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Since 2001 models of the spread of foot-and-mouth disease, supported by the data from the UK epidemic,

have been expounded as some of the best examples of problem-driven epidemic models. These claims are

generally based on a comparison between model results and epidemic data at fairly coarse spatio-temporal

resolution. Here, we focus on a comparison between model and data at the individual farm level, assessing

the potential of the model to predict the infectious status of farms in both the short and long terms.

Although the accuracy with which the model predicts farms reporting infection is between 5 and 15%,

these low levels are attributable to the expected level of variation between epidemics, and are comparable to

the agreement between two independent model simulations. By contrast, while the accuracy of predicting

culls is higher (20–30%), this is lower than expected from the comparison between model epidemics.

These results generally support the contention that the type of the model used in 2001 was a reliable

representation of the epidemic process, but highlight the difficulties of predicting the complex human

response, in terms of control strategies to the perceived epidemic risk.
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1. INTRODUCTION

Mathematical modelling of infectious diseases has recently

progressed from a descriptive to predictive science that can

be used as a potential public health or veterinary tool. The

success of such models can be traced from the early work on

rubella vaccination (Anderson & May 1983) through the

2001 UK foot-and-mouth epidemic (Ferguson et al.

2001a; Keeling et al. 2001; Morris et al. 2001) where

models were used in real time. More recently, models have

been used to assess the epidemic potential and control

mechanisms against smallpox (Ferguson et al. 2003; Hall

et al. 2007) and pandemic influenza outbreaks (Longini

et al. 2004; Ferguson et al. 2005). One considerable

challenge to any modelling study is parametrization, in

particular assessing the many unknown and unmeasurable

parameters that allow the model to capture the observed

outbreak. The other, but related, issue is to determine

reliable and meaningful statistics to compare the detailed

model output with the epidemic data.
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Here, we perform a detailed analysis on the models of

Keeling et al. (2001, 2003) in comparison with the 2001

foot-and-mouth epidemic data. In particular, although

these models were parametrized to match aggregate

regional data (as explained below), we assess the ability

of such models to predict the status of individual farms.

The 2001 foot-and-mouth disease (FMD) outbreak is

exceptional in terms of the detailed spatio-temporal

information available for the epidemic cases and culls

and the information on the distribution of initial

susceptible farms. This allows for detailed spatio-temporal

stochastic models that operate at the farm level to be

developed and parametrized. We start by briefly reviewing

the 2001 epidemic and the available information, followed

by the model of Keeling et al. We next consider a suitable

measure of accuracy, which captures the agreement

between model predictions and data, before finally

commenting on the model’s suitability and potential for

improvement.
2. 2001 FMD EPIDEMIC AND DATA
Numerous accounts of the 2001 FMD epidemic in the

UK have been published (e.g. Anderson 2002; Kitching

et al. 2005). Here, we outline the salient factors that
This journal is q 2008 The Royal Society
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impact on the model formulation and the comparison

between the observed epidemic and the model output. In

essence, before the 2001 epidemic, there were 188 496

farms identified as containing livestock, although only

142 496 farms were part of the June 2000 census. For all

188 496 livestock farms that act as the susceptible

denominator for the epidemic, we know the County–

Parish–Holding number (CPH), the X- and Y-coordinates

of the farmhouse, the area of the farm and the number of

cattle, sheep, pigs, goats and deer, although these livestock

quantities are subject to variation during the year as new

animals are born and older animals moved on or off

the holding.

Data on the holdings that were culled as part of the

FMD control measures were stored in the Department for

Environment Food and Rural Affairs Disease Control

System database. Culled holdings were placed into one of

the following three categories (Anderson 2002).

(i) Infected premises (IP ). A holding that was diagnosed

positive for foot-and-mouth disease virus (FMDV)

on either clinical diagnosis or laboratory analysis of

the tissue and/or serum of one or more animals. A

total of 2026 IPs were identified on the UK

mainland. In many cases, a holding was declared

an IP solely on clinical grounds, although tissue or

fluid samples were sent to the FMD World

Reference Laboratory in Pirbright for confir-

mation; as a result, 1720 samples from IPs were

tested for FMDV and 1320 (76.7%) confirmed as

positive for antibody or antigen (Ferris et al. 2006).

(ii) Dangerous contacts (DCs). This category includes all

holdings in which no evidence was found indicating

the presence of FMDV, but it was believed that the

holding was at elevated risk of becoming infected.

Reasons for being declared a DC include holdings

that had been linked to an IP via epidemiological

tracing and, from late March, holdings that were

contiguous to an IP—these were often referred to as

contiguous premises (CPs). Also, in late March in

Cumbria and Dumfries and Galloway, sheep flocks

that ‘may be harbouring the disease’ were culled

under the 3 km cull (Thrusfield et al. 2005). The

entire stock on a DC was not always culled if it was

judged that not all stock had been exposed to

infection (Honhold et al. 2004). In some cases,

serum samples were taken from animals on DCs,

and if they were found to be positive, the DC would

be reclassified as an IP.

