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Abstract: Trauma is one of the most common conditions in the biomedical field. It is important to
identify it quickly and accurately. However, when evanescent trauma occurs, it presents a great
challenge to professionals. There are few reports on the establishment of a rapid and accurate
trauma identification and prediction model. In this study, Fourier transform infrared spectroscopy
(FTIR) and microscopic spectroscopy (micro-IR) combined with chemometrics were used to establish
prediction models for the rapid identification of muscle trauma in humans and rats. The results
of the average spectrum, principal component analysis (PCA) and loading maps showed that the
differences between the rat muscle trauma group and the rat control group were mainly related
to biological macromolecules, such as proteins, nucleic acids and carbohydrates. The differences
between the human muscle trauma group and the human control group were mainly related to
proteins, polysaccharides, phospholipids and phosphates. Then, a partial least squares discriminant
analysis (PLS-DA) was used to evaluate the classification ability of the training and test datasets.
The classification accuracies were 99.10% and 93.69%, respectively. Moreover, a trauma classification
and recognition model of human muscle tissue was constructed, and a good classification effect
was obtained. The classification accuracies were 99.52% and 91.95%. In conclusion, spectroscopy
and stoichiometry have the advantages of being rapid, accurate and objective and of having high
resolution and a strong recognition ability, and they are emerging strategies for the identification
of evanescent trauma. In addition, the combination of spectroscopy and stoichiometry has great
potential in the application of medicine and criminal law under practical conditions.
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1. Introduction

In recent years, the accurate judgment of trauma has occupied an important position
in biomedical research [1,2]. In fact, not only can it provide direction for the treatment
of patients with trauma in clinical medicine [1–4], but it can also provide clear clues and
evidence for criminal review in terms of biological evidence [5,6]. In the process of forensic
inspection, there is a phenomenon that has long been a problem in the judicial personnel;
i.e., when the human body has permanently ceased its bodily functions and lost all vital
activities, under the joint action of irreversible tissue autolysis and external bacteria, the
tissue form of the body disappears and enters a state of disorder, and the possible trauma is
buried. We originally named this form of trauma “evanescent trauma”. When evanescent
trauma occurs, the traditional morphological methods that have been relied on can no
longer meet the needs of diagnosis, which causes great frustration and forms obstacles
to judicial personnel. Removing the shackles of traditional methods and identifying new
methods may solve evanescent trauma discrimination.

From the 1990s to the present time, vibration spectroscopy has made great progress in
the field of biological fluid analysis, showing its advantages of accuracy, speed and user
friendliness [7–9]. Some studies have shown that the use of Fourier transform infrared
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spectroscopy combined with chemometrics obtains good classification results for blood-
stains [10–14], semen spots [15–17], pulmonary edema fluid [15,18–20] and saliva [15,21–23].
Cai et al. [24] used a combination of infrared spectroscopy and chemometrics to analyze and
discriminate brain tissue damage in mice during postmortem examination. Zhang et al. [25]
used microscopic infrared technology to perform a spectral imaging analysis of rat post-
mortem muscle tissue, classified and discriminated red blood cell hemoglobin and proposed
that the double-concave disk shape of red blood cells disappeared after 4 days of post-
mortem placement of rats. All these studies show the advantages of infrared spectroscopy
and stoichiometry in the field of biological evidence. However, there is no comprehensive
and accurate judgment for discriminant analyses of evanescent trauma.

Therefore, the focus of this study was to develop a broader, more accurate, and
more systematic technique for identifying and analyzing muscle evanescent trauma using
attenuated total reflection (ATR) Fourier transform infrared spectroscopy (FTIR), as well as
microscopic infrared spectroscopy (micro-IR) combined with appropriate chemometrics.
This method integrates fresh and evanescent trauma to build a more complete trauma
recognition model. In addition, human muscle samples were also used in this study to
establish the trauma recognition model, which is more in line with the actual needs.

