed improvement in 
the training cohort (C-index, 0.813; 95%CI: 
0.780-0.845), but showed no improvement in the 
validation cohort (C-index, 0.714; 95%CI: 0.642-0.784) 
when compared with radiomic score. 

Table 1. Comparison of clinical characteristics of patients 
between the training and validation cohorts 

Characteristics Training 
cohort (n=166) 

Validation 
cohort (n=82) 

p 

Age (years, mean ± SD) 47.69 ±9.46 47.93 ±10.77 0.864 
Neutrophils (10-9/L, mean ± SD) 4.77 ± 2.79 6.23 ±9.38 0.151 
Lymphocyte (10-9/L, mean ± SD) 2.06 ± 4.13 1.84±1.05 0.545 
Platelet (10-9/L, mean ± SD) 264.5 ±82.54 270.7 ±87.26 0.542 
SCC (ng/mL) 4.84 ±7.51 5.48 ±8.09 0.237 
HPV 535.53 ±764.31 601.87 ±847.68 0.236 
Histological type (%)   0.669 
Squamous cell carcinoma 141 (84.94%) 68 (82.93%)  
Adenocarcinoma 22 (13.25%) 11 (13.41%)  
Adenosquamous carcinoma 1 (0.60%) 2 (2.44%)  
Small cell carcinoma 2 (1.20%) 1 (1.22%)  
FIGO stage (%)   0.712 
IB 110 (66.27%) 57 (69.51%)  
IIA 56 (33.73%) 25 (30.49%)  
Differentiation (%)   0.400 
Low grade 100 (60.24%) 46 (56.10%)  
Middle grade 64 (38.55%) 33 (40.24%)  
High grade 2 (1.20%) 3 (3.66%)  
Lymph node metastasis (%)   >0.990 
Non-metastasis 131 (78.92%) 64 (78.05%)  
Metastasis 35 (21.08%) 18 (21.95%)  
Lymphovascular space invasion (LVI, %)  0.452 
Non-LVI 132 (79.52%) 61 (74.39%)  
LVI 34 (20.48%) 21 (25.61%)  
Mean DFS time (months, mean ± 
std) 

34.97 ±20.44 35.79 ±21.38 0.747 

 

 
Figure 2. Kaplan-Meier analysis of the Rad-score. A) Kaplan-Meier curves of the Rad-score in the training cohort. Vertical lines indicate censored data. Shadows represent 95% 
CI. B) Kaplan-Meier curves of the Rad-score in the validation cohort. DFS: disease-free survival. CI: confidence interval.  
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Figure 3. A) ROC curves of the two models for 3-year DFS probability prediction. B) Distribution of the DFS time for patients. The red circle represents patients who are 
predicted to have DFS time longer than 3 years by the Rad-score, and the blue triangle represents patients who are predicted to have DFS time less than 3 years by the Rad-score. 
Most patients who are predicted to have DFS timelonger than 3 years distribute above the patients who are predicted to have DFS time less than 3 years. ROC: 
receiver-operating characteristic; DFS: disease-free survival.  

 

Table 2. Model performance on predicting DFS and 3-year DFS probability 

Models Cohorts C-Index (95% CI) AUC (95% CI) ACC (95% CI) Sensitivity (95% CI) Specificity (95% CI) 
Clinical model training 0.711 (0.671, 0.753) 0.733 (0.689, 0.773) 0.754 (0.723, 0.785) 0.802 (0.769, 0.836) 0.607 (0.530, 0.678) 

validation 0.632 (0.567, 0.700) 0.666 (0.595, 0.742) 0.745 (0.700, 0.796) 0.805 (0.760, 0.857) 0.500 (0.372, 0.635) 
Radiomic score training 0.786 (0.753, 0.820) 0.816 (0.779, 0.854) 0.746 (0.713, 0.780) 0.756 (0.718, 0.794) 0.714 (0.649, 0.784) 

validation 0.753 (0.696, 0.805) 0.822 (0.765, 0.882) 0.765 (0.718, 0.813) 0.780 (0.729, 0.833) 0.700 (0.583, 0.817) 
Combined model training 0.813 (0.780, 0.845) 0.849 (0.816, 0.880) 0.754 (0.722, 0.786) 0.756 (0.719, 0.795) 0.750 (0.679, 0.811) 

validation 0.714 (0.642, 0.784) 0.759 (0.678, 0.843) 0.765 (0.717, 0.817) 0.780 (0.730, 0.835) 0.700 (0.581, 0.822) 
Note: CI represents confidence interval. C-Index represents Harrell’s concordance index, which measures the performance of the DFS prediction. AUC represents area under 
the receiver operating characteristic curve, and ACC is accuracy. AUC and ACC evaluate the performance of the 3-year DFS prediction. 