(iii) Slaughter on suspicion (SOS ). Introduced on 24

March 2001 to include holdings on which clinical

symptoms were indecisive (Anderson 2002). The

holding would be culled and reclassified as an IP if

the holding tested positive for FMDV upon

serological testing.

During the 2001 epidemic, there were a total of 1423

DCs, 3619 CPs, 2980 3 km culls and 280 local culls. A

total of approximately 3.5 million sheep, 592 000 cattle

and 143 000 pigs were slaughtered and recorded in the

DCS; in addition, 1.8 million sheep, 166 000 cattle and

306 000 pigs were culled for welfare purposes (Anderson

2002). However, the animals that were part of the welfare

cull were not recorded as part of the culled holdings list
Proc. R. Soc. B (2008)
that we use throughout this paper—previous results have

indicated that welfare culls had a minimal impact on the

progress of the epidemic (Keeling et al. 2001).
(a) A stochastic spatial FMD model

The model used throughout this paper is an adaptation of

a model developed by Keeling et al. (2001), and is used to

study the effects of various control options (Keeling et al.

2003; Tildesley et al. 2006). The epidemiological part of

the model takes a relatively simple form; the rate at which

an infectious farm i infects a susceptible farm j is given by

rateij Z ½Nsheep; j�
psSsheep C ½Ncow; j�

pcScow

� �
! ½Nsheep;i�

qsTsheep C ½Ncow;i�
qcTcow

� �
!K ðdijÞ;

where Ns,i is the number of livestock species s recorded as

being on farm i; Ss and Ts measure the species-specific

susceptibility and transmissibility; dij is the distance

between farms i and j; and K is the transmission kernel,

estimated from contact tracing, which captures how the

rate of infection decreases with distance (Keeling et al.

2001). The model parameters are determined for five

distinct regions, Cumbria, Devon, the rest of England

(England excluding Cumbria and Devon), Wales and

Scotland, which enable us to account for regional variation

in culling levels and farming practices. For each region,

this model has seven parameters that need to be estimated

(Scow, Tsheep, Tcow, ps, pc, qs and qc, with SsheepZ1). As an

improvement to the previous versions of this model

(Keeling et al. 2001, 2003), the number of livestock is

now raised to powers ( p and q) to account for the

nonlinear increase in susceptibility and transmissibility of

a farm with increasing numbers of animals. The seven

unknown parameters are estimated by fitting the model to

the aggregate regional time-series data, as explained

below. This extra detail is found to improve the overall

fit and accuracy of the model, but does not qualitatively

change any of the conclusions of this paper.

Two types of culling strategy are modelled: DCs and

CPs. During the 2001 epidemic, DCs were identified for

each IP on a case-by-case basis, and were based on

veterinarian judgement of risk factors and known activi-

ties, such as the movement of vehicles. In our model, DCs

are determined stochastically, such that the probability

that farm i is a DC associated with IP j is given by

1Kf expðKF rateijÞ if i has been infected by j

1KexpðKF rateijÞ otherwise
:

(

The parameter f controls the accuracy of DC culling—the

ability to detect the routes of transmission—whileF governs

the overall level of DC culling per reported case; F is

allowed to vary through time to reflect the changing levels

of DC culling that occurred during the epidemic (Tildesley

et al. 2006), while f is another free parameter that needs to

be estimated. We use the same spatial kernel in determining

infection and the identification of DCs, although in

principle, it may be possible to estimate different kernels

reflecting any biases in DC ascertainment.

CPs are identified in the model by tessellating around

each farm location, taking into account the known area

of each farm, to obtain a surrogate set of adjacent farms.

During 2001, CPs were determined by a more compre-

hensive knowledge of the farm geography and are defined



Table 1. Values for the seven epidemiological factors for Cumbria, Devon, the rest of England, Wales and Scotland.

parameter Cumbria Devon rest of England Wales Scotland

Scow 5.7 4.9 2.3 0.7 10.2
Tsheep(!10K4) 8.3 11.0 23.2 36.3 28.2
Tcow(!10K4) 8.2 5.8 8.2 30.1 23.2
ps 0.20 0.40 0.30 0.43 0.33
pc 0.41 0.37 0.42 0.31 0.23
qs 0.49 0.42 0.37 0.22 0.40
qc 0.42 0.37 0.44 0.25 0.20
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as farms that share a common boundary—in practice this

was determined on a case-by-case basis using local maps

and knowledge. Many premises in the UK comprise

multiple parcels or fragments of land. It has been argued

that fragmentation of farms was a risk factor in the 2001

epidemic (Ferguson et al. 2001b), although highly

fragmented farms were generally contiguous to a greater

number of farms and therefore more likely to be culled as a

CP. The effect of this can be seen from the cellular

automata model of Kao (2003). Some farm fragments

have their own unique CPH number in the census

database and the tesselation method will explicitly

calculate CPs for these fragments. However, for all other

farms, we make the simplifying assumption that each farm

is made up of one parcel of land. Clearly, the CPs

predicted by the tesselation will not necessarily corres-

pond to the true set of CPs, particularly when considering

farms comprising multiple parcels. However, this method

of estimating CPs will capture many of the elements of

local proximity (Keeling et al. 2001). The extent of CP

culling is captured by a single time-varying parameter that

reflects the ratio of CP culls to IPs that occur at any point

in the epidemic.