2. Results and Discussion
2.1. Macroscopic and Microscopic Visualization

In traditional trauma identification and judgment, macroscopic observation and mi-
croscopic HE staining are commonly used, and the gold index of muscle tissue trauma is
determined; that is, muscle cells are broken irregularly, and red blood cells can be seen
in the intercellular space. In this study, the macroscopic and microscopic images of the
trauma group and the control group at different times, that is, the macroscopic observation
and HE staining, were compared and displayed. HE staining is shown in Figure 1, and the
macroscopic observation is shown in Figure S1. The macroscopic observation showed that,
in the early stages of injury (0d and 1d), muscle contusion and massive bleeding occurred,
and after 5d, there was a large amount of corrupt fluid, dried tissue and shapeless tissue. In
the control group, except the early bleeding of the injury, a similar phenomenon of decay
decomposition could be seen.
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Figure 1. Microscopic visualization of HE staining in trauma group and control group at different
time points. (a–e) The observation of the wound group under the HE staining microscope. The
rose red color shows the cytoplasm and intercellular stroma, blue shows the nucleus, and the black
arrow indicates the bleeding area and red blood cells. (f–j) The observation of the control group
under the microscope of HE staining. Rose red is the cytoplasm and intercellular stroma, and blue is
the nucleus.

The results of the HE staining showed that, at the early stages of injury, that is, at
0d and 1d, there was a bleeding area, a large number of red blood cells in the space of
the muscle tissue, broken muscle fibers and clearly visible muscle nuclei. At 5d, only



Int. J. Mol. Sci. 2022, 23, 13489 3 of 11

a vague outline was seen in the morphology of the myocytes, no red blood cells were
seen in the interstitial space, and the nuclei of the myocytes disappeared. At 10d and
15d, the normal morphology of the myocytes disappeared under the microscope, turning
into homogeneous red staining or even disorder. This may be due to the loss of all life
activities of the body, such as that of intracellular lysosomes; that is, intracellular organs
containing a series of proteolytic enzymes and other digestive enzymes are digested by
their own enzymes, causing organelle membrane rupture, releasing a large number of
digestive enzymes into the muscle cells and burying evidence that can identify muscle cell
damage. At the same time, we thought there might be another reason for this, whereby
the decomposition of external bacteria was also involved. We refer to this form of trauma
as “evanescent trauma”, in which the trauma to the tissue becomes unidentifiable or even
undiagnosable.

2.2. Spectral Characteristic Peaks and Changes in Time Sequence

In this study, we preliminarily judged and analyzed the mean spectrogram between
the trauma group and the control group. Some of the spectral peaks of the focus studies are
recorded in Table 1. As shown in Figure 2a, the peak spectral differences between the trauma
group and the control group are mainly concentrated in the regions of 1700–1500 cm−1,
1500–1200 cm−1, 1200–900 cm−1 and others. These major peak differences may suggest that
the difference in contribution between the trauma group and the control group depends
on the Amide I band, Amide II band, nucleic acids, carbohydrates and others. In order to
visually display the spectral differences in this region, the focus of this study was adjusted
to the spectral range of 1800–900 cm−1, namely, the biological fingerprint region [26],
which provides the maximum information of compounds in biological samples. Figure 2b
shows that the main differences occurred in the four regions of 1100–1040 cm−1, 1402 cm−1,
1570–1510 cm−1 and 1695–1620 cm−1. Among them, 1695–1620 cm−1 is due to the unshared
electron pair on the nitrogen atom and the p-π conjugate of the carbonyl group, so the
νC=O stretching frequency decreases, indicating the Amide I band; 1570–1510 cm−1 is due
to the in-plane deformation vibration of NH2, indicating the Amide II band; 1402 cm−1 is
the symmetric CH3 bending modes of the methyl groups of proteins; and 1100–1040 cm−1

is the stretching of the P=O symmetric of the >PO2
− groups of nucleic acids, hinting at

phospholipids.

