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A B S T R A C T

Coronary atherosclerotic lesions exhibit a low-pH chronic inflammatory response. Due to insufficient drug re-
lease control, drug-eluting stent intervention can lead to delayed endothelialization, advanced thrombosis, and
unprecise treatment. In this study, hyaluronic acid and chitosan were used to prepare pH-responsive self-as-
sembling films. The hydrogen sulfide (H2S) releasing aspirin derivative ACS14 was used as drug in the film. The
film regulates the release of the drug adjusted to the microenvironment of the lesion, and the drug balances the
vascular function by releasing the regulating gas H2S, which comparably to NO promotes the self-healing ca-
pacity of blood vessels. Drug releasing profiles of the films at different pH, and other biological effects on blood
vessels were evaluated through blood compatibility, cellular, and implantation experiments. This novel method
of self-assembled films which H2S in an amount, which is adjusted to the condition of the lesion provides a new
concept for the treatment of cardiovascular diseases.

1. Introduction

Intervention therapy is the most commonly used treatment for
atherosclerotic stenoses. This method is less traumatic, less risky, has a
quick recovery, and is effective in clinical practice. However, an
atherosclerotic lesion provides a complex pathophysiological environ-
ment, including a low pH, high oxidative stress, and chronic in-
flammation [1]. An interventional treatment inevitably causes damage
to local tissues, leading to complications such as inflammation, intimal
hyperplasia, late thrombosis, and in-stent restenosis [2,3]. The emer-
gence of drug-eluting stents, which release drugs at the site of the lesion
was a revolutionary development in the field of interventional thera-
pies. Usually, drugs such as paclitaxel [4] and rapamycin [5] for in-
hibition of tissue proliferation, heparin [6] to prevent blood clotting
and thrombosis, or VEGF [7] (vascular endothelial growth factor),
which supports neovascularization, are used. However, most drug-
loaded stents show burst release after implantation, which causes non-
satisfying over-und underdosing over time. Moreover, clinically used
anticancer drugs, paclitaxel [8] and rapamycin [9], inhibit the pro-
liferation of various cell types, including the endothelial cells, what

limits the success in interventional therapy. In the early stages, it can
inhibit intimal hyperplasia, prevent inflammation, and restenosis.
However, even after the effect of the drug diminishes, the new blood
vessels do not completely heal, leading to further complications. In
addition, the commonly used stent material, polylactic acid produces
acidic degradation products, which causes local acidosis [10,11].
Therefore, materials with better biocompatibility are needed. In sum-
mary, currently, there are several challenges related to the bio-
compatibility of the materials used for stents and stent coatings, the
effects of stent and loaded drugs on biological systems, and the con-
trolled release of the drugs from the coatings in vascular disease in-
tervention therapies.

Current drug-carrying stents are primarily either drug-eluting or
degradable polymers. Drug-eluting stents are implaned with the drug
loaded within the polymer coating or directly on the surface of the
stent, and these stents have not the ability to intelligent drug release.
Seo et al. [12] used biocompatible polyurethane to make films which
could be loaded with the lipophilic drug paclitaxel drugs. Polyethylene
glycol (PEG) incorporated as a pore forming agent, varying amounts of
PEG resulted in different degrees of porosity, which allowed tailoring
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the rate of drug release. Most of the studies highlight the drug release
capability of degradable polymer scaffolds [13,14]; hence, a drug re-
lease model of degradable polylactic acid scaffold was established [15].
These scaffolds rely primarily on the degradation of the polymer to
prevent burst release of the drug. The development of nanoparticles,
which are loaded onto the scaffold provided a flexible strategy for
sustained release of drugs by loading polymer micelles onto a scaffold
gel network [16] or by promoting the adsorption of the micelles on the
surface of the stent by electrostatic interactions [17]. However, a con-
trolled release of the drugs adapted to the condition of the micro-
environment of the lesion for a precise and personalized treatment is
difficult to achieve. A feedback-control anticoagulant release system
with coagulation-triggered heparin release has been suggested else-
where [18,19]. Ideally, the implanted stent should not only inhibit
thrombosis and promote endothelialization at an early stage but inhibit
hyperplasia in the later stages of treatment.