During the 2001 epidemic, many other types of culling

were performed including 3 km culls, SOS and local culls.

Such culls are difficult to model explicitly, as their timing

and implementation is often contingent on non-epidemic

factors such as perceived risk. Given the general localized

nature of these other forms of cull, they have been

incorporated within the model into the DC culling

strategy, modifying the values of F and f. In particular,

the 3 km cull in Scotland and Cumbria is not explicitly

modelled. However, given that distance is the predomi-

nant risk factor for DCs, a temporary increase in the levels

of DC culling during the times of the 3 km cull provides a

reasonable approximation of this spatially localized

control. We stress, however, that the level of all culls

(including DC and CP culls) is strongly influenced by

the human response to the epidemic, and is therefore likely

to be a function of the overall epidemic history; for a

different stochastic realization, the pattern of culls could

deviate significantly from the timing in 2001. As the

welfare culls are not recorded in the list of culled holdings

described above, we do not attempt to model welfare

culling in this paper.

As mentioned above, the data and model parameters

are split into five distinct regions. For each region,

parameters are found that minimize the average difference

between simulated epidemics from the model and the

observed 2001 data for the cumulative number of farms

reported and culled as well as the cumulative number of

cattle and sheep on such farms. This is achieved through
Proc. R. Soc. B (2008)
repeated simulation. More precisely, in each region we

seek to minimize

error2 Z
X
X2x

X1 October

tZ23 February

CtðX2001ÞKCtðXmodelÞ

C1 OctoberðX2001Þ

� �2

;

where xZ{reported farms, culled farms, sheep on

reported farms, sheep on culled farms, cattle on reported

farms, cattle on culled farms} and Ct(X ) gives the

cumulative amount of quantity X up to time t. Intuitively,

we seek to minimize the relative differences between the

model and the data in terms of both farms and animals;

cumulative rather than daily values are used as these are

less affected by small discrepancies in the precise timing of

events. It is important to note that this fitting procedure

only matches to aggregate statistics at the regional level,

and information on the precise farms involved is not used;

therefore, the comparison between the model and the data

at the individual farm level described below acts as an

independent test of the model accuracy.

The estimated model parameters for all regions are

given in table 1. The differences in the parameters between

the regions are a partial reflection of differences in farming

practices in different areas of the country; however, some

of the differences are attributable to the way that the

nonlinear behaviour with animal numbers on a farm is

approximated and the differing distributions of animal

numbers in each region.
3. MEASURES OF AGREEMENT
When attempting to fit models to data, the most

statistically rigorous methodology is to calculate the

likelihood of the model producing the observed epidemic,

i.e. the probability of the model generating exactly the

same farms infected and culled on exactly the same days as

occurred during the real epidemic. However, while such

probabilities are at the heart of many mechanisms of

statistical parameter estimation, there are two difficulties

with such a measure of accuracy. First, the minuscule

probabilities of generating an identical epidemic are

difficult to judge intuitively and therefore difficult to

communicate to a non-mathematical audience. Second,

it is not clear that the likelihood probability captures what

is intuitively felt to be the ‘accuracy’ of a model; from

a practical perspective, one of the measures of interest

to policy makers is robust prediction of general patterns

of infection several weeks in the future. For this reason, we

consider the accuracy of our model using a variety of

statistical measures, predominantly focusing on the ability

to correctly identify cases and culls in medium- to long-

term predictions.



Mar Apr May Jun

time (days)

Jul Aug Sep Oct

lo
g 

lik
el

ih
oo

d 
(×

10
3 )

lo
g 

lik
el

ih
oo

d 
(×

10
3 )

0 5 10 15 20
reported and culled

(×102)

–10

–8

–6

–4

–2

0

–10

–8

–6

–4

–2

0

Figure 1. Graph showing the log likelihood of correctly
predicting the status of all farms in a one-week interval for
varying start dates. Likelihoods are calculated independently
for each farm, from the results of multiple stochastic
simulations. Farms are defined as being in the correct class
if they are infected or culled (or simply remain susceptible) in
both the model and the 2001 data in a given one-week
prediction interval. The inset shows the log likelihood against
the total number of reported and culled farms for each
starting point of the simulations—we note that the log
likelihood increases linearly with the number of reported
and culled farms.
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Figure 1 shows the log likelihood of correctly predicting

the status of all the UK farms in short (one week)

simulations, for varying start dates. The start date varies in

weekly increments and simulations run forward for a

period of one week after which time the model and 2001

data are compared. We note that the log likelihood scales

linearly with the number of reported and culled farms (see

the inset), suggesting a consistent probability of correctly

identifying the status of each farm throughout the

epidemic. In general, however, these log likelihood values

are strongly influenced by the few cases or culls in each

week, which occur with extremely low probability. These

farms are often small or at some distance from the

prevailing epidemic. While such likelihood methods are

undoubtedly very powerful tools for giving a compre-

hensive measure of the global accuracy of a model, we now

examine a range of more simplistic measures. In

particular, we focus on the average proportion of cases

and culls which can be correctly identified by simulations

of various lengths for a range of initial starting dates.