Table 1. Peak component assignment.

Wavenumber (cm−1) Assignment

~1011–1009 Stretch C-O, carbohydrates

~1100–1040 Stretch P=O symmetric of the >PO2
− groups of nucleic acids,

phospholipids
~1201 PO2

− asymmetric, phosphate I
~1239–1238 Asymmetric PO2

− stretching
~1243 ν(PO2

−) asymmetric stretching of phosphodiesters
~1338–1337 CH2 wagging

~1402 Symmetric CH3 bending modes of the methyl groups of proteins
~1449 Asymmetric CH3 bending of the methyl groups of proteins

~1467–1465 CH2 scissoring mode of the acyl chain of lipid, cholesterol-methyl band
~1570–1510 Amide II
~1695–1620 Amide I

~1714 C=O thymine
~1739–1738 ν(C=O), polysaccharides, hemicellulose

In this study, the difference in the mean spectra between the trauma group and the
control group at different times was also noted, as shown in Figure 2c,d. We found that the
above peaks changed with time. For example, in the trauma group, the peak absorbance
of the Amide I band (1695–1620 cm−1) was in the following order: 1d > 0d > 5d > 10d
> 15d; the peak absorbance of the Amide II band (1570–1510 cm−1) was in the following
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order: 15d > 5d > 10d > 1d > 0d; and the order of the absorption peak of the symmetric
CH3 bend (1402 cm−1) was as follows: 10d > 15d > 5d > 1d > 0d. In the control group, it
was found that the peak order of the Amide I band (1695–1620 cm−1) was consistent with
that of the trauma group. The peak absorbance of the Amide II band (1570–1510 cm−1) was
in the following order: 15d > 10d > 5d > 1d > 0d. The order of the peak absorbance of the
symmetric CH3 bend (1402 cm−1) was in the following order: 15d > 10d > 5d > 1d > 0d.
This shows that, as time progresses, the trauma factor is not completely masked, and the
differences in some groups can still be determined using spectroscopy.
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Figure 2. Average spectrogram and peak diagram of biological fingerprint area of trauma group and
control group. (a) Mean spectrogram of trauma group and control group; (b) biometric fingerprint
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trauma group at different times; (d) mean spectrogram of the control group at different times.

2.3. Classification Model of Rat Muscle Trauma Based on ATR-FTIR

In this study, PCA, an unsupervised discrimination method, was used for analyses. As
can be seen in Figure 3a, the distribution of the samples in the trauma group was uniform
and scattered, while that in the control group was concentrated, mainly distributed on
the left, upper right and lower right of the figure. The PCA analysis results show that the
interpretation variation in the spectral data score plots of the trauma group and the control
group was about 97% on PC1 and PC2, and we speculate that the reason why the two
groups could not be completely separated might be the placement time. However, there
was no coincidence between the trauma group and the control group, indicating that there
were differences between the two groups. In the loading map of PC1, we noticed some
significant load absorption peaks, which might play an important role in explaining the
differences between the two groups (Figure 3b). Among them, 1714 cm−1 is C=O thymine,
suggesting that nucleic acid may be involved; 1560 cm−1 is Amide II, suggesting that
proteins may be involved; 1466 cm−1 is the CH2 scissoring mode of the acyl chain of lipid,
the cholesterol-methyl band, and 1402 cm−1 is the symmetric CH3 bending modes of the
methyl groups of proteins, suggesting that proteins may be involved; and 1010 cm−1 is a
stretch C-O, suggesting that carbohydrates may be involved. In general, the differences
between the trauma group and the control group might be related to proteins, lipids, nucleic
acids, carbohydrates and their metabolites.
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Figure 3. Classification model of rat muscle trauma and its accuracy index. (a) PCA scores in
the direction of PC1 and PC2 of the trauma group and the control group. The red markers are
trauma group, and the green markers are control group. (b) Loading plot on PC1 from PCA analysis,
marked with significant peaks. (c) Trauma classification model and sensitivity and specificity in-dexes
established based on training sets of trauma group and control group. The red markers are trauma
group, and the green markers are control group. (d) Trauma classification prediction model and
related evaluation model indexes established based on the test sets of trauma group and control
group. The red markers are trauma group, and the green markers are control group.

