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ABSTRACT

Sequence-specific DNA recognition by gene regu-
latory proteins is critical for proper cellular func-
tioning. The ability to predict the DNA binding
preferences of these regulatory proteins from their
amino acid sequence would greatly aid in recon-
struction of their regulatory interactions. Structural
modeling provides one route to such predictions: by
building accurate molecular models of regulatory
proteins in complex with candidate binding sites,
and estimating their relative binding affinities for
these sites using a suitable potential function,
it should be possible to construct DNA binding
profiles. Here, we present a novel molecular
modeling protocol for protein-DNA interfaces that
borrows conformational sampling techniques from
de novo protein structure prediction to generate a
diverse ensemble of structural models from small
fragments of related and unrelated protein-DNA
complexes. The extensive conformational sampling
is coupled with sequence space exploration so that
binding preferences for the target protein can be
inferred from the resulting optimized DNA se-
quences. We apply the algorithm to predict binding
profiles for a benchmark set of eleven C2H2 zinc
finger transcription factors, five of known and six
of unknown structure. The predicted profiles are in
good agreement with experimental binding data;
furthermore, examination of the modeled structures
gives insight into observed binding preferences.

INTRODUCTION

The prediction of macromolecular interactions is a key
challenge for computational molecular biology. Given
that molecular interactions are determined by the 3D
structures and chemical properties of the interacting

partners, it seems plausible that such interactions (or at
any rate their propensity to occur in vitro) could be pre-
dicted by structural modeling. Although a general
approach to selecting binding partners for any target
protein—large-scale docking and binding affinity calcula-
tions against all possible cellular partners—remains in-
feasible, considerable progress has been made in
predicting (1,2) and designing (3–5) specific macromolecu-
lar interactions. One class of macromolecular interactions
that represents a promising target for structure-based pre-
diction consists of those interactions which are mediated
by a linear sequence motif (peptide, DNA, RNA) in the
partner molecule. For these interactions, the space of
possible binding partners can be enumerated concisely,
and approximate binding modes can often be inferred
from the structures of related complexes. Moreover,
these motif-mediated interactions are of central
importance in cellular regulation: the interactions of
transcription factors, kinases, splicing factors and
peptide-recognition modules can all be usefully
characterized in terms of linear motif specificity. In this
work, we describe a new approach for structure-based
prediction of protein-DNA binding specificity, one that
can be extended to other classes of motif-mediated inter-
action. By applying simulation techniques borrowed from
de novo structure prediction, we demonstrate that
modeling of protein-DNA interactions can be improved
through the use of large-scale conformational sampling of
both partners.

Structural modeling has generated important insights
into protein-DNA recognition mechanisms, from studies
of the relative contributions of direct and indirect recog-
nition (6–8), and the role of DNA shape (9,10) and inter-
facial waters (11,12) in sequence-specific recognition, to
the validity of the additivity assumption in protein-DNA
energetics (13,14). Structural modeling has also been used
to predict DNA binding preferences, using a wide range of
sampling algorithms and energy functions, including
database-derived potentials (15–17), all-atom molecular
mechanics force fields (11,18–23), and hybrid scoring
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functions (12,14). These approaches can often generate
highly accurate predictions when given an X-ray crystal
structure of the target protein in complex with a high
affinity binding site. To be widely applicable for functional
annotation, however, a method must also be able to
generate accurate predictions for proteins whose struc-
tures have not been solved (by using the structures of
related proteins as modeling templates, for example).
This has proven much more difficult, particularly for
methods that attempt to build realistic models of interface
sidechains through the use of atomistic modeling and
high-resolution force fields (14,21). In a recent study of
template-based specificity predictions for the transcription
factor Zif268 (21), Siggers and Honig found that predic-
tion accuracy was highly sensitive to the structural simi-
larity between the template and target interfaces. They
identified a similarity threshold above which accurate
template-based predictions could be made. Comparing
all available structures for C2H2 zinc finger (ZF) family
members, they found considerable variation in interface
geometry, with the majority of potential target-template
pairs having similarity values below their prediction
accuracy threshold. For many targets, no suitable tem-
plates for specificity prediction were available in the struc-
tural database.

We hypothesized that the observed sensitivity of pre-
diction accuracy to target-template similarity was
partly due to limited conformational flexibility inherent
in traditional template-based approaches. An approach
that incorporated large-scale backbone conformational
sampling might circumvent this limitation and allow for
accurate specificity predictions for a wider range of target
proteins. To test this hypothesis, we developed a novel
interface fragment assembly protocol in which complete
protein-DNA models are constructed from small frag-
ments of related and unrelated protein-DNA complexes.
Starting from an initial randomized pool of DNA binding
sites, we construct a diverse ensemble of protein-DNA
interface fragment assembly models. These models are
taken as starting points for all-atom Monte Carlo (MC)
refinement simulations that simultaneously explore
sequence and structure space. By augmenting the molecu-
lar mechanics potential energy function with a DNA-
sequence-dependent energy term that captures unbound
DNA energies, we can directly infer binding preferences
for alternate DNA sequences from their differential
sampling rates in these MC simulations.

We applied this protocol to a set of transcription factors
in the C2H2 ZF family (Figure 1) and demonstrated its
efficacy in recapitulating protein-DNA interface structure
and predicting ZF binding specificity. The ZF transcrip-
tion factors constitute the largest family of eukaryotic
transcription factors, making up nearly half of all
annotated human transcription factors (25). Different
family members have widely varying DNA-binding
preferences—in contrast to many other TF families in
which a core binding motif is conserved—making them
challenging targets for template-based prediction.
In addition, the C2H2 ZF proteins have served as a
model system for studying protein-DNA recognition.
High-resolution X-ray crystal structures are available for

several family members, as are experimental binding data
from various sources. ZF DNA recognition codes have
been proposed based on examination of available
strucural data (26–28), and machine learning algorithms
have been developed that leverage the extensive set of
binding data to make predictions of DNA binding speci-
ficity (29–33). These models provide a valuable external
standard against which to judge the results of structural
modeling. Finally, ZF proteins have been the subject of
extensive protein engineering efforts: designed zinc finger
proteins have been used as novel cellular regulators (34)
and combined with non-specific nuclease domains to
generate targeted, highly specific genome engineering
tools (35). Structure-based modeling of ZF binding speci-
ficity could further these engineering efforts.

MATERIALS AND METHODS

Modeling preliminaries

All modeling protocols were implemented within the
Rosetta (36) molecular modeling package, adapted for
modeling of DNA by Havranek et al. (20), and will be
released for free academic use through the Rosetta
commons (http://www.rosettacommons.org). Sampling is
conducted in internal coordinates (backbone and
sidechain torsion angles, the protein-DNA rigid body
orientation, and selected intra-DNA rigid body connec-
tions as described below), with Cartesian coordinates
updated for evaluation of the energy function and its
gradient. Bond lengths and angles are held fixed at ideal
values.

Figure 1. Structure of the C2H2 ZF transcription factor Zif268 (24).
The three ZF domains are colored blue, green and red (from N- to
C-terminus). In the canonical model for ZF–DNA interactions, indi-
vidual fingers recognize neighboring three base pair sites (here colored
to match the corresponding finger). Note that, by convention, the DNA
triplets occur in reverse order (red, green, blue) when reading from 50 to
30 along the primary strand.
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Interface fragment assembly

The interface fragment assembly protocol combines three
types of fragment replacement moves: double-helical
fragment moves, in which a continuous stretch of
base-paired DNA is replaced by a base paired region of
equal length taken from a DNA duplex of known struc-
ture (Figure 2A); interface fragment moves, in which the
orientation of the protein relative to the DNA is updated
based on a template interface (Figure 2B); and protein
fragment replacements, in which a continuous stretch of
backbone torsion angles are taken from an aligned region
of a template structure (Figure 2C). In DNA fragment
replacement moves, the internal conformation of the
double helix downstream of the fragment replacement
(green region in Figure 2A) is unchanged, allowing these
moves to preserve base-pairing between strands. The
torsion angles in the fragment region are taken from the
template, as are the relative orientations of the base-pairs
within the fragment. DNA fragment insertion may intro-
duce small breaks in the DNA backbone at the 30-ends of
the fragment region; these are minimized by adjustment of
the backbone torsion angles at the fragment junctions
after fragment insertion by gradient–descent optimization
of a chain closure penalty. Interface fragment moves
depend on the definition of two sets of guide atoms, a
takeoff set in the DNA and a landing set in the protein.
In making the move, the template structure (from which
the fragment is taken) is aligned to the model by
superimposing the takeoff set of guide atoms; the
landing guide atoms in the model are then translated in
space to superimpose onto the landing guide atoms in the
template, thereby moving the protein relative to the DNA.
After the fragment move, the relative orientation of the
guide atoms is the same in the template interface and in
the model, although the internal conformation of the
protein and DNA at the interface will be different. In
protein fragment insertions, a stretch of 3 or 9 consecutive
residues in the current model is updated by replacing the
backbone torsion angles (f, c and o) with corresponding
torsion angles taken from a template structure (9-residue
fragment insertions are used early in the simulation
for internal consistency in early model build-up; less-
perturbing 3-residue fragment insertions are used in the
later stages to refine the model). Together these three
fragment replacement moves provide a mechanism for
assembling complete models of protein DNA interfaces
guided by the template structures from which the frag-
ments are taken.
To select fragments for a target ZF, we first assemble a

list of template fingers from ZFs with solved structures
(for benchmarking, we exclude highly similar templates,
including the target itself if its structure has been solved).
Three- and nine-residue protein fragments are taken from
aligned regions of these template fingers; regions not
covered by aligned fragments (e.g. if there are unusual
insertions or deletions in the beta-strand region) are
filled in from Rosetta’s de novo fragment database.
Protein–DNA interface fragments are also taken from
these template fingers, using as takeoff guide atoms the
C10 atoms of both strands of the corresponding DNA

triplet, and as landing guide atoms the Ca atoms of the
canonical helix positions �1 through 6 (template zinc
fingers are manually pre-processed to define the mapping
between individual fingers and triplets in the binding site).
A library of DNA double-helical fragments is selected at
the start of each modeling simulation after the DNA
sequence has been randomized, thereby guaranteeing
that sequence-dependent variations in DNA structure
will be sampled. Two, three and five base-pair fragments
are selected from a database of solved protein-DNA
complexes; fragments are chosen on the basis of DNA
sequence similarity (for benchmarking, all ZF structures
are excluded from the DNA fragment database). As with
protein fragment moves, longer fragments are used earlier
in the simulation to build up coherent DNA duplexes,
while shorter fragments are used at the end to reduce per-
turbation of favorable contacts.

Figure 2. Fragment assembly moves. (A) In double-helical DNA
fragment insertions, a base-paired region (yellow) taken from a
template is inserted into the current model (gray), moving the down-
stream base pairs (green); the upstream region (gray) remains fixed.
(B) Interface fragment moves transfer the relative protein–DNA orien-
tation from a template structure without changing protein or DNA
internal conformation. (C) Protein fragment replacement moves copy
consecutive backbone torsion angles from a template into the current
model. (D) To enable efficient gradient-based minimization of DNA
structure in internal coordinates, a kinematic structure (fold-tree) is
defined on the duplex that creates flexible rigid-body transforms
between bases (red arrows) so that downstream base pairing is
preserved by internal coordinate changes.

4566 Nucleic Acids Research, 2011, Vol. 39, No. 11



Interface modeling simulations

At the start of each interface fragment assembly simula-
tion, the backbone torsion angles of the protein are
initialized to extended values (f¼�150, c¼ 150,
o¼ 180), the DNA conformation is set to standard ideal
B-form, and the protein and DNA are separated in space.
The simulation proceeds in two phases: a low-resolution
phase, in which the protein sidechains are represented by
centroid pseudo-atoms and potential energies are
calculated using a knowledge-based energy function, and
a high-resolution phase, in which all atoms including
hydrogens are explicitly modeled and a modified version
of Rosetta’s standard all-atom potential function is used
(see below for details on the energy functions). The
low-resolution simulation consists of 7500 MC trials, re-
peatedly cycling through the three types of fragment
assembly moves. The length of the low-resolution simula-
tion was set in order to maximize the quality and conform-
ational diversity of the models, without over-optimizing
the knowledge-based potential energy function. The
high-resolution refinement simulation consists of 120
Monte Carlo plus Minimization (MCM) trials, in which
a perturbation to the system is followed by (i) sidechain
optimization at positions whose energy increased and (ii)
gradient-based minimization of all flexible degrees of
freedom. MCM moves were found to give better conform-
ational sampling in the highly rugged all-atom landscape
than standard MC moves (37). The perturbations are of
two types: protein backbone moves, in which the
backbone torsion angles of a small, randomly selected
set of positions are changed (36), and DNA sequence
mutation moves, in which a single base-pair in the
binding site is mutated. Energetically biased acceptance
of these DNA sequence moves gives rise to the sequence
preferences seen in the final DNA sequences of the
models. A single simulation takes roughly 30 min on a
2GHz processor.

DNA flexibility

Additional flexibility of the DNA duplex was incor-
porated into Rosetta’s rotamer optimization and
gradient-based minimization modules. DNA rotamers
consisting of small random perturbations to the existing
residue were built by applying the wriggling procedure (38)
to the four backbone torsion angles zi�1, ai, bi and gi,
as suggested by Siggers and Honig (21). The wriggling
procedure generates modifications to dihedral angles
that will minimize downstream coordinate changes.
During gradient-based minimization, a kinematic struc-
ture is defined on the DNA duplex (Figure 2D) that
allows internal coordinate changes to propagate while
preserving downstream base-pairing interactions. Using
Rosetta’s fold-tree internal coordinate framework (39), a
ladder of flexible, rigid-body connections is introduced
between the bases. With these connections in place, the
flexible degrees of freedom for the DNA are the rigid-body
transforms between bases and the backbone and sidechain
dihedral angles. To allow direct base–base rigid-body con-
nections, it is necessary to introduce chainbreaks between
successive DNA residues (for kinematics, the graph of

atomic connectivity must be acyclic). These chainbreaks
are tethered by addition of a pseudo-energy term to the
potential function. A rigid-body linkage is introduced
between the central base of the DNA binding site and
the closest protein position to define the complete kine-
matic tree for the system; with this framework, changes to
the protein dihedral angles induce conformational updates
that propagate outward from the interface.

Calculating relative binding affinities

In making predictions of DNA interaction specificity, our
goal is to calculate relative binding affinities of the target
protein for a large set of alternative binding sequences.
This is done by allowing transitions between DNA se-
quences during the simulations via the sequence
mutation MC moves; the relative frequencies with which
different sequences are sampled in the final models are
taken as indicators of their relative binding affinities.
Here we are implicitly using a thermodynamic cycle of
the form given in Figure 3 for the special case of two
sequences (11). To calculate ��G, the difference
between the two binding affinities, we can instead
compute the difference between the �Gmut values for
mutating from sequence 1 to sequence 2 in the bound
and unbound states. In principle, these two �G values
could be estimated from transition probabilities between
the two sequences in MC simulations of the bound and
unbound states. One challenge is that these simulations
would be inherently biased by the differing internal
energies of the base-pairs and base-steps: G–C base pairs
have greater electrostatic interaction energies due to an
additional Watson–Crick hydrogen bond; pyrimidine–
purine base steps have weaker stacking interactions than
purine–pyrimidine steps due to the geometry of B-form
DNA (40), etc. This would in turn lead to highly biased
and inefficient exploration of DNA sequence space,
although the difference in sampling frequencies between
the bound and unbound simulations could in principle
serve in estimating relative affinities, given sufficient
sampling. Our solution is to introduce a DNA-sequence-
dependent correction term (EDNA) to the potential energy
function that captures the unbound energy of a given
DNA sequence so as to balance sequence sampling in
the unbound simulations. Adding this term to the
energies of the bound and unbound systems in the cycle
in Figure 3 doesn’t change the �G’s of binding, but it does
change the �G’s of mutation; in particular the unbound
�G of mutation goes to 0.0, allowing us to calculate
��G of binding by estimating the �G of mutation in the
bound state. To capture base-pair and base-step energy

ΔGbound
mutΔGunbound

mut

ΔG1

ΔG2

ΔΔG = ΔG1 − ΔG2 = ΔGunbound
mut − ΔGbound

mut

Figure 3. Thermodynamic cycle used to calculate relative binding
affinities for two DNA sequences.
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differences, we parameterize EDNA as a sum of base-step
coefficients. The EDNA terms for the 10 base-steps were fit
in an iterative fashion by performing 1000 unbound DNA
simulations—each with the same number of MC sequence
mutation moves as a bound simulation—calculating
frequencies of the different base-steps, updating the EDNA

terms, and re-running the unbound simulations until
the base-step sampling frequencies converged to approxi-
mately equal levels. A similar approach has been used by
Endres and Wingreen (41) to estimate unbound energies,
although their unbound energy contribution is based on
base-step energies rather than sampling frequencies.

Binding specificity predictions for zinc finger proteins

To generate a binding specificity profile for a C2H2 ZF, we
first parsed the protein sequence into individual fingers
using the Pfam (43) zf-C2H2 profile hidden Markov
model. Binding simulations were conducted as described
above for each of the fingers individually. In each binding
simulation, we consider the DNA binding site to consist of
a 5 base-pair region centered on the canonical triplet. The
complete DNA molecule consists of the 5 base-pair
binding site together with an additional G:C base pair
on either side to provide structural context. The DNA
sequence of the binding site is randomized at the start of
each independent simulation and optimized during the
all-atom MC simulation through the energetically biased
acceptance of DNA mutation moves. Due to the limited
number of mutation moves attempted during each
simulation, the raw sequence preferences in the final
DNA sequences are rather weak. As an estimate of the
true binding preferences we boost the raw profile by
taking all frequencies to the sixth power and
renormalizing (this corresponds to a linear rescaling of
energies, under the mapping between probabilities and
energies given by the Boltzmann distribution). Note that
this boosting procedure doesn’t change the ordering of
the bases; instead it is designed to provide an estimate of
what the fully converged sequence preferences would be.
The choice of exponent is somewhat arbitrary, and was
based on inspection of frequency profiles from a limited
number of very long MC simulations. To facilitate com-
parison with experimental binding data, we computed a
position-specific frequency matrix (PFM) for the complete
protein by combining the binding profiles for the individ-
ual fingers as indicated in Figure 4. When combining
single-finger PFMs, internal fingers contribute only the
three core triplet columns, while terminal fingers contrib-
ute additional context on either side (Figure 4). To con-
struct a simple position-specific scoring matrix (PSSM)
from this PFM, we take the logarithm of the frequencies
after dividing by a uniform background of 0.25.

Potential energy functions

The potential energy function for the low-resolution phase
of the interface fragment assembly protocol has three
components: a DNA internal energy term, a protein
internal energy term and a protein-DNA interaction
term. To calculate the internal energy of the DNA, we
use a modified version of the database-derived potential

introduced by Olson et al. (44), and extended to base-pairs
by Morozov et al. (14). In these potentials, the internal
DNA energy is a harmonic function of canonical base-step
and base-pair parameters (roll, tilt, shift, etc); the force
constants for the potential are derived from statistical
analysis of base-pair and base-step geometry in crystal
structure DNA. We modified the original base-step
energy function to score base-to-base (i! i+1) inter-
actions rather than base pair–base pair interactions to
give a more fine-grained potential (double-helical
fragment insertions can introduce strand-specific strained
geometry at fragment junctions). The protein internal
energy is calculated using Rosetta’s standard low-
resolution potential function, which has terms capturing
van der Waals interactions, residue environment and
residue-pair preferences, and backbone torsion strain
(45). To calculate the protein–DNA interaction energy,
we parameterized a knowledge-based interaction potential
modeled on Rosetta’s protein potential that includes a
residue-environment term capturing each amino acid’s

Figure 4. Binding specificity predictions. To generate a PFM for a
poly-ZF protein, we perform binding simulations on individual ZF
domains and combine the results into a single specificity profile.
Simulation results for the 3-finger ZF protein Zif268 are shown. At
the top, a subset of the final protein–DNA interface models are
superimposed. Green ribbons are used to depict the protein, with key
specificity determining sidechains shown; the DNA is portrayed in stick
representation with a phosphate backbone ribbon. Carbons in the core
triplet binding site are colored red. Carbons in neighboring bases that
contribute to the final combined PFM are colored yellow. DNA
sequence preferences calculated from the final models in 1000 independ-
ent simulations are used to construct single-finger PFMs (middle),
which are combined into a binding profile for the complete protein
(bottom). PFMs are depicted as sequence logos using the program
WebLogo (42); structure images were generated with the PyMOL mo-
lecular graphics program.

4568 Nucleic Acids Research, 2011, Vol. 39, No. 11



propensity to occur at the protein–DNA interface, and an
amino acid–base interaction term derived from
frequencies of protein–DNA contacts. Details of the par-
ameterization can be found in the Supplementary Data.

A modified version of Rosetta’s all-atom potential
energy function (46) was used to calculate all-atom
energies during the high-resolution phase of the
fragment assembly protocol. Three changes were made
to the potential. As described above, a EDNA was added
to capture the energy of the DNA molecule in the
unbound state. Rosetta’s database-derived, residue-pair
potential (the fa_pair term) was replaced with a weak,
short-ranged explicit electrostatics term. In this term, a
simple, linearly increasing distance-dependent dielectric
(e¼ 20r) was used to model solvent screening effects,
with all interactions truncated at 5.5 Å, thereby preserving
the short-ranged nature of the all-atom potential.
Incorporation of the explicit electrostatics term in
addition to Rosetta’s orientation-dependent hydrogen
bonding potential (47) helps to prevent unfavorable
short-range electrostatic interactions, modulates the inter-
action strength of charged and polar hydrogen bonds, and
rewards electrostatic interactions with the phosphate
backbone. The third modification was to the Lazaridis–
Karplus (LK) implicit solvent model (48) used in Rosetta.
In this model, the interaction energy for two atoms
depends only on their distance and atom types, not on
their relative orientation. This neglects the fact that inter-
actions with solvent are anisotropic: polar atoms typically
have preferred hydrogen-bonding directions, for example.
We found that an isotropic solvation model did a poor job
of capturing the many stacking interactions seen at
protein–DNA interfaces (and the stacking of the DNA
bases themselves). In these stacking interactions, packing
around polar atoms is typically out of the plane of their
preferred hydrogen bonding interactions, so that these
may still be satisfied by forming hydrogen bonds within
the macromolecular system or with solvent. In the classic
LK model these packing interactions are as unfavorable
as directly occluding the hydrogen bonding groups.
We created a simple, orientation-dependent variant of
the LK model in which the isotropic solvation energy
for bringing an atom near a polar atom is multiplied
by a scaling factor based on the distance between
the desolvating atom and the nearest optimal water
location (details can be found in the Supplementary
Data). With this modification, the stacking interactions
found at protein–DNA interfaces are not considered to
be as unfavorable as interactions that directly prevent
polar atoms from forming hydrogen bonds with water.

Assessment of prediction accuracy

To assess the performance of the interface fragment
assembly protocol, we assembled a benchmark of C2H2

ZFs with available experimental binding data (Figure 7).
We chose ZF proteins of known structure with 2–4 ZFs,
and added to these a set of yeast 2-finger ZF transcription
factors of unknown structure whose binding specificity
had been profiled by protein binding microarrays (49).

We used two measures to assess the accuracy of ZF
structure predictions. To measure similarity in protein–
DNA interface orientations, we computed the Interface
Alignment Score (IAS) of Siggers et al. (50), which
quantifies and compares the spatial orientation between
the backbones of interface amino acids and their neigh-
boring bases. As a measure of interface sidechain accuracy
and successful recovery of specificity-determining
contacts, we calculated the fraction of native protein–
DNA hydrogen bonds also present in the model, restrict-
ing to hydrogen bonds involving major groove atoms in
the binding site.
To assess the accuracy of binding specificity predictions,

we used a simple metric that counted the number of pos-
itions at which the preferred base in prediction and experi-
ment agree. We also implemented a simplified variant of
the BLiC score, a recently introduced similarity measure
for comparison of PFM columns (51). The BLiC score is
based on the Jensen–Shannon divergence, a standard
measure of the distance between two probability distribu-
tions. The BLiC score has the attractive feature that simi-
larity between two perfectly flat columns is rewarded less
than similarity between two information-rich columns
(51); in addition, we have found that BLiC scores above
zero generally correspond to similar PFM columns,
allowing easy assessment of the numerical values. We
calculated the similarity score between two PFM
columns P and Q using the equation

BLiC ¼ JSDðPþQ;BÞ � JSDðP;QÞ; ð1Þ

where JSD(X, Y) equals the Jensen–Shannon divergence
between the probability distributions X and Y; B is the
uniform distribution (0.25, 0.25, 0.25, 0.25); P+Q is the
average of the two distributions P and Q. For each experi-
mental binding profile column, we assign P-values to
observed BLiC similarity scores for that column based
on the distribution of BLiC scores seen when comparing
10 000 random PFM columns to that experimental
column. Random columns were built by generating four
samples from a uniform distribution and normalizing their
sum to 1.0.

RESULTS

We have developed a structure-based approach for pre-
dicting the specificity of protein–DNA interactions. In
this approach, a large number of independent MC
folding and binding simulations are conducted, simultan-
eously sampling the conformation of the protein and
DNA as well as the DNA binding site sequence. The
binding site sequence is randomized at the start of each
independent simulation, and the MC moves by which we
explore sequence space are random; nonetheless, sequence
preferences emerge in the final models due to the energet-
ically biased acceptance of these sequence moves. By
incorporating a DNA-sequence-dependent energy term
into our potential energy function that explicitly
balances transition probabilities in the unbound state,
we are able to use these sequence preferences to estimate
relative binding affinities. For comparison with
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experimental binding profiles, we construct a PFM from
the base frequencies in the final models, although we note
that this represents only one projection of the full diversity
of optimized binding site sequences. As a test of our
approach, we have conducted binding simulations for a
collection of naturally occurring and engineered DNA
binding proteins in the C2H2 ZF family.

Fragment assembly of unbound DNA

We first asked whether the DNA fragment assembly
protocol is able to generate acceptable models of
unbound DNA duplexes. Recall that the double-helical
fragments that make up our DNA fragment library are
taken from crystal structures of protein–DNA complexes,
in which the DNA is often deformed by interactions with
the protein. We selected two high-resolution unbound
DNA crystal structures [1d49 (52) and 7bna (53)], contain-
ing 10 and 12 base pairs, respectively. For each target we
chose double-helical fragments from our library based on
sequence similarity to the DNA sequence just as in the
bound simulations. We then generated 1000 all-atom
models by low-resolution fragment assembly followed by
high-resolution refinement. The results are depicted in
Figure 5: the final models are similar to the corresponding
crystal structures, as judged by RMSD (Figure 5A) and by
visual inspection of the low-energy models (Figure 5B).
These similarity values are within the range seen in mo-
lecular dynamics simulations of unbound DNA duplexes
(54) (note that these fragment-rebuilding simulations have
no input knowledge of the native structure).

Structure prediction for C2H2 zinc fingers

We expected that accurate prediction of binding specificity
would depend on accurate recapitulation of bound con-
formations. To test the ability of the fragment assembly
protocol to predict protein–DNA interface structures we
conducted modeling simulations on a subset of the C2H2

ZFs in our benchmark set for which crystal structures
were available (15 individual ZFs in 5 proteins). For
each target, we generated 1000 models using the
fragment assembly protocol while holding the DNA
sequence fixed at the crystal structure sequence. Since no
sequence sampling is conducted, the accuracy of the final
models depends only on the potential energy function and
the conformational sampling algorithm, allowing us to
assess just these components of the full protocol. We
calculated the similarity of each model to the native struc-
ture using the IAS (50), which we found to be superior to
RMSD as a correlate of binding sequence prediction.
To assess whether the fragment assembly procedure was
able to improve upon the input templates, we calculated
the similarity to the native of all structures used as
fragment sources for each target. For 13 of the 15 cases,
the fragment assembly protocol was able to generate
models that were closer to the native structure than any
template (detailed results for all targets are given in
Supplementary Figures S3–S5). In order to make a fair
comparison, we selected only the lowest energy models,
taking a number equal to the number of fragment tem-
plates. The left panel of Figure 6 compares the median
similarity score for these models (green bars) to the
median similarity score of the input templates (blue
bars): in 13 of 15 cases, the low-energy models are more
similar to the native structure than the input templates
(the difference is negligible for the remaining 2 cases).
We also compared the similarity score of the models to
that of the input template with highest sequence identity
(purple bars; sequence identity was calculated over the
entire length of the finger); again the fragment-assembly
models showed greater similarity to the native.

For a subset of the targets, we conducted all-against-all
fixed-backbone homology modeling simulations, using
each target as a template for all other targets (81
target-template combinations). At the start of each simu-
lation, the protein and DNA sequences of the template
finger were mutated to match those of the target. The
interface sidechains were then optimized using a MCM
protocol that included rotameric sampling of protein

Figure 5. Fragment assembly of unbound DNA structures. (A) Scatter
plots of base RMSD to native (excluding terminal base pairs) versus
all-atom energy for models built by double-helical fragment assembly
followed by all-atom refinement. One energy unit is quivalent to
�1.3 k cal/mol. (B) Superposition of the 1d49 crystal structure model
(in stick representation, carbon atoms are purple) and the 25
lowest-energy fragment assembly models (in wireframe, with gray
carbon atoms).

Figure 6. Structure prediction for C2H2 ZF proteins. (A) Median IAS
similarities to the target for the fingers used as fragment templates
(blue), the lowest-energy fragment assembly models (green), and the
single template with the highest sequence identity to the target
(purple). (B) Fraction of native contacts recovered by the fragment
assembly models (green), and by fixed-backbone sidechain prediction
simulations starting from either the native backbone (red), all fragment
template backbones (blue), or the backbone of the template with
highest sequence identity to the target (purple).
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sidechains and DNA residues. This protocol was repeated
10 times to give 10 template-based models. For each of
these template-based models, and for each of
the fragment-assembly structure prediction models, we
counted the number of correctly predicted protein–DNA
hydrogen bonds involving major groove atoms in the
binding site (these protein–DNA contacts would be
expected to contribute strongly to binding specificity).
Supplementary Figure S6 shows cumulative histograms
of these recovered contacts for all 81 target-template com-
binations. The results are summarized in the right panel of
Figure 6, which shows the total fraction of native contacts
recovered by the fragment assembly models and the
template-based models. Not surprisingly, fixed-backbone
simulations starting from the target backbone itself
(‘self-template’) showed the highest recovery of native
contacts; the fragment assembly models were close
behind, out-performing both the median template and
the template with the highest sequence identity (note
that the target and all highly sequence-similar structures
are excluded from fragment selection).

Binding specificity prediction

Having demonstrated that the fragment assembly protocol
is capable of recapitulating native interface structures
and key specificity-determining contacts when given the
correct DNA binding site, we turned to the more
challenging problem of predicting binding specificity
de novo. Our benchmark set consisted of a total of 27
individual ZFs in 11 proteins—five of known structure
and six of unknown structure. For each individual finger
we generated 1000 models using the interface fragment
assembly protocol, starting each simulation with a
randomized binding site sequence and allowing the
DNA sequence to evolve throughout the simulation by
MC sequence exploration. PFMs were constructed from
the DNA sequences in the final models, and these PFMs
for individual fingers were combined to yield full PFMs
for the 11 target proteins (Figure 4). Figure 7 shows the
predicted PFMs depicted as sequence logos (42) beneath
the corresponding experimental binding data for the 11
benchmark proteins. Overall, the agreement between the
binding specificity predictions and the experimental data is
good. Focusing on the core triplet positions in each
binding site (81 positions total), the preferred base in pre-
diction and experiment match in 79% of cases. As a more
refined measure of profile similarity, we calculated the
BLiC score (51) for all triplet positions, as well as an
associated P-value. We found that 75% of the positions
had a positive BLiC similarity score, and 76% had an
associated BLiC P-value <0.05. We conclude that
binding preferences at 75–80% of the positions are well
predicted by the interface fragment assembly protocol.
Note that for the 6 proteins of unknown structure, these
simulations constitute a prediction for how the protein
binds to the DNA: by aligning the predicted binding spe-
cificity to the experimental binding specificity in Figure 7,
we are implicitly predicting the mapping between the in-
dividual fingers and the experimental profile.

To help assess the contribution of backbone flexibility
in the fragment assembly protocol, we conducted a
series of fixed-backbone, template-based binding specifi-
city prediction simulations. As in the structure prediction
comparison, we performed an all-against-all analysis of
9 individual ZFs, using each finger as a template for
fixed-backbone specificity predictions targeted at the
other fingers and itself. The results are given in Figure 8.
For 6 of the 9 targets, the fragment assembly predictions
(green bars) are better than any of the fixed-backbone
predictions, even those based on the crystal structure of
the target itself (‘self-template’), suggesting the importance
of backbone flexibility in assessing the energetic cost of
mutations away from the crystal structure DNA
sequence. If we exclude the self-template predictions, the
fragment assembly results are better in 7 of the cases
(recall that we exclude the structure being predicted as
well as any highly sequence-similar structures from
fragment selection). None of the predictions are successful
for the remaining two fingers, fingers 1 and 4 from YY1,
which represent challenging targets: both are outside the
highly specific portion of the binding motif [Figure 7 PFM
columns 1–3 (F4) and 10–12 (F1)]; in the YY1 crystal
structure, finger 1 lifts off the DNA and does not make
any hydrogen bonds or other obvious specificity deter-
mining contacts to the major groove.

Figure 7. Binding specificity predictions. For each benchmark protein,
the experimental binding profile is shown above the structure-based
specificity prediction. Experimental data sources are indicated in
brackets. PFM columns are numbered so that columns 1-3 correspond
to the last finger, columns 4-6 correspond to the second-to-last finger,
and so on (see Figure 4). For the three boxed columns, structural de-
terminants of binding preferences are illustrated in Figure 10.
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We also compared our structure-based approach
with three previously described and publicly accessible
algorithms for predicting ZF–DNA interactions: a
structure-based approach incorporating family-specific
amino acid–nucleotide interaction preferences learned
from experimental binding data [‘Kaplan05’ (30)]; Zinc
Finger Binding site database (ZIFIBI), which uses a
hidden Markov model to generate binding site predic-
tions (31); and a recent machine learning approach that
incorporates data on binding and non-binding DNA sites
through the use of a support vector machine [‘Persikov09’
(33)]. Given that experimental binding data for the
proteins of known structure were likely used to train one
or more of these methods, we restricted our comparison
to the six ZF proteins without solved structures whose
specificities were recently profiled by protein binding
microarrays (49). As it was not straightforward to
generate full PFMs for each algorithm, we focused on
the simple metric that counts the number of positions at
which the preferred base in prediction and experiment
agree (details of the comparison can be found in the
Supplementary Data). With this metric, over the set of 6
ZFs of unknown structure (36 positions), our method re-
covered 86% of the positions, Persikov09 also recovered
86%, and ZIFIBI recovered 75%. The Kaplan05 web
server was not able to locate all 12 of the ZF domains;
restricting to the subset of 9 ZF domains found, we re-
covered 89% of the 27 positions and Kaplan05 recovered
78%. It should be emphasized that these comparisons
involve a small number of positions, and have correspond-
ingly large statistical uncertainties; nonetheless, the
success of our high-resolution structural approach
suggests that it can make non-trivial predictions of ZF–
DNA interactions.

Specificity predictions for OPEN zinc-finger arrays

The engineered zinc finger protein TATAZF (55) was the
least successful target in our binding specificity prediction

benchmark. To assess whether engineered zinc finger
proteins are inherently more challenging than naturally
occurring zinc fingers, we conducted binding specificity
predictions on 401 3-finger ZF proteins generated by the
OPEN (Oligomerized Pool ENgineering) platform (35)
and available for download from the ZiFDB database
(56). For each protein, we downloaded the amino acid
sequence, the 9 base pair target site for which the
protein was selected, and a quantitative in vivo measure
of binding activity. Comparing the structure-based predic-
tions to the target sites, we found that the predicted
optimal base matched the target site base at 80% of the
positions (2889 of the 3609 positions, full results are given
in the Supplementary Table S1; note that the target site is
not necessarily the optimal binding site for each finger).
This level of accuracy agrees well with the results reported
above on a smaller set consisting primarily of naturally
occurring ZFs. We then asked whether we could predict
the experimentally measured level of activity seen for each
protein [fold activation over background of a reporter
gene in a bacterial 2-hybrid (B2H) assay, ‘B2H
fold-activation’]. We calculated a predicted binding score
for each target site by computing its match to a PSSM
derived from the final sequences in the fragment
assembly simulations. Figure 9 shows a scatter plot of
the predicted binding score (x-axis) versus the logarithm
of the experimentally determined B2H fold-activation.
Although there is considerable scatter, a correlation
between the predicted and experimentally observed
activities can be clearly seen (linear regression fit:
R2
¼ 0.23, P-value¼ 6.3e� 24). Shown in yellow are a

subset of ZFs with high experimental error (SD> 5),
which show larger deviations from the best-fit line. In

Figure 9. Strength of target-site match to predicted binding profile
correlates with in vivo activity (fold-activation of a reporter gene in a
bacterial 2-hybrid assay, see text) for 401 designed ZF proteins. For
each protein, we converted the structure-based PFM into a PSSM and
plotted the PSSM score of the selection target site against the experi-
mentally assayed binding activity as reported in the ZiFDB (56).
Yellow circles indicate proteins with large experimental error; red
circles represent a subset of proteins for which the experimental
activity is likely to be an underestimate (see text).

Figure 8. Comparison to fixed-backbone specificity predictions. BLiC
scores for the fragment assembly specificity predictions (green bars) are
compared to scores of fixed-backbone, template-based predictions
started from the target structure itself (red bars) or the template with
highest sequence identity to the target (purple bars), as well as the
median BLiC score for all non-self template-based predictions (blue
bars).
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red are a subset of ZFs whose target sites have higher
baseline levels of promoter activity, which may lower the
apparent fold-activation [Supplementary Data for Maeder
et al. (35)]; indeed, these ZFs all fall below the best-fit line.
Although these correlations between structure-based pre-
dictions and an in vivo biological readout are encouraging,
there is likely room for improvement: using a linear model
whose inputs are the experimentally determined KD values
for the component ZF modules, Sander et al. (57) were
able to achieve significantly more accurate (R2

¼ 0.64) pre-
dictions of B2H fold-activation for a set of 53
modularly-assembled three-finger ZF proteins.

In our initial examination of the modeling simulations
described above, there were several ZFs with high levels of
in vivo activity whose target sites nonetheless scored quite
poorly based on the structural simulations. Visual exam-
ination of the predicted and experimental sites revealed
that the target sites would score more highly if shifted in
the 30 direction by a single base. Closer examination of the
Supplementary Data for Maeder et al. (35) revealed that
these outliers were the results of a selection for a single site
(VF3540R), and that the authors had also concluded that
the ZFs in question bind to a shifted site. The target site
as reported in the ZiFDB was not updated, however,
making this an interesting ‘blind’ test of the utility of
structure-based binding prediction.

DISCUSSION

We have described a fragment-assembly protocol for pre-
dicting protein–DNA interface structures and binding
preferences. In this protocol, diverse models of protein–
DNA complexes are assembled from small pieces of
related and unrelated protein–DNA structures. These
models are taken as starting points for an all-atom, MC
refinement procedure that combines sequence mutation
moves in the DNA binding site with conformational
perturbations in order to simultaneously explore
sequence and structure space. Starting from an initial
pool of random binding sites, position-specific preferences
emerge in the final models through energetically-biased

acceptance of the DNA sequence moves. By incorporating
an unbound-state energy term into the potential function,
we are able to infer relative binding affinities from the
sampling frequencies of different DNA sequences in
these models.
We applied this interface fragment assembly protocol

to make binding specificity predictions for a benchmark
of 11 ZF proteins, 5 of known structure. Overall, these
structure-based predictions agreed reasonably well with
available experimental binding data, as judged by visual
and quantitative comparison of preferred bases and
sequence profiles (Figure 7). This agreement is
encouraging in light of the fact that each ZF is simulated
individually, without the structural context provided by its
immediate neighbors; this suggests a significant degree of
modularity in binding. By examining the modeled struc-
tures, we can form hypotheses about the structural deter-
minants of binding specificity. Figure 10 provides three
examples in which nucleotide preferences in the final
DNA sequences can be explained in terms of structural
features. Panels (A) and (B) illustrate well-known amino
acid-base preferences: Asn for A and Arg for G. These
preferences agree with previously described recognition
codes for ZF-DNA interactions (28). Figure 10C
provides an example in which the simple logic of a recog-
nition code is broken: Gln at position 6 had been
proposed to recognize A at triplet position 1, but in
both Usv1 and Nrg1 the experimentally observed prefer-
ence is for C. Examination of low-energy structural
models with C at position 1 shows that rather than
forming a canonical bidentate interaction (which would
be possible with an A), the Gln forms a pair of
hydrogen bonds that bridge the C at position 1 and a T
on the complementary strand that pairs with the A at
position 2. This A at position 2 is in turn determined by
Asn at helix position 3—as in Figure 10A—providing
an example of higher-order correlation between DNA-
contacting residues.
Examining the predicted and experimental profiles more

closely, a number of trends can be detected. First, there is
a tendency for the structure-based simulations to

Figure 10. Structural basis of binding specificity: determinants of nucleotide preferences in the fragment assembly models are analyzed at 3 sites in
the benchmark set. The base at the site of interest is colored yellow; interacting sidechains are colored green; additional interacting bases and
sidechains shown in pink and purple. (A) Asn at helix position 3 (‘N3’) makes a bidentate hydrogen bond with A at position 2 (‘A2’) in the Ypr013c
site. (B) Arg at position �1 can form a bidentate hydrogen bond with G at position 3 in the Mig1 site. (C) Correlation between helix positions breaks
the simple logic of a ZF recognition code: Gln at helix position 6 forms a pair of hydrogen bonds with C at position 1 and with the T paired with an
A at position 2, when Asn is also present at helix position 3. Gln at helix position 6 had been proposed to specify A rather than C at position 1 (28).
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over-predict T at the first position of the triplet (Rph1
column 1; TATAZF columns 4 and 7; 1mey column 7;
YY1 columns 1, 4, and 10; Tramtrack column 1). This
contrasts with a tendency to under-predict T at the
second and third positions. Examination of low-energy
models revealed that the ZF often approaches the phos-
phate backbone more closely in simulations than in the
experimentally determined structures, which allows the
methyl group of a thymine at triplet position 1 to form
favorable packing interactions with a conserved aromatic
residue in the core of the finger. Adding neighboring
fingers might correct this tendency through direct or
linker-mediated interactions; it is also possible that the
solvation parameters for the phosphate oxygens could be
adjusted to preserve the hydration levels seen in native
structures. A second interesting trend can be seen at
position 0 (the position one base upstream of the first
triplet): all seven of the experimental profiles from the
Uniprobe protein-binding microarray database have a T
at position 0, as do 14 of the 15 predicted profiles. This
position is not typically directly contacted by the protein
in models or ZF crystal structures. In models, there is a
tendency toward large propeller twisting when a T occurs
at this position, suggesting that the apparent experimental
preference for T may be due to effects on DNA conform-
ation rather than direct protein–DNA interactions.
There are several limitations to the approach as cur-

rently implemented. Modeling the binding preferences of
individual fingers in isolation is likely an important source
of disagreement between experiment and prediction.
We chose to model only single fingers for reasons of com-
putational efficiency—smaller systems are much faster to
simulate—as well as ease of interpretation, however we are
currently investigating simulations in which two or more
fingers are modeled simultaneously. As with all structure-
based methods, prediction accuracy is determined in part
by the quality of the underlying potential energy function.
In this work we have used Rosetta’s standard all-atom
potential function, with modifications for working with
protein–DNA complexes. Although Rosetta’s force field
has been validated in a variety of modeling and design
applications, it is likely that it can be improved for
modeling protein–DNA interactions. As an example, our
model for the unbound-state energy of a DNA sequence
depends only on the base-step composition of that
sequence. It is likely that there are higher-order
sequence-dependencies, for example A-tract conform-
ational preferences (10), that can only be captured by con-
sidering longer-range interactions. A final limitation
concerns not the modeling simulations themselves,
but the post-processing to generate PFMs. This process
implicitly assumes that binding preferences are
position-independent, which is unlikely to be true in
general (58). It should be possible to analyze the final se-
quences without making this assumption, particularly in
cases where high-throughput experimental binding data
from protein binding microarrays (59) or high-throughput
sequencing of in vitro selected sequences (60) permit direct
comparison of more subtle sequence preferences.
Notwithstanding these limitations, we expect that the

interface fragment assembly protocol, and its application

to the study of ZF–DNA interactions, will have a range of
applications. The protocol itself can be extended to other
families with multiple template structures. Indeed, analysis
of protein–DNA interface variation within three other
families of DNA-binding proteins (homeodomain, b-ZIP
and b-HLH proteins, Supplementary Figure S2) indicates
that interface geometry is as conserved in these families as
in the ZF family, suggesting that the interface fragment
assembly approach may yield useful predictions for them
as well. The protocol can also be applied to aid in under-
standing the binding preferences of ZF proteins that
contain more than four fingers, whose interactions with
DNA are significantly more complex. In the case of the
insulator protein CTCF, for example, the core binding site
consists of only 12 base pairs (61), although the protein
contains 11 zinc fingers (which could in principle recognize
more than 30 base pairs). Similar complexity is seen for
other ZF proteins, for example NRSF (62) and Blimp-1
(63). Structural modeling offers a promising avenue for
unraveling these complexities.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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