We start by defining a matrix of nine variables, which

captures the status of farms in both the observed epidemic

and the model simulations. NXY(X,Y2{R, C, S}, for

reported, culled and susceptible) gives the number of

farms that are in state X for the observed 2001 epidemic

and state Y in the model simulation. Thus, NRC(Z733)

counts all farms that reported infection during 2001, but

were predicted by the simulation to be culled (CP, DC or

extended cull) as part of the control measures. We

emphasize that we consider reported cases and not

infection as only the former can be accurately ascertained

from the 2001 epidemiological data: some infected farms

will be culled before they report and some reported cases

may be misdiagnosed. The matrix of N values can then be

averaged over multiple realizations of the simulated

epidemic (table 2).
Proc. R. Soc. B (2008)
The simplest measure of model accuracy is to calculate

the proportion of farms that are predicted by the model to

be in the same final state as observed in 2001

accuracy Z
NSS CNRR CNCC

total number of farms
: ð3:1Þ

From multiple model simulations (begun on 23 February

and iterated until the epidemic dies out), we calculate the

accuracy to be 92.46% (95% of simulations lie within

91.65–93.16%). This value indicates that, countrywide

and for the entire epidemic, models initiated with the

conditions on 23 February can correctly identify the final

status of individual farms with a high level of precision.

While this formulation provides a measure of total

accuracy, this simple single-valued definition fails to

provide sufficient information about the causes of any

inaccuracy and is heavily weighted by the success of

predicting susceptible farms in the disease-free regions.

We therefore partition the accuracy in terms of times and

classes of farm considered. accuracytypeðt0; teÞ is calculated

from simulations using the known conditions at time t0
and iterated until time te; comparisons between the model

and data are then made at time te and are restricted to

those farms in class type in the data that were unaffected

(neither culled nor reported infection) at time t0. There-

fore, accuracyCumbria (23 February, End) calculates the

proportion of farms in Cumbria, which have the same

status in the model and data at the end of the epidemic,

while accuracyreported(23 February, 23 March) calculates

the proportion of reported farms during the first month of

the epidemic, which are correctly identified by the model.

To provide some guidance as to the expected level of

between-epidemic variability that places a natural upper

bound on the accuracy, we calculate a similar measure

comparing the results of two independent (but identically

parametrized) model simulations. This measure, which we

call repeatability, essentially captures how well the model

can predict itself—a high level of repeatability shows that

there is little between-epidemic variability at the individual

farm level, whereas low level of repeatability shows that

between-epidemic variability within the model is high. The

repeatability should always be higher than the accuracy,

and similar levels of repeatability and accuracy indicate

good parametrization of the model at the individual level,

given the constraints of the modelling framework.

Here, it is worth stressing the three important points

about these measures of model fit. The first is that accuracy

measures that focus solely on reported cases or culls (e.g.

accuracyreported) are only informative if the number of cases

and culls in the model closely matches the data. For

example, very high levels of reported case accuracy could be

obtained if the model simply overestimated the number of

cases. We note however that our model closely matches the

temporal pattern of observed cases and culls (figure 2b).

Second, comparable levels of accuracy and repeatability

can be achieved when the model captures little of the

observed spatial structure—when the model matches the

temporal dynamics but not the spatial. However, we again

note that our model has been shown to be a good match for

the general spatial pattern of cases (Keeling et al. 2001).

Finally, accuracyreported can be thought of as the sensitivity

of the epidemiological prediction; however, as this quantity

varies both spatially and temporally and depends on the

prediction of culls, we retain the term accuracy. Similarly,



Table 2. The mean value (and 2.5 and 97.5 percentiles) for the matrix of nine variables that record the number of farms in a
particular state in the 2001 data and in the simulated model outbreaks. (Due to the large number of simulations involved the CIs
for the mean are very small; therefore percentiles are quotes such that 95% of the simulations lie within the given range. The
diagonal elements give the total number of farms whose status is correctly predicted by the model.)

data

model

reported culled susceptible

reported 230 (193–269) 733 (666–795) 995 (920–1081)
culled 519 (436–604) 1962 (1738–2167) 5703 (5438–5986)
susceptible 1323 (977–1699) 4977 (3785–6318) 171 982 (170 293–173 513)