In order to identify the observed values between the groups and the influencing factors
that may lead to the differences between the groups, PLS-DA was selected as a classification
technique to establish a trauma classification model of rat muscle tissue based on ATR-FTIR.
Eight LVs were selected, and the PLS-DA model was constructed based on the average
value of the minimum CV and Cal classification errors. In Figure S2a, we found a certain
trend of separation between the trauma group and the control group in the LV1 and LV2
directions, which, at the same time, corroborated the results in Figure 3a. In Figure 3c, the
red dashed line indicates whether the sample is the trauma or control group, the red mark
above the threshold line is the trauma group, and the green mark below the threshold is
the control group. The sensitivity and specificity of the classification of rat trauma were
0.958 and 0.970, respectively. As shown in the ROC curve in Figure S3a, the accuracy of
the classification model was 99.10%. This shows that the PLS-DA classification model is a
robust model.

To further test the predictive power of this supervised classification model, we loaded
the externally validated datasets into the PLS-DA model. As shown in Figure 3d, the
dashed red line is the border. The red diamond above the border is the trauma group,
and the green rectangle below the border is the negative control group. The prediction
results showed that the classification results of the test dataset were all 0.852 (sensitivity
and specificity), and the accuracy rate was 93.69% (Figure S3c), which also indicates the
robustness and usability of the muscle trauma classification model.

2.4. Classification Model of Human Muscle Trauma Based on Micro-IR

In order to be more in line with the actual situation, the PCA analysis was performed
on the datasets collected using micro-infrared spectroscopy, and the results are shown in
Figure 4. In the direction of PC1 and PC2, the difference between the trauma group and the
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control group was explained by about 72.5%. The distribution of the scores between the
trauma group and the control group showed a certain regularity; that is, according to the
trend from concentration to dispersion, the distribution of the trauma group marked with
green was from the bottom right to the top left, while the distribution of the control group
marked with red was from the bottom left to the top right (Figure 4a). To some extent, there
was a tendency for the two groups to separate, and the differences may be concentrated
in PC1 and PC2. In the load diagram, in the direction of PC1 (Figure 4b), we noticed
1662 cm−1, 1557 cm−1, 1338 cm−1, 1239 cm−1 and 1201 cm−1. Among them, 1662 cm−1 and
1557 cm−1 are Amide I and Amide II, respectively; 1338 cm−1 is CH2 wagging; 1239 cm−1 is
asymmetric PO2

− stretching; and 1201 cm−1 is PO2
− asymmetric, phosphate I. In the load

diagram, in the direction of PC2 (Figure 4c), we noticed 1738 cm−1, 1449 cm−1, 1243 cm−1

and 1089 cm−1. Among them, 1738 cm−1 is ν(C=O), polysaccharides and hemicellulose;
1449 cm−1 is the asymmetric CH3 bending of the methyl groups of proteins; 1243 cm−1 is
the ν(PO2

−) asymmetric stretching of phosphodiesters; and 1089 cm−1 is the stretching of
the P=O symmetric of the >PO2