Dopamine for coating of biomaterials has been extensively studied
in the recent years. Dopamine can be grafted onto macromolecules to
achieve greater stability, oxidation resistance, and adhesion [20]. The
polycation chitosan and the polyanion hyaluronic acid have been
proved that they are good biocompatibility materials used in en-
dovascular [21]; hyaluronic acid is a physiological component of the
extracellular matrix. Lee et al. grafted dopamine onto modified chitosan
and hyaluronic acid, easily made an environmentally friendly film that
can be used as a bag similar to polyvinyl one, and increased the mu-
coadhesion of high molecular weight chitosan [22–25]. Our group has
previously reported a layer-by-layer self-assembled film with improved
stability compared to unmodified film, and responsitivity to pH changes
using the two dopamine-modified materials [26].

The microenvironment of the angioplasty site shows inflammation
and is slightly acidic compared to normal tissue [1]. The pH-responsive
layer-by-layer self-assembled coating was loaded with a drug. We
suggested that this coating acts as in intelligent system to release the
drug specifically in the acidic and inflammatory environment of the
intervention.

In recent years, there has been more research on new drugs for
application in drug-eluting stents. Statins, which are common clinical
lipid-lowering drugs, are used in drug-eluting stents to eliminate
atherosclerotic plaques [27]. They also provide an anti-inflammatory
effect through the induction of autophagy at the site of atherosclerosis
[28]. Besides synthetic drugs, enodgeneous mediators gain attention,
because they integrate smoother in physiological regulation processes.
NO is an endogenous gaseous signaling molecule that regulates vaso-
dilation, controls smooth muscle cell proliferation, inhibits platelet
aggregation and additionally exhibits antibacterial and anti-in-
flammatory functions [29]. The researchers prepared a catalyst on the
scaffold [30], which can catalyze the release of NO to improve antic-
oagulation and prevent late restenosis of the stent.

H2S is another gaseous signaling molecule that plays an important
role in maintaining cerebral vascular homeostasis [31], protecting and
regulating the central nervous system [32]. H2S is used to promote
angiogenesis [33] and anti-inflammatory mediators [34]. Similar to
NO, high concentrations of H2S are cytotoxic [35,36], but low con-
centrations are protective in the cardiovascular system. In contrast to
NO, it does not form toxic peroxynitrite and other toxic degradation
products [37,38]. H2S can regulate the oxidative metabolism of low-
density fatty acids [39], the vascular inflammatory response [40],
vascular remodeling [41,42], and thrombosis [43] at atherosclerotic
sites and in-stent restenosis. However, the dosage cannot be controlled
by conventional injection or oral administration of H2S. An exogenous
H2S donor as a drug would facilitate the application of this molecule for
the treatment of cardiovascular diseases. Previous studies have shown
the potential of the aspirin derivatives ACS14 and its metabolite
ADTOH as H2S donors [44]. ACS14 was shown to release H2S, while
maintaining the antithrombotic effects of aspirin. Our group synthe-
sized this drug and loaded it into the coating on the surface of stents

and tested the release profile of the drug. We demonstrated that ACS14
had cytoprotective and anti-inflammatory capabilities and therefore
suggest it for use in the field of cardiovascular intervention [45].

In this study, catechol-modified chitosan and catechol-modified
hyaluronic acid formed a pH-responsive coating on the surface of do-
pamine-modified 316 L stainless steel by layer-by-layer self-assembly.
Subsequently, we loaded the H2S donor ACS14, into the coating. The
pH response of the film, its ability to release the drug adjusted to the
microenvironmental pH, the cytocompatibility, and the blood com-
patibility of the film were evaluated in vitro. The effect of ACS14 on the
atherosclerotic site was further evaluated by in vivo implantation ex-
periments. These results may indicate a new direction for the devel-
opment of controlled drug release systems in cardiovascular disease
interventional therapy and highlight the value of H2S in the field of
cardiovascular disease treatment.

2. Materials and methods

2.1. Materials

Chitosan (100–200 mPa s,> 95% deacetylated), 3, 4-
Dihydroxyhydrocinnamic acid (DHPA, 98%), N-(3-
Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC, ≥
98.0%), 2-Morpholinoethanesulfonic Acid (MES, 99%), Dopamine hy-
drochloride (DOPA), Trizma® base, N-hydroxysuccinimide (NHS, 98%),
hyaluronic acid (1.2 million Da), phosphate-buffered saline (PBS, pH
7.4), concentrated hydrochloric acid (HCl), and sodium hydroxide
(NaOH) were purchased from Sigma-Aldrich. 1 mol/L HCl and 5 mol/L
NaOH solutions were prepared. Aspirin derivatives were synthesized
from methyl anthranil trisulfide and acetyl salicyl chloride (ACS14)43.
The process of preparation of catechol-modified chitosan and hya-
luronic acid has been reported previously [26].