 

3-year DFS probability prediction of various 
models 

For 3-year DFS probability prediction, the 
clinicopathological model achieved an area under the 
receiver operating characteristic curve(AUC) of 0.666 
(95%CI: 0.595-0.742), sensitivity of 0.805 (95%CI: 
0.760-0.857), specificity of 0.500 (95%CI: 0.372, 0.635), 
and accuracy of 0.745 (95%CI: 0.700-0.796) (Table 2, 
Figure 3). The radiomic score yielded an AUC of 0.822 
(95%CI: 0.765-0.882), sensitivity of 0.780 (95%CI: 
0.729-0.833), specificity of 0.700 (95%CI: 0.583-0.817), 
and accuracy of 0.765 (95%CI: 0.718-0.813) (Table 2, 
Figure 3). The Rad-score showed significant 
difference between patients with DFS time >3 years 
and <3 years (P< 0.0001 in the training cohort; P = 
0.0010 in the validation cohort). In Supplementary 
Table S2, we also provided the performance of the 
Rad-score on predicting DFS at multiple time points.  

The combined model yielded an AUC of 0.759 
(95% CI: 0.678-0.843), sensitivity of 0.780 (95%CI: 
0.730-0.835), specificity of 0.700 (95%CI: 0.581-0.822), 
and accuracy of 0.765 (95% CI: 0.717-0.817) (Table 2, 
Figure 3). Therefore, the combined radiomic model 
showed no performance improvement in 3-year DFS 
estimation when compared with the Rad-score.  

Discussion 
In our study, we evaluated the prognostic value 

of MR-derived radiomic features on patients with 
IB-IIA cervical cancer treated by radical hysterectomy. 
The results showed that LASSO-Cox based radiomic 
score had favorable predictive performance in DFS 
estimation. Our study would help to determine 
whether more intensive observation and aggressive 
treatment regimens should be administered in 
patients with worse DFS, with the aim of assisting 
clinical treatment and healthcare decisions.  

Radiomics provided underlying diagnostic, 
therapeutic, and prognostic information by 
noninvasively extracting useful imaging features from 
medical images [22]. Some previous studies applied 
PET radiomics to predict survival of cervical cancer, 
which was more accurate than conventional clinical 
factors [23-25]. However, these studies had smaller 
sample size and did not focus on early-stage cervical 
cancer treated by surgery. Their findings were of 
limited clinical relevance because the treatment 
patients received was a strong indicator for survival. 
However, Brooks FJ et al. showed that radiomic 
features based on PET could not provide additional 
information for small tumor lesions due to the limited 
spatial resolution of PET imaging with the large voxel 
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size sampling [26]. The value of MRI radiomic model 
has been proven in predicting the LNM and LVI 
status in patients with cervical cancer preoperatively 
[27, 28]. Giving this background, radiomic features 
based on MRI was available to predict the survival of 
early-stage cervical cancer patients.  

The radiomic score that combined the T2w and 
CET1w images yielded a C-index of 0.753 (95% CI: 
0.696-0.805) on DFS prediction and an AUC of 0.822 
(95% CI: 0.765-0.882) on 3-year DFS prediction in the 
validation cohort, which were higher than either 
clinical model or the combined model. This indicated 
that the radiomic score may already contain 
information in clinical factors, and can mine more 
prognostic information than clinical factors by 
observing the whole tumor scope and extracting 
high-dimensional features (e.g., wavelet and LoG 
features). Thus, it could be used as a surrogate 
biomarker to improve the prognostic ability 
pretreatment. Meanwhile, the Rad-score could stratify 
patients into high-risk and low-risk groups. Patients 
with higher Rad-scores have the worse DFS, which 
suggested that some low-risk patients would have 
received unnecessary radical hysterectomy treatment; 
whereas for patients with high risk of recurrence and 
metastasis, a systemic adjuvant treatment would be 
more beneficial. Our findings would initiate a pivotal 
step to enable surgeons to tailor treatment basing on 
the specific clinical and radiomic features for high-risk 
and low-risk patients with early-stage cervical cancer. 