− groups of nucleic acids and phospholipids. In summary,
proteins, polysaccharides, phospholipids and phosphates might be related to the main
differences between the trauma and control groups in human muscle samples.
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Figure 4. Classification model of human muscle trauma and its accuracy index. (a) PCA scores in the
direction of PC1 and PC2 of the trauma group and the control group. The green markers are trauma-
positive group, and the red markers are negative control group. (b) Loading plot on PC1 from PCA
analysis, marked with significant peaks. (c) Loading plot on PC2 from PCA analysis, marked with
significant peaks. (d) Trauma classification model and sensitivity and specificity in-dexes established
based on training sets of trauma group and control group. The green markers are trauma-positive
group, and the red markers are negative control group. (e) Trauma classification prediction model
and related evaluation model indexes established based on the test sets of trauma group and control
group. The green markers are trauma-positive group, and the red markers are negative control group.
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Similarly, PLS-DA was selected to determine the factors influencing the differences
between the groups, and at the same time, a human muscle tissue trauma classification
model was established based on micro-IR. Six LVs were selected to construct the PLS-DA
model. In Figure S2b, we found a certain trend of separation between the positive and
negative groups in the LV1 and LV2 directions, which, at the same time, corroborated the
results in Figure 4a. In Figure 4d, the red dashed line indicates whether the sample is
the trauma or control group, the green above the threshold line is labeled as the trauma
group (Pos), and the green below the threshold is labeled as the control group (Neg). The
sensitivity and specificity of the human muscle trauma classification were 0.962 and 0.970,
respectively. As shown in the ROC curve of Figure S4a, the accuracy of the classification
model was 99.52%.

To further test the predictive ability of the supervised classification model, externally
validated datasets were loaded into the PLS-DA model. As shown in Figure 4e, the dashed
red line is the border. The green mark above the border is the trauma group, and the red
mark below the border is the negative control group. The prediction results showed that
the classification results of the test dataset were 0.868 and 0.903 (sensitivity and specificity,
respectively), and the accuracy was 91.95% (Figure S4c), which also indicates the robustness
of the muscle injury classification model.

3. Materials and Methods
3.1. Animal Model Establishment and Sample Preparation

This research was approved by the Laboratory Animal Care Committee of Xi’an Jiao-
tong University and complied with the recommendations in the Xi’an Jiaotong University
Guide for the Care and Use of Laboratory Animals. In this study, 120 SPF healthy adult
male Sprague Dawley (SD) rats, weighing 220–260 g, were purchased from the Labora-
tory Animal Center of Xi’an Jiaotong University. All rat models of muscle trauma were
performed under 2% isoflurane air anesthesia.

A total of 120 adult SD male rats were randomly divided into a muscle trauma group
and a negative control group, with 60 rats in each group. Before the experiment, the animals
were adapted to the modeling room for 1 h and provided with an adequate diet. After the
successful induction of anesthesia, closed contusion of the left lower limb gastrocnemius
muscle was induced by free-falling percussion (conditions of self-made strike device:
weight 340 g). After successful modeling, the rats were fed normally for 1 h, and then all
the rats were sacrificed by cervical dislocation. After the rats were sacrificed, the trauma
group and the negative control group were placed in an incubator (temperature: 25 ± 1 ◦C;
humidity: 50 ± 5%) for 0d, 1d, 5d, 10d and 15d, with 12 rats in each group. Among them,
10 rats were used for ATR-FTIR spectroscopy detection, and the other 2 rats were used for
hematoxylin and eosin staining (HE), that is, macroscopic and microscopic visualization. A
total of 220 muscle samples were collected at the corresponding time points, among which
100 samples were used to collect spectral data, 20 samples were used for HE staining, and
the remaining 100 samples were stored in an ultra-low temperature refrigerator at −80 ◦C
for repeated experiments.

In addition, we also collected 32 human muscle samples, including 16 cases of trauma
muscle tissue and 16 cases of negative muscle tissue from the same individual. Among
them, 8 cases of trauma muscle tissue and 8 cases of negative muscle tissue were cultured
in vitro in a constant temperature and humidity chamber for 4 days, and all samples were
used to collect spectral data. It should be noted that the rat muscle samples used for
ATR-FTIR infrared detection need to be homogenized, and the human muscle samples for
microscopic infrared spectroscopy were processed using a freezing microtome. The cut
sections were deposited on infrared transparent calcium fluoride (CaF2) slides for spectral
collection. The remaining samples were stored at −80 ◦C for repeated testing. It should be
emphasized that the muscle samples were collected in accordance with the guidelines of
the Laboratory Animal Care Committee of Xi’an Jiaotong University and with informed
written consent from the immediate family of each donor and the relevant institutions.
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3.2. Spectral Collection and Data Preprocessing

