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Abstract: In the first decade of our century, carbon nanotubes (CNTs) became a wonderful emitting
material for field-emission (FE) of electrons. The carbon nanotube field-emission (CNT-FE) cathodes
showed the possibility of low threshold voltage, therefore low power operation, together with a long
lifetime, high brightness, and coherent beams of electrons. Thanks to this, CNT-FE cathodes have come
ahead of increasing demand for novel self-sustaining and miniaturized devices performing as X-ray
tubes, X-ray spectrometers, and electron microscopes, which possess low weight and might work
without the need of the specialized equipped room, e.g., in a harsh environment and inaccessible-so-far
areas. In this review, the author discusses the current state of CNT-FE cathode research using CNT
suspensions. Included in this review are the basics of cathode operation, an evaluation, and fabrication
techniques. The cathodes are compared based on performance and correlated issues. The author
includes the advancement in field-emission enhancement by postprocess treatments, incorporation of
fillers, and the use of film coatings with lower work functions than that of CNTs. Each approach is
discussed in the context of the CNT-FE cathode operating factors. Finally, we discuss the issues and
perspectives of the CNT-FE cathode research and development.
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1. Introduction

A focused beam of electrons is used in a wide spectrum of applications, including atomic-resolution
imaging, chemical and crystallography analyses, cancer therapies, nanotechnology, and entertainment.
It is implemented in electron microscopes, X-ray spectrometry, X-ray sources, and flat panel displays.
Recently, there has been an increasing demand for miniaturized FE electron sources, especially for
mobile devices [1–5] in order to extend their ability to work, e.g., in harsh and inaccessible environments.
This progress might soon be expanded into novel hybrid devices, which might combine the miniaturized
devices for energy harvesting, energy storage, and field emission [6]. The use of a miniaturized FE
electron source could reduce the overall size of the final device. This is because FE electron sources, in
contrast to thermionic electron sources, do not need a cooling unit or additional space to manage to
heat to about 1000 ◦C.

The successful implementation of miniaturized electron sources depends on a smooth know-how
transfer from a laboratory to a