0

50

100

150

200

250

300

350

nu
m

be
r 

of
 f

ar
m

s

movement restrictions
and IP and DC culling
introduced

24/48 h culling
policy begins

all CPs culled 
cattle from high biosecurity
farms exempted from cull 

91
92
93
94
95
96
97
98
99

100

to
ta

l a
cc

ur
ac

y 
(U

K
)

Mar Apr May Jun Jul Aug Sep Oct
97

98

99

100

to
ta

l a
cc

ur
ac

y 
(U

K
)

Mar Apr May Jun Jul Aug Sep Oct
0

5

10

15

20

25

30

re
po

rt
ed

 c
as

es
 a

cc
ur

ac
y 

(U
K

)

Mar Apr May Jun Jul Aug Sep Oct
0

5

10

15

20

25

30

re
po

rt
ed

 c
as

es
 a

cc
ur

ac
y 

(U
K

)

Mar Apr May Jun Jul Aug Sep Oct
0

10

20

30

40

50

60

cu
ll 

ac
cu

ra
cy

 (
U

K
)

Mar Apr May Jun Jul Aug Sep Oct0
10
20
30
40
50
60
70
80
90

cu
ll 

ac
cu

ra
cy

 (
U

K
)

0

50

100

150

200

250

300

350
nu

m
be

r 
of

 f
ar

m
s

(a) (b) (c)

(d ) (e) ( f )

(g) (h)

Figure 2. Model and data comparison for the entire country. (a) The daily number of farms that report infection (black) and
farms that were culled (grey), together with the timings of national control measures for the 2001 epidemic. (b) Similar results
from a single replicate model simulation, starting with the conditions on 23 February 2001. (c–h) Accuracy (solid lines)
and associated repeatability (dashed lines) results (together with 95% CIs) for various time intervals and various farm types. If t
is the time on the x -axis, the accuracy results are (c) accuracyall(23 February, t), (d ) accuracyall(t, tC14), (e) accuracyreported(23-
February, t), ( f ) accuracyreported(t, tC14), (g) accuracyculls(23 February, t), (h) accuracyculls(t, tC14). At least 2500 simulations
were used to determine each data point. Regional plots, for Cumbria, Devon, the rest of England, Wales and Scotland, are
shown in the electronic supplementary material.

Models for the 2001 foot-and-mouth epidemic M. J. Tildesley et al. 1463
we can calculate the specificity of the epidemiological

prediction (assuming the model on average predicts the

observed number of reported cases)

specificityreported

Z
number of farmsKnumber of reported!accuracyreported

number of farmsKnumber of reported
:

Proc. R. Soc. B (2008)
Hence, our measure of accuracy naturally encompasses

some of the standard measures of agreement between

models and data.

While our accuracy measure provides an intuitive

concept of the precision with which the status of individual

farms can be detected, it is informative to relate these

results to odds ratios, which is an alternative method for

assessing the goodness of fit. As such, the odds ratio
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informs us whether the model results provide a useful

predictive diagnostic for the status of a farm. The odds

ratio Or can be defined in terms of the number of farms of

a particular status in the model and data

Or Z
NðDCve;MCveÞ!NðDKve;MKveÞ

NðDKve;MCveÞ!NðDCve;MKveÞ
; ð3:2Þ

whereD andM refer to the statuses of the farms in the model

and the data, respectively. Therefore, if we are considering

the odds ratio for reported farms, N(DCve, MCve)ZNRR

corresponds to the numbers of farms that are reported in

both the data and the model, whereas N(DCve, MKve)Z
NRSCNRC corresponds to the number of farms that are

reported in the data but not reported in the model. Using the

matrix of values as illustrated in table 2 leads to the odds

ratio for reported farms taking the form

OrðreportedÞ

Z
NRR !ðNSS CNCC CNSC CNCSÞ

ðNSR CNCRÞ!ðNRS CNRCÞ
: ð3:3Þ

The higher the odds ratio, the better the model is at

predicting the status of the farms in the 2001 epidemic.

We can also relate the odds ratio to the original

accuracy measure. Again, considering only the success of

capturing reported farms and making the simplifying

assumption that the model accurately captures the

number of reported farms, we have

OrðreportedÞZaccuracyreported

no:of farmsKno:of reported!ð2KaccuracyreportedÞ

1Kaccuracyreported

� �
:

ð3:4Þ

Hence, for the levels of accuracy observed from our

model, it is reasonable to assume that the odds ratio scales

approximately linearly with the level of accuracy.

Finally, as with the accuracy measure, we also wish to

compute an odds ratio for the ability of the model to

predict the results of a model simulation. This model–

model comparison again provides an upper bound for the

model–data comparison, with a close agreement between

the two suggesting that the model is capturing the data as

can be expected.
4. COMPARISON OF MODEL AND DATA
Figure 2 shows a range of comparisons between the 2001

epidemic data and the model simulations. Figure 2a shows

the daily number of reported cases (black), termed IPs

(although we note that some infected farms may have been

culled before they were reported and some farms reporting

the disease may not have been infected), and the number

of culled farms (grey), including DCs, CPs, SOS, local

and 3 km culls. In addition, figure 2a also marks the onset

of different national control measures. This graph there-

fore provides a time frame against which the changing

measures of model accuracy can be gauged. Figure 2b

shows a typical temporal result from simulations, which is

in qualitative agreement with the patterns of figure 2a.

Figure 2c–h shows the accuracy (solid lines) and

repeatability (dashed lines) for the whole of the UK.

Figure 2c,e,g shows the results starting from 23 February

and simulated until various end times; as such, these
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illustrate the precision of models initiated early in the

epidemic and show how the accuracy changes as longer

time periods are considered. By contrast, figure 2d, f,h

illustrates intervals of two weeks with different starting

points, and hence shows how the predictive accuracy varies

over the course of the epidemic. Figure 2c–h shows the

accuracy of considering all farms, considering only farms

reporting infection and considering only farms that are

culled, respectively. Simulations started on 23 February

use the precise conditions at that time as estimated from

the future notification of cases. The simulations started at

later times only use the reported cases and culls to that date

to inform the initial conditions; this is necessary as the

current infectious status of farms is the main short-term

predictor of reported cases. These results may be heavily

influenced by control policies in individual regions.

Equivalent results for the five regions are given in the

graphs in the electronic supplementary material. The same

behaviour is found for each region—the results are

qualitatively the same but quantitatively different (see the

electronic supplementary material).

Looking at the total accuracy (figure 2c,d ), we observe

that the peaks in the cases in late March and early April are

associated with a significant drop in accuracy (although

the accuracy remains above 90%); however, this reduction

is mirrored by a similar change in the repeatability,

suggesting that it is primarily associated with between-

epidemic variability during this period. We note that in

both figures, the mean accuracy values are close to, but

generally just outside, the 95% CIs of the repeatability

values; the remaining figures examine the source of this

inaccuracy. The model predicts the identity of reported

cases (accuracyreported(23 February, end)) with an

accuracy of just 12%, i.e. starting on 23 February the

model correctly identifies one in eight farms that will be

infected over the entire course of the epidemic (figure 2e).

Examining the short-term predictive accuracy (figure 2f,

accuracyreported(t0, t0C14)) reveals that less than 10% of

the cases are correctly identified over a two-week period.

However, these low values are consistent with the levels of

between-epidemic variability predicted by the model

(13.5% compared with 12% in figure 2e and 4.5–14%

compared with 4–10% in figure 2 f ). Hence, according to

our model, the highly stochastic nature of disease

transmission means that the short-term future can only

be predicted with very limited accuracy; greater accuracy

occurs when considering the entire epidemic as determin-

ing risk factors play a far larger role.

Table 3 gives odds ratios for the entire epidemic, from

23 February until the disease is eradicated. The second

column lists odds ratios for model simulations against the

2001 data, while the third column provides the associated

model–model comparison; given ranges encompass 95%

of all simulations. We see that, for the whole country and

across all the five regions individually, odds ratios are

always found to be greater than 1. As expected from

equation (3.4), the odds ratio is generally the smallest in

those regions that suffered the greatest proportion of

reported cases, hence the highest values occur for

Scotland and the rest of England (excluding Cumbria

and Devon), while Cumbria yields the lowest value of odds

ratio. Comparing the model–data and model–model odds

ratios for the various regions, we naturally find that the

model–model values are higher; however, the values for



Table 3. Odds ratios for reported farms over the entire epidemic. (Again, owing to the small CIs about the mean, 2.5 and 97.5
percentiles are quoted such that 95% of the simulations lie within the given range. Results are given for the whole of Great
Britain and for the five regions.)

region odds ratio (model–data) odds ratio (model–model)

whole GB 13.41 (10.77–16.66) 15.61 (12.05–20.16)
Cumbria 1.91 (1.51–2.42) 1.93 (1.51–2.53)
Devon 4.02 (1.41–8.84) 4.86 (1.62–15.85)
rest of England 9.01 (5.33–13.61) 17.64 (11.37–28.32)
Wales 5.66 (1.78–20.22) 11.39 (2.83–62.78)
Scotland 26.06 (15.91–40.79) 27.42 (16.20–45.43)

Table 4. Mean odds ratios for reported farms over a two-week interval averaged over different start dates. (The maximum and
minimum odds ratios correspond to average values at specific start dates and therefore capture the variation across the course of
the epidemic and not between epidemic simulations. Again results are given for the whole of Great Britain and for the five
regions.)

region model–data odds ratio model–model odds ratio

mean (min–max) mean (min–max)
whole GB 208.39 (15.25–998.67) 322.68 (18.89–1437.01)
Cumbria 13.79 (2.01–83.15) 18.53 (2.49–119.27)
Devon 13.41 (0.46–129.72) 43.95 (4.72–381.64)
rest of England 188.26 (5.59–1458.62) 281.93 (30.35–1143.65)
Wales 93.54 (0.48–968.54) 171.79 (13.92–709.96)
Scotland 83.48 (2.54–735.64) 848.73 (23.10–1101.47)
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the main foci of infection are in close agreement,

strengthening our belief in the accuracy and predictive

benefit of the model in these regions.

Table 4 summarizes the short-term predictive ability of

the model, by comparing the two-week intervals with the

start dates (and hence initial conditions) spaced over the

entire epidemic. The table provides mean odds ratios

averaged across all the start dates. Clearly, the mean odds

ratio will vary with the start date and this variation is

captured by the minimum and maximum values. The

minima generally occur when there are very few cases, and

mean odds ratios less than one are found to coincide with

extinction or introduction of infection into a region.

Owing to the short time scales involved, the odds ratios are

frequently higher than those given in table 3, indicating a

greater predictive ability.

Turning our attention to the prediction of culled farms

(figure 2g,h), we find the somewhat surprising result that

although the levels of accuracy (solid lines) are higher

(approx. 20–25%), these are not comparable with the levels

of repeatability (dashed lines), which can exceed 60% in

the short term. Our model–model comparisons therefore

predict that culls should be readily predictable in the short

term, which is consistent with the notion of a fixed control

policy. However, the situation on the ground was far more

complex, with judgements being made on a case-by-case

basis. We believe it is in part this ‘unpredictable’ human

element that causes the relative lack of accuracy. Develop-

ing models that can simulate the human response to

perceived epidemic risk is vitally important for long-term

predictions of both the livestock and the human infections.
5. MULTIPLE SIMULATIONS
The comparisons so far have been between individual

replicates and the 2001 epidemic—hence our results are
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strongly influenced by the stochastic nature of the

simulations. An alternative approach is to consider the

results of multiple simulations and use the proportion of

simulations in which a farm is infected (or culled) as a

measure of its risk. These results are shown in figure 3 for

simulations of the entire epidemic beginning on 23

February. Figure 3a shows the distribution of the

proportion of simulations in which a given farm reports

infection; this is partitioned into those farms reporting

infection in 2001 (grey) and those not (white). Clearly, the

two distributions are very different, with the distribution

for farms reporting in 2001 showing a distinct secondary

peak. This is an additional evidence that the simulations

can partially discriminate between those farms that are

likely to become infected and those that are not. Figure 3b

shows comparable results for farms culled in the

simulations and in 2001; here the distributions are

more similar and this re-enforces our belief that human

influence in the culling policy makes it far more difficult

to simulate.

Finally, we can use the results of multiple simulations to

ascertain if we can improve the predictive accuracy of our

model. The basic concept is to determine a threshold

proportion of simulations Pc, such that farms reporting

infection in more than Pc simulations are considered as

likely to report infection in 2001, whereas those that

report infection in less than Pc simulations are likely to

remain susceptible—noting that this may change the

number of cases predicted. Figure 3c shows the number

of correctly identified cases together with the number of

false-positive and false-negative errors as the threshold

proportion is varied. Very low thresholds mean that we

correctly identify the overwhelming majority of cases in

2001, but this is at a cost of many false positives. At the

other extreme, when the threshold is very high, although

there are few false positives, many farms reporting
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Figure 3. Results of multiple simulations of the entire epidemic for the whole of Great Britain. (a) The distribution of farms
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infection in 2001 are not identified. Three key threshold

values can be identified. Values of Pc approximately 12%

lead to half of all cases being identified, although a further

4000 false positives are predicted. Taking PcZ14%

minimizes the total number of errors (both false positives

and false negatives) relative to the number of correctly

identified farms reporting infection (figure 3d ). Finally,

setting PcZ17.5% leads to predicted epidemics of approxi-

mately 2026 cases (agreeing with the size of the 2001

epidemic); for this threshold, a quarter of all cases are

correctly identified showing the increased accuracy that can

be gained by averaging over multiple model epidemics.
6. DISCUSSION
Determining what constitutes a good model is often a

value judgement. In general, we require a model that can

predict the trends and patterns which are considered

important, while other features are often deemed spurious.

For example, we may stipulate that a model must capture

the pattern of cases in the dominant epidemic regions but

we may be less concerned about correctly identifying

individual isolated cases. Initial parametrization of the
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model (Keeling et al. 2001, 2003; Tildesley et al. 2006)

reflects this emphasis: attempting to match the number

(and approximate timing) of cases and culls in five regions,

while ignoring precisely which farms were involved. The

parametrization method used in this paper also accounts

for the cumulative number of livestock lost; this extra

degree of fit is made possible by the inclusion of power

laws in the rate of infection accounting for the nonlinear

effects of livestock number. We find that while assuming a

linear relationship between susceptibility and livestock

numbers provides a good fit to the number of farms

affected in the 2001 epidemic, it slightly overestimates the

number of animals affected as infection is biased towards

larger farms. Introducing powers into the model reduces

the effect of animal numbers and therefore the average size

of a farm infected decreases. We therefore find that this

re-parametrization provides a close fit to the 2001

epidemic in terms of both the number of farms and the

number of animals affected. In general, the inclusion of

power laws also improves the accuracy with which the

status of individual farms is predicted, although the

general patterns and qualitative conclusions hold.
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In contrast to this aggregate approach to parametriza-

tion, the measures of accuracy discussed in this paper are

individual based, reflecting the ability to identify reported

and culled farms correctly. As such, this acts as an

independentverificationof themodeland itsparametrization.

The simplest measure of accuracy—proportion of farms

correctly predicted to be reported, culled or unaffected

(susceptible)—consistently produced extremely high

accuracy values owing to the overwhelming number of

unaffected farms. We therefore focus on the accuracy of

predicting reported cases and culls separately, which are the

key features of interest. It is important to note that these

measures in themselves are not sufficient, as a model that

overestimates cases and culls would have a high accuracy

(high sensitivity but low specificity); however, given that our

model has been shown to match the observed temporal

pattern (in terms of predicting the number of cases and culls),

this is not an issue.

Our analysis reveals that although the accuracy of

predicting cases appears low (at approx. 10–15%), this

should be considered relative to the model repeatability

that provides a similar statistic for the agreement between

two model replicates and therefore accounts for stochastic

variability between epidemics. In general, we find that

accuracy and repeatability are in close agreement and we

see that the model does a remarkably good job of

capturing the observed temporal pattern of the epidemic

and the spatial pattern of cases at the farm level despite the

fact that parametrization is based on aggregate infor-

mation at a larger scale. If our sole aim is to identify the

farms that are likely to become infected, then the results of

multiple simulations can be further used beneficially to

improve model prediction at the risk of generating more

false positives—we can improve sensitivity but only at the

cost of reduced specificity.

We now turn to the issue of what could be done to

improve the performance of the epidemiological model.

This can be partitioned into two separate elements:

improvements to the model and the data quality and

availability. Several improvements to the model can be

readily envisaged. We currently use power-law scaling to

capture the nonlinear relationship between the number of

livestock and the risk of infection or transmission; other

nonlinear relationships could be considered, although

each would entail further re-parametrizations. The single

transmission kernel could be replaced by two kernels,

one for each species, or even four different kernels

accounting for the different species–species interactions;

in addition, different kernels could be used to account for

differences between infection and DC detection. Extra

detail could also be included for the within-farm dynamics.

However, Savill et al. (2007) has investigated this issue and

concluded (due to lack in data quality from the 2001

epidemic) that there is no evidence of changing infectious-

ness over infectious period of a farm. The inclusion of such

additional heterogeneities as described above is likely to

reduce the between-epidemic variability as it will generally

increase our specification of identifying at-risk farms.

It is interesting to contrast the predictive accuracy of

reported cases with that of culling. The model appears

slightly biased towards correctly predicting IPs but not

DCs. While the chance of correctly predicting an

individual cull is greater, there is a higher discrepancy

between the accuracy (model versus data) and the
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repeatability (model versus model). These two somewhat

contradictory observations can be explained as follows.

The higher levels of accuracy for culls compared with

cases are primarily due to the higher number of culls

compared with reported cases. However, we believe that

the relatively lower value of accuracy compared with

repeatability is due to the complexities underlying the true

culling process. In reality, the decision to cull a farm is

based upon a large range of value judgements that

determine both national policy and local implementation

in response to the current epidemic situation. By contrast,

within our model, the implementation of specific

strategies (such as the decision to CP cull or to introduce

rapid culling of IPs and DCs) occurs at fixed times—this is

expected to lead to less variation between individual

model replicates. This also highlights a fundamental issue

with the mathematical modelling of disease and control;

while the dynamics of disease spread may be governed by a

few relatively simple rules, the level and types of control

applied are based on complex human value judgements

which may be difficult to simulate.

In conclusion, we have shown that although the model

is parametrized by matching to regional-scale dynamics,

there is still relatively good agreement between the model

replicates and the 2001 epidemic data at the individual

farm scale. In particular, the epidemiological transmission

of infection is predicted with an accuracy comparable to

that between two model replicates. Much of the disagree-

ment can be attributed to the stochastic chance nature of

transmission and the fact that any two independent

epidemics are therefore inherently different. We therefore

conclude that these results support the use of this type of

model as a predictive tool for retrospective analysis of the

2001 epidemic and for ascertaining the success of

alternative strategies against future outbreaks—although

refinements based on the inclusion of more biologically

realistic processes may improve the model further.

This work was funded by the Wellcome Trust and MIDAS
NIH. We thank Darren Shaw and Jon Read for their
comments on the manuscript.
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