Spectral data from the rat samples were acquired using a Nicolet 5700 FTIR spectrom-
eter (Thermo Fisher Scientific, Waltham, WA, USA), and a diamond crystal ATR (Thermo
Fisher Scientific, Waltham, WA, USA) was equipped for spectral acquisition. After each
background collection, 1 uL of the prepared muscle homogenate sample was added to the
spectral probe drop wise. Spectra were collected over a range of 900 to 4000 cm−1, with a
resolution of 4 cm−1 and 32 scans. In order to minimize errors caused by unevenly added
samples, each sample was analyzed 9 times (each analysis of 9 repeated spectra) and then
averaged to form a spectrum representing one sample. Finally, a total of 900 spectral data
were obtained by ATR infrared spectrum detection. Spectra were recorded using OMNIC
software version 8.0 (Thermo Fisher Scientific, Waltham, WA, USA).

Spectral data from the human samples were collected using a Varian 660-IR spectrome-
ter coupled to a Varian 620-IR spectrometer imaging microscope (Agilent Technologies, CA,
USA). A liquid-nitrogen-cooled mercury-cadmium-telluride (MCT) focal-plane array (FPA)
detector consists of 4096 pixels arranged in a 64 × 64 grid format. Spectra were collected
between 3950 and 950 cm−1, with a spectral resolution of 4 cm−1 for 32 sample spectral
scans and 64 background spectral scans. The background spectrum was selected as a blank
area of each CaF2 slide, and it was automatically subtracted from each spectrum before
the sample tissue spectrum was taken. Each tissue section with an area of 352 × 352 µm2

sampled from a typical tissue area was scanned at a pixel resolution of 5.5 × 5.5 µm2,
which contained 4096 spectra. After that, quality tests were assigned to each infrared image,
including sample thickness tests and signal-to-noise ratio tests. In the sample thickness
test, spectra from regions with little or no tissue and too-thick tissue were discarded. The
upper and lower thresholds were defined as 1.6 and 0.2, respectively.

Next, the rat muscle spectrum and human muscle spectrum were cut into the 1800–
900 cm−1 region, namely, the biometric fingerprint region. After that, Savitzky–Golay
(SG) smoothing was used, and standard normal variables (SNVs) were applied to selected
spectral regions in order to reduce the effects of light scattering and sample thickness.
Finally, baseline correction and average center correction were performed to solve the
spectral overlap problem [27].

In addition, it should be noted that 70% of the rat muscle data detected by ATR-FTIR
were used for modeling, and the remaining 30% were used for external validation. Similarly,
of the human sample data examined by microscopic infrared spectroscopy, 75% were used
for modeling, and the remaining 25% were used for external validation.

3.3. Multivariable Statistical Analysis and Software

In the current field of chemometrics, pattern recognition mainly consists of unsu-
pervised and supervised patterns [27]. The unsupervised pattern, which groups data
structures but does not provide training criteria, is implemented algorithmically. The
method of classifying and identifying new unknown samples by using the information
contained in the samples is called the supervised method. In this study, the unsupervised
and the supervised methods were used to analyze the spectral data of the rat muscle and
human muscle, respectively.

The principal component analysis (PCA) used in this study is a common algorithm
used to reduce dataset dimensions. By searching the orthogonal direction with the largest
dispersion, the distribution of each sample is identified in the multidimensional space of
the original variable. Linear models are built based on this rule, and principal components
(PCs) can be extracted from the original data. In addition, this recognition mode can retain
the main information in the original data. In simple terms, this model uses the projection
of the sample on a given PC, shows the difference in the data through a score map and
combines the load map with the corresponding score map to judge the contribution degree
of the variable to the total variation [27,28]. In this study, the principal component analysis
was used to analyze the muscle samples with different placement times so as to determine
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the contribution of trauma as a variable to the total variation and to provide a new strategy
for identifying muscle evanescent trauma.