Of the 1299 radiomic features, 18 were identified 
to be predictive for DFS, which includes 10 features 
derived from CET1w and 8 features extracted from 
T2w images. This may indicate that CET1w images 

probably contains more prognostic information than 
T2w images. Importantly, shape flatness was included 
in the 10 CET1w- derived features. This feature 
characterized the shape of tumor: small flatness value 
indicates an irregular tumor shape. In the radiomic 
score, a tumor with small flatness generates a poor 
prognostic outcome, which is in line with a prior 
study that tumor sphericity is a poor prognostic 
marker for breast cancer [11]. In addition, eight 
wavelet features and one LoG feature were selected 
from the CET1w images. The wavelet features 
reflected tumor information in eight space domains, 
and the LoG features reflected tumor information 
from three frequency domains. This result 
demonstrated that the raw CET1w images may 
include limited prognostic features; however, through 
a wavelet and LoG transform of the raw CET1w 
images, much prognostic information can be mined. 
This further reflected the advantages of radiomics 
method since it is good at mine high-dimensional 
information that is difficult to be sensed manually. For 
example, the “SumEntropy” in a wavelet subspace 
and the “Skewness” in a LoG subspace were selected, 
indicating that in a high-dimensional wavelet and 
LoG spaces, the tumor heterogeneity described by 
entropy and the intensity of tumor have prognostic 
value. Similarly, one intensity feature, two texture 
features, one wavelet feature and four LoG features 
were selected from the T2w images.  

In a previous study, pretreatment HPV genotype 
was reported as a prognostic biomarker in cervical 
cancer [29, 30]. So far, the correlation between the 
HPV level and survival time in cervical cancer 
patients is seldom studied and remains unknown. The 

result of our data showed that there 
is no significant correlation between 
them. The potential reason for the 
unconformity result is that the HPV 
test involves all of the risk HPV 
genotypes, with no specific 
categories, whereas some high-risk 
HPV genotypes are not associated 
with the prognosis of cervical cancer 
[31]. Our study demonstrated that 
LVI and LNM were identified as 
significant independent prognostic 
factors for DFS, which is consistent 
with previous studies [32-34]. The 
mean DFS is 24.75 months for 
patients with LVI, and 38.56 months 
for patients without LVI (P< 0.001). 
Similarly, the mean DFS is 29.91 
months for patients with LNM, and 
37.50 for patients without LNM (P = 
0.009). In this study, the clinical stage 

 

 
Figure 4. MR images of two patients with significantly different DFS time. Although patient 1 and patient 2 have 
similar clinicopathological characteristics, their Rad-score are different and discriminative. DFS: disease-free 
survival. 
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(IB-IIA) was not associated with DFS; the possible 
reason is that the survival of patients in early-stage is 
relatively good. 

Despite the favorable results of the radiomic 
score, our study also has some limitations. First, 
although the number of patients in this study was 
large as compared with previous studies, larger and 
prospective datasets would be needed to optimize the 
performance of the model in the future. In addition, 
since the DFS of patients in the two institutions was 
different; therefore we combined the data from two 
institutions when dividing the training and validation 
cohorts. In future work, we hope to perform external 
validation in a different center. Second, because of the 
multicenter scanner settings, the MR images may be 
affected by different scanners and protocols. 
Therefore, we combined images from multiple 
scanners and tried to eliminate the device-effect by 
image standardization and robust 2D feature 
extraction. However, a more comprehensive method 
to balance the scanner-variance worth future 
exploring. Third, we mined 18 prognostic features 
from MR image and compared their performance 
with clinical factors. However, the association 
between the radiomic feature and biological level 
events was not explained. In the future, we will 
explain the radiomic features at biological level by 
combining gene profile. In addition, deep learning as 
an emerging method in medical image analysis may 
provide valuable features that are complementary to 
radiomic features[35]. Due to limited training 
samples, directly using deep learning in this study can 
probably cause overfitting; however, combining deep 
learning features with the selected radiomic features 
worth future exploring. For example, we can use 
transfer learning to extract deep learning features 
without the need for large training data, and then 
combine the deep learning features with the selected 
radiomic features. This strategy can combine the 
advantages of both deep learning and hand-crafted 
radiomic features. 

In conclusion, this study provides a noninvasive 
and pretreatment prognostic biomarker for the DFS of 
cervical cancer based on MRI. Moreover, for each 
cervical cancer patient, the radiomic score can predict 
the hazard risk of the patient being disease-free and 
stratify the patient into high-risk and low-risk groups. 
The study may offer some important insights into 
precise treatment, providing valuable guidance for 
clinical physicians regarding the treatment strategies 
including radical hysterectomy or chemoradiation on 
early-stage cervical cancer patients.  
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