2.2. Preparation of drug-loaded LBL self-assembled film

ACS14 solutions at concentrations of 10 μmol/L, 100 μmol/L, and
1000 μmol/L were prepared with a mixture of DMSO and PBS. After
dopamine deposition on the smooth surface of the 316 L stainless steel
(diameter = 1.0 cm), it was immersed for 10 min each time in Catechol
chitosan (C-CS) solution (1 mg/mL in Reverses Osmosis (RO) water),
Catechol hyaluronic acid (C-HA) solution (1 mg/mL in RO water), and
ACS14 solution, sequentially. Further, it was immersed in RO water for
2 min to remove loosely bound C-CS and C-HA. After 5 rounds of de-
position in each solution, three types of self-assembled films were fi-
nally prepared with different concentrations of ACS14.

2.3. Water contact angle measurement

The static water contact angle (WCA) of different samples, including
drug-loaded coating prepared using different concentrations of ACS14
and 316 L stainless steel, were measured using an OCA35 goniometer
(Dataphysics, Germany) with a fixed droplet volume of 5 μL. For the
accuracy of the results, all measurements were repeated at least 5 times
with 3 parallel samples.

2.4. SEM imaging

We analyzed the uniformity and compactness of the film surface to
understand its morphology. Self-assembled coatings prepared by ACS14
at concentrations of 0 μmol/L, 10 μmol/L, 100 μmol/L, and 1000 μmol/
L were observed at 3000 × magnification by scanning electron mi-
croscopy.

2.5. XPS analysis of drug-loaded coatings

In order to confirm the successful preparation of the drug loading of
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the self-assembled film, the elements contained in the drug-loaded
coatings prepared with different concentrations of ACS14 were quan-
tified by X-ray photoelectron spectroscopy (PHI-5400, PerkinElmer,
USA).

2.6. Drug release profiles of drug-loaded coatings prepared with different
concentrations of ACS14 in PBS solution at different pH

The drug release profile of the layered self-assembled film prepared
with ACS14 at concentrations of 10 μmol/L, 100 μmol/L, and
1000 μmol/L were tested in PBS solution at pH 6.5, and pH 7.4.
Samples were placed in 15 mL PBS, and put into constant temperature
shaker at 37 °C. 500 μL of the liquid was taken at 0.25, 0.5, 1, 2, 4, 7,
11, 16, 23, 30, 45, 60, 90, 120, 145, 180 days, measuring the

absorbance at 460 nm using a microplate reader and comparing with a
standard curve of defined concentrations, and 500 μL of the corre-
sponding PBS solution was again added.

2.7. In vitro evaluation of platelet adhesion and activation

Fresh whole blood was obtained from the Blood Center of Chengdu,
China. The samples were placed in 24-well cell culture plates. Further,
70 μL of platelet-rich plasma (PRP), which was obtained by centrifuging
the blood samples at 1500 rpm for 15 min, was added to each sample.
After incubating for 45 min at 37 °C in the incubator, the samples were
washed with NaCl solution and then fixed with 2.5% glutaraldehyde.
After staining with rhodamine, the samples were observed under a
fluorescence microscope (Olympus, IX 51) to calculate the platelet
adhesion area. The samples were gradually dehydrated and analyzed by
SEM to observe the adhesion and activation level of the platelets.

2.8. In vitro evaluation of fibrinogen adhesion and its conformational
changes

The samples were placed in a 24-well cell culture plate, and 70 μL of
platelet-poor plasma (PPP) was added to each sample. After incubating
for 1 h at 37 °C in the incubator, the samples were washed with PBS and
blocked with 10 mg/mL bovine serum albumin (BSA) in PBS for 30 min.

Fig. 1. (a) Water contact angle of different ACS14 concentration coatings (n = 5, ***p < 0.001). (b) SEM images of ACS14 coatings at different concentrations. (c)
XPS full spectrum of drug-loaded coatings prepared with different concentrations of ACS14, and (d) high-resolution spectra of the S element content. (e) Drug release
of the drug-loaded coatings in PBS at pH 6.5. (f) Drug release curve of drug-loaded coating in PBS at pH 7.4.

Table 1
The elemental content of the drug-loaded coating prepared by different con-
centrations of ACS14.

Sample (ACS14 μmol/L) C (%) N (%) O (%) S (%)

0 56.65 4.91 38.09 0.35
10 58.02 4.68 36.74 0.56
100 60.51 4.75 33.52 1.22
1000 62.64 4.25 31.29 1.82
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After washing with PBS, 70 μL of antibody I (mouse anti-human
fibrinogenγchain monoclonal antibody) and 70 μL of antibody II (HRP-
labeled goat anti-rabbit polyclonal antibody) were added to the two sets
of samples separately. The samples were detected by using ELISA kit
(Hufeng Biotechnical Co., Shanghai, China).

2.9. Ex vivo blood circulation experiment to test for thrombogenicity

All procedures were performed in accordance with the Animal
Protection Agreement of the China Animal Protection Association and
Southwest Jiaotong University, and all ethical guidelines for experi-
mental animals were followed. The experimental procedures were si-
milar to those described [46]. The samples (1.2 cm × 1.0 cm) were
rolled up and put into a heparinized polyvinyl chloride (PVC) circula-
tion catheter with best possible attachment to the inner wall. After
anaesthetizing the adult New Zealand white rabbits (approximately
3.0 kg), the left carotid artery and the right jugular vein of the rabbits
were isolated. Further, the arteries and veins were connected to a PVC
catheter to complete a blood circuit. After half an hour, the samples
were removed from the animal and washed with NaCl solution. The
samples were then photographed and weighed. Finally, they were ob-
served with SEM, after being fixed in glutaraldehyde solution (2.5% in
PBS) and dehydrated gradiently.

2.10. Cell growth on samples

Endothelial cells (ECs) and smooth muscle cells (SMCs) were iso-
lated from human umbilical vessels. The umbilical cord was obtained
with consent from a pregnant woman from the hospital. Macrophages
were obtained from the abdomens of SD rats. ECs were cultured in
DMEM/F12 supplemented with 15% FBS. SMCs were cultured in

DMEM/F12 supplemented with 20% FBS. Macrophages were cultured
in DMEM/F12 supplemented with 7% FBS.

The samples were placed in a 24-well cell culture plate, and 1 mL
cell suspension (SMC, EC, and Macrophages) was added to each well.
The densities of suspensions of SMC, EC, and Macrophages were
2 × 104 cells/mL, 8 × 103 cells/mL, and 3.5 × 104 cells/mL, re-
spectively. CCK-8 was added to the 24-well cell culture plates after the
cells were incubated for 4 h, 1 day, 3 days, and 5 days at 37 °C in a cell
incubator with 5% CO2. After the 4 h incubation, 150 μL of the cell
culture medium of the 24-well cell culture plate was transferred into a
96-well cell culture plate, and the OD at 450 nm was measured with a
microplate reader. Cell culture medium from Macrophages, incubated
for various periods of time was tested for the expression of TNF-α and
IL-10 using ELISA. Similarly, for cell culture medium of EC, NO release
from EC was tested by Sievers 280i chemiluminescence NO analyzer
(NOA 280i). The cells that were incubated for 4 h, 1 day, 3 days, and 5
days at 37 °C with 5% CO2 in a 24-well cell culture plate, were washed
with PBS (pH 7.4) and fixed with 2.5% glutaraldehyde. After staining
with rhodamine, the samples were observed under a fluorescence mi-
croscope.

2.11. In vivo animal implantation experiment

Male Sprague-Dawley rats (n = 15, approximately 300 g) were used
for this experiment. The samples were prepared through LBL self-as-
sembly on 316 L wires, as described above. Briefly, the rats were an-
esthetized with pentobarbital sodium, and the samples were implanted
into the lumen of the abdominal aortas. After 1 month, the samples
were removed and fixed with 4% paraformaldehyde, and stained with
Hematoxylin-Eosin (HE).

Fig. 2. (a) Fluorescence of platelets on the surface of samples prepared with different concentrations of ACS14, and (b) SEM morphology of platelets on the sample
surface (n = 3, **p < 0.01, ***p < 0.001). (c) Platelet surface adhesion area of samples prepared with different concentrations of ACS14. (d) Fibrinogen
denaturation. (e) Fibrinogen adhesion. (n = 3, *p < 0.05, **p < 0.01, ***p < 0.001).
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2.12. Statistical analysis

All experiments were performed at least three times, and the results
are expressed as mean ± standard deviation (SD). One-way analysis of
variance (ANOVA) was used to analyze the experimental results, and
the statistical difference between two groups was considered significant
when p < 0.05.

3. Results and discussion

3.1. Preparation of pH-responsive drug-loaded coatings with different
concentrations of ACS14

We previously demonstrated the pH-responsiveness of the chitosan-
hyaluronic acid coating without drug loading by QCM-D [23]. In this
study, the drug was loaded into the coatings, and the properties of the
coatings were tested. Water contact angles of layer-by-layer self-as-
sembled films with ACS14 at concentrations of 0, 10, 100, and
1000 μmol/L were observed, as shown in Fig. 1(a). The hydrophilicity
of bare stainless steel and of the LBL coating was lower than that of the
dopamine deposited stainless steel surfaces. ACS14 used in the drug-
loaded coating caused a slightly dose-dependent increase of the water
contact angles of the coating.

The surface topography of these coated samples was studied at
3000 × magnification, as shown in Fig. 1(b). The unloaded coating
surface was relatively smooth and dense without any cracks. However,
a few irregularly distributed protrusions of the surface with< 1 μm

diameter were found, which may be due to the uneven distribution of
dopamine and polyelectrolyte deposition during the assembly process.
In contrast, the surface of the drug-loaded coating produced more
convex deposits, and as the concentration increased, more substances
bulged on the surface, indicating that the drug ACS14 was successfully
loaded onto the coating, although it was probably not distributed
homogeneously. To further confirm the result, the contents in the drug-
loaded coating were detected by X-ray photoelectron spectroscopy, as
shown in Fig. 1(c). The coatings prepared with different concentrations
of ACS14 contained peaks of C1s, N1s, O1s, and S2p. The high-re-
solution spectrum of elemental sulfur (Fig. 1(d)) and the elemental
content of each sample (Table 1) indicated that the amount of sulfur
contained in the drug coating increased with increasing concentrations
of ACS14. This increase was by 0.35%, 0.56%, 1.22%, and 1.82% in the
coating, which shows that the coating was successfully loaded with
different concentrations of the drug. Furthermore, we observed that the
drug loading of the coating increased when a higher concentration of
ACS14 was used in the preparation.

3.2. Drug release profile of self-assembled drug coatings

The coatings were immersed in PBS at pH 6.5 and pH 7.4 for 0, 0.25,
0.5, 1, 2, 4, 7, 11, 16, 23, 30, 45, 60, 90, 120, 145, and 180 days, and
the drug release profile at 460 nm was measured using a microplate
reader, as shown in Fig. 1(e and f). There was almost no burst release of
the drug-loaded coating at both pH values, and the drug was mainly
released during the first 60 days (the fastest release rate was between

Fig. 3. (a) Schematic diagram of the experimental design. (b) The cross-section and inner views of different samples. (c) Coagulation of different samples observed
with SEM. (d) Blood flow obstruction rate and (e) thrombus weight.(n = 3, *p < 0.05, **p < 0.01, ***p < 0.001).
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10 and 40 days). The drug release rate at pH 6.5 was higher than at pH
7.4. The pH dependence was more pronounced with increased ACS14
loading of the coating.

The drug release profiles indicated that the drug release was easier
in a weakly acidic environment (pH 6.5) than at pH 7.4. This could be
explained as follows: when the coating, which is in a balanced ioniza-
tion state, is placed in an acidic environment at pH 6.5, providing an
excess of H+ ions in the surrounding solution, the equilibrium is dis-
turbed, forming gaps between the macromolecules, releasing the drug.
The pKa of chitosan in the coating material is 6.2, what changes the
stability of self-assembled coating of chitosan and hyaluronic acid in a
weakly acidic environment, and the degree of ionization is more severe,
helping in drug release [47]. These results demonstrate the ability of
the coating to release the drug triggered by the pH value in its micro-
environment.

3.3. Evaluation of blood compatibility of the drug-loaded coatings

The drug-loaded coatings prepared at different concentrations of
ACS14 were incubated with PRP for 45 min, and the platelets stained
with rhodamine were observed under a fluorescence microscope at
400× magnification, as shown in Fig. 2(a). The platelet morphology on
different drug-loaded coatings are shown in Fig. 2(b). Compared with
the surface of the drug-loaded coatings, the aggregation and the amount
of platelets on 316 L stainless steel were significantly higher. The pla-
telets on stainless steel were mostly dendritic, which indicates high
activation. Compared to the bare stainless steel surface, the platelet
adhesion area on the coating without drug was significantly reduced,
which means that the coating had a good ability to inhibit platelet
activation and adhesion. The coating prepared with 10 μmol/L of
ACS14 appeared useful concerning platelet adhesion. However, coat-
ings prepared with 100 μmol/L and 1000 μmol/L ACS14 tended to
promote platelet adhesion and activation. The opposite effect may be
due to the varying concentrations of aspirin contained in ACS14 at the

Fig. 4. (a) Fluorescence of endothelial cells growth after 4 h, 1D, 3D, 5D on different concentrations of drug-loaded coatings. (b) Adhesion area after 4 h of
implantation on different samples. (c) CCK-8 testing endothelial cells viability map (n = 3, *p < 0.05, **p < 0.01, ***p < 0.001).
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site of action. Aspirin has inhibits the formation of TXA2 and PGI2
[48−50]. TXA2 and PGI2 increase vascular smooth muscle contraction
and platelet aggregation [51].

Blood coagulation can be affected by adhesion and denaturation of
fibrinogen. The γ chain exposed by degenerated fibrinogen promotes
platelet activation [52]. Therefore, the adhesion and denaturation of
fibrinogen on the surface of the material is an important parameter for
evaluating blood contact with materials. As shown in Fig. 2(d and e)
The fibrinogen on the surface of the self-assembled coating was hardly
denatured and adherent. The coating prepared with 10 μmol/L of
ACS14 promoted the inhibitory effect, but excessive ACS14 (coating
prepared with 100 μmol/L and 1000 μmol/L of ACS14) did not. The
result was similar to that of platelet adhesion and activation.

3.4. Thrombogenicity test by ex vivo blood circulation

The ex vivo blood circulation test can intuitively illustrate the blood
compatibility of the coatings, especially their anticoagulant ability.
Fig. 3(a) shows the design of ex vivo blood circulation. The cross-sec-
tions and inner views of different samples after 30 min blood circula-
tion in the arteriovenous shunt model are shown in Fig. 3(b). Coagu-
lation on the bare stainless-steel surface was higher than on all of the
coated surfaces. Further observation of the samples by SEM showed that
there was thrombus formation on the surface of the bare stainless steel,
whereas, the coating surface without the drug and the coating surface
prepared by 10 μmol/L of ACS14 were almost free of red blood cells and
platelets. Furthermore, there were some red blood cells and platelets
adherent on the surface prepared by 100 μmol/L and 1000 μmol/L of
ACS14, which is consistent with results of the platelet adhesion and
fibrinogen denaturation assays. Quantitative analyses of blood flow
obstruction rate (Fig. 3(d)), and thrombus weight (Fig. 3(e)) confirm
this observation. These results show that layer-by-layer self-assembled
coating and the coating prepared with 10 μmol/L of ACS14 had a better
blood compatibility and did inhibit coagulation.

3.5. Cell culture experiment on the surface of the coating

The cytocompatibility of the coating is essential when it is in contact
with the body vasculature. The coating should promote rapid en-
dothelialization at the implant site for decreasing the occurrence of
restenosis [53,54]. Thus, a drug-loaded coating in the interventional
treatment of atherosclerosis should promote the adhesion and pro-
liferation of endothelial cells and inhibit the proliferation of smooth
muscle cells and macrophages [55].

Endothelial cells were seeded on the samples for 4 h, 1 day, 3 days,

and 5 days. After staining with rhodamine, the morphology of the cells
was observed with a fluorescence microscope (Fig. 4(a)), and it was
observed that endothelial cells significantly increased with incubation
time. The ECs on the surface presented typical cobblestone morphology.
The surface of the sample containing the drug ACS14 had more en-
dothelial cell growth than the drug-free coating and the bare stainless
steel. However, the number of endothelial cells decreased when the
drug concentration was too high. The number of cells on the materials
after 2–4 h incubation in each group was comparable without sig-
nificant difference after 4 h incubation, as shown in Fig. 4(b). The
metabolic activity of the endothelial cells was measured by the CCK-8
test, and the cell proliferation curve was obtained. Fig. 4(c) shows that
the coating prepared with 100 μmol/L ACS14 had the best effect of
promoting endothelial cell proliferation. These two results show that
the drug influences the proliferation of ECs, but has almost no sig-
nificant effect on EC adhesion. This might be caused by H2S regulating
cystathionine b-synthase (CBS), which regulates vascular endothelial
growth factor (VEGF), promoting EC proliferation [56].

In general, endothelial cells release signaling molecules such as NO,
which have anticoagulant and anti-inflammatory effects and the ability
to promote endothelial proliferation [35]. NO release was determined
in the culture medium as shown in Fig. 5. The amount of NO released in
the medium with 100 μmol/L ACS14 was the highest, indicating that
the drug at this concentration acting on the endothelial cells promotes
the largest release of NO by promoting endothelial cell proliferation.
This is consistent with the activity and fluorescent imaging results of
the endothelial cells which were highest on the surface of drug-loaded
coatings prepared with 100 μmol/L of ACS14.

Activated macrophages release factors to accelerate the athero-
sclerotic inflammatory responses and thus, it is necessary to detect the
proliferation and activation of macrophages on the surface of different
samples. Stained with rhodamine, the surfaces of macrophages were
observed under a fluorescence microscope, as shown in Fig. 6(a). The
macrophages proliferated rapidly, and there was significant aggrega-
tion and cell rupture in 3 days. Fig. 6(b) displays the adhesion area of
the macrophages after 4 h incubation on the surface of samples with
different drug concentrations. The rhodamine fluorescence staining
after 4 h incubation shows that the cells were uniformly distributed and
the adhesion area was not significantly different between the groups. As
shown in Fig. 6(c), the macrophages on the coating prepared with
100 μmol/L of ACS14 had the slowest proliferation rate, determined by
CCK-8 assay, and low aggregation rate with mild rupture, indicating
that this concentration of ACS14 inhibits the proliferation of macro-
phages. Although ACS14 inhibits the proliferation of macrophages, it
has no significant effect on their adhesion. The ability of inhibiting
proliferation of macrophages might be due to the anti-inflammatory
effect of ACS14. S-diclofenac (ACS15), an H2S donor, is proven to be
anti-inflammatory [57].

Macrophages secrete a large number of cytokines in response to
changes in the external environment, such as IL-1 and TNF-α, which are
pro-inflammatory factors, and in later stages VEGF and IL-10, which are
pro-recovery factors. These cytokines limit the inflammatory process
and support tissue regeneration. Fig. 6(d–g) show the expression levels
of TNF-α and IL-10 on the surface of samples with different con-
centrations of loaded drug. It can be seen that the expression levels of
TNF-α was almost the same in day 1, except the sample prepared by
0 μmol/L. In day 3, the TNF-α expression on the surface prepared by 10
and 100 μmol/L ACS14 were higher than SS group and prepared by
0 μmol/L ACS14. The amount of IL-10 on the surface prepared with
1000 μmol/L ACS14 in day 1 was significant higher than that of other
groups, indicating that higher concentrations of ACS14 inhibit the se-
cretion of inflammatory factors and promotes more anti-inflammatory
factors in short time. In day 3, the IL-10 expression on the surface of SS
group and prepared by 0 μmol/L ACS14 were lower than other groups
which also indicated ACS14 influenced the production of inflammatory
factors, especially the samples prepared by 10 μmol/L ACS14. In day 5,

Fig. 5. Quantitative assessment of NO concentration in endothelial cell culture
medium on different samples after culturing for 1, 3 and 5 days (n = 3,
*p < 0.05, **p < 0.01, ***p < 0.001).
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Fig. 6. (a) Fluorescence of macrophages after 4 h, 1D, 3D, and 5D on different samples. (b) Adhesion area of macrophages after 4 h of implantation on different
samples, and (c) CCK-8 cells activity maps tested (n = 3, *p < 0.05, **p < 0.01). (d) ELISA kit detected the secretion of TNF-α from macrophages on different
drug-coated surfaces, (e) ELISA kit detected the secretion of interleukin IL-10 on different drug-coated surfaces (n = 3, **p < 0.01, ***p < 0.001).
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the TNF-α and IL-10 expression on the surface prepared by 1000 μmol/
L ACS14 were obvious decreased. It might caused by the MA phenotype
changing with time [58–60].

After implantation of the scaffold in the atherosclerotic region,
smooth muscle cells proliferate and migrate easily, causing in-stent
restenosis. Therefore, smooth muscle cells were cultured on the surface
of the sample with varied incubation periods, and their activity and
proliferation status were detected. The rhodamine stained smooth
muscles were observed under a fluorescence microscope, as shown in
Fig. 7(a). Smooth muscle cells proliferate rapidly with time. After three
days, the morphology of the cells could change, due to excessive pas-
saging or planting density. Fig. 7(b) shows the adhesion ability of
smooth muscle cells after incubation for 4 h on the surfaces of different
drug-loaded coatings. The number of smooth muscle cells on the surface
of the drug-loaded coating prepared with 100 μmol/L ACS14 was lower
when compared with the other groups. Furthermore, the number of
smooth muscle cells on the surface of the drug-loaded coating was
significantly lower than that on the surface of stainless steel. As shown
in Fig. 7(c), ACS14 inhibited the growth of smooth muscle cells ac-
cording to the CCK-8 assay. These results show that ACS14 inhibits the
adhesion and proliferation of SMCs. This might be caused by H2S,
which inhibits VSMC proliferation by regulating mitochondrial fission
[61]. It could also be due to the endogenous CSE or H2S regulating the
PLC-IP3 receptor and Ca2+/Calmodulin signaling pathways, which

further inhibits the proliferation of SMCs [62]. Some studies have re-
ported that S-diclofenac (H2S donor) inhibited rat vascular smooth
muscle cell proliferation [63].

In summary, the cell compatibility of the drug-loaded coating pre-
pared with 100 μmol/L ACS14 is the best choice to fit the required
conditions.

3.6. In vivo animal implantation experiment

In order to further explore ACS14 and a novel coating for bioma-
terials for cardiovascular therapies, different concentrations of drug-
loaded coated filaments were implanted into the abdominal aorta of SD
rats. The surface was wrapped with neovascular tissue due to cell mi-
gration and adhesion after 30 days. After removing the sample, they
were stained with HE. As shown in Fig. 8(a–f) The arteries at the im-
plantation site of each sample were free of thrombus clogging. Ad-
ditionally, the surface of the sample was covered with a layer of
neointimal membrane, which was attached to the vessel wall. A deep
layer was formed around the stainless steel and around samples with
0 μmol/L, and 10 μmol/L concentrations, which could be mainly caused
by the inflammatory response of monocytes (macrophages).

The quantitative analysis is shown in Fig. 8(f). After the implanta-
tion of the bare stainless steel into the artery, smooth muscle hyper-
plasia was observed with an average area of the new tissue in the cross-

Fig. 7. (a) Fluorescence of smooth muscle cells after 4 h, 1D, 3D implantation on different concentrations of drug-loaded coatings. (b) Adhesion area of smooth
muscle cells after 4 h of implantation on different samples, and (c) cells detected by CCK-8 activity map. (n = 3, *p < 0.05, **p < 0.01).
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section above 1.74 × 105 μm [2]. However, samples with 100 μmol/L
and 1000 μmol/L ACS14 showed relatively thinner tissue area, ap-
proximately 0.63 × 105 μm [2] and 0.71 × 105 μm [2], respectively.
The new tissue area of the sample prepared with the 100 μmol/L ACS14
was significantly smaller than that of the SS group and the coating
group without drug. This indicates that at a certain concentration of
ACS14, the proliferation of smooth muscle cells can be inhibited and, it
might be due to H2S or aspirin, which inhibits excessive proliferation of
smooth muscle and reduces size of the new tissue [45,56].

4. Conclusion

In this study, we designed an intelligent, pH responsive, coating
capable of releasing the gaseous mediator H2S. The film was prepared
by self-assembly of catechol-modified chitosan and catechol-modified
hyaluronic acid on the surface of dopamine-coated stainless steel. The
coating was loaded with different concentrations of the aspirin derived
H2S donor ACS14. The film can intelligently release the drug in re-
sponse to a weakly acidic environment. Moreover, the surface of the
drug-loaded coating can inhibit platelet adhesion and activation, as
well as fibrinogen adsorption and denaturation. At the same time, in-
hibiting the proliferation of smooth muscle cells and macrophages re-
duced the inflammatory response at the interventional site and pro-
moted the formation of new blood vessels. We found a U-shaped
response curve of fibrinogen adsorption, platelet adhesion, endothelial
growth and smooth muscle cell suppression, depending on the loading
concentration of ACS14 in the coating with an optimum at
10–100 μmol/l. The design of this intelligent coating provides a po-
tential method for the rational use of drugs in cardiovascular inter-
ventional therapy, and H2S acts as a gas signaling molecule for the
treatment of atherosclerosis, in order to provide a novel mechanism to
solve in-stent restenosis.
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