However, since PCA is an unsupervised analysis method, it cannot distinguish the
contribution of each individual sample from that of all samples to the model. If the
differences between samples are large and the differences within groups are small, this
method can clearly distinguish the differences between samples. However, if the differences
between groups are small and the differences within groups are large, it is difficult for PCA
to detect and distinguish the differences between groups. In addition, if the differences
between groups are small and the sample size of each group is large, the group with the
larger sample size will play a major role in influencing the model [27–30].

In summary, the supervised categorical discriminant method chosen in this study was
the partial least squares discriminant analysis (PLS-DA), which can solve these problems
in PCA. Similarly, it is an analysis method that is frequently used in research to handle
the classification and discrimination of multivariate data. The idea of the PLS method
is to construct orthogonal score vectors (latent variables or principal components) by
maximizing the covariance between the independent variable data and the respondent
dataset so as to fit the linear relationship between the independent variable data and the
respondent data. The difference between PLS and PCA is that PLS decomposes both the
independent variable X matrix and the respondent variable Y matrix, and it uses covariance
information in the decomposition, which enables the dimensionality reduction effect to
extract intergroup variation information more efficiently than PCA.

All spectral data were analyzed using MATLAB R2020b (The MathWorks, Natick, MA,
USA) and PLS Toolbox 7.9 (Eigenvector Research, Wenatchee, WA, USA).

4. Conclusions

Preliminary studies have shown that the combination of FTIR spectroscopy, micro-
scopic infrared spectroscopy and advanced stoichiometry is an accurate and novel strategy
for determining vanishing muscle trauma, especially in realistic forensic practice. In this
study, the differences between the trauma group and the control group, as well as the
changes in the time-series data of the two groups, were analyzed by means of an average
spectrum of rat muscle, and it was concluded that the differences between the two groups
might lie in the proteins, nucleic acids, carbohydrates and others. The differences between
the proteins, lipids, nucleic acids, nucleic acids and their metabolites were determined
by PCA. The result is basically consistent with the conclusion obtained from the average
spectrum. Based on the PLS-DA algorithm and the training dataset comprising 70% of the
rat muscle samples, a rat muscle trauma recognition model was established. The sensitivity
and specificity of the model were 0.958 and 0.970, respectively. The accuracy was 99.10%.
We then verified the robustness of the model using an external test dataset that accounted
for 30% of the total data. The classification results of the model were 0.852 and 0.852
(sensitivity and specificity, respectively). The accuracy was 93.69%.

At the same time, an identification model of the human muscle trauma recognition
model was established. According to the results of the PCA score map and the load map,
we believed that proteins, polysaccharides, phospholipids and phosphates might be related
to the main differences between the trauma and control groups in human muscle samples.
In addition, the classification results of the model were 0.962 and 0.970 (sensitivity and
specificity, respectively), and the accuracy was 99.52%. The classification results of the
external test dataset were 0.868 and 0.903 (sensitivity and specificity, respectively), and the
accuracy was 91.95%. The PLS-DA classification model is robust and fits well, and it has
good application prospects in forensic practice.

However, the situation encountered in actual judicial practice is much more complex.
This study only considers the samples placed under constant temperature and humidity
conditions, without considering the influence of environmental factors (such as humidity).
At the same time, the differences between the trauma group and the control group were
only limited to biological macromolecules, and the specific molecules and their contents
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and effects on the body were not explored. In addition, the small sample size of human
muscle samples and whether the gender of the clinical samples influenced the results were
not studied in further targeted analyses; this was also the case for the animal samples, and
no female rats were introduced, which is a limitation of this study. Therefore, these factors
should be analyzed in subsequent studies so that they can be applied in medical practice as
soon as possible.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms232113489/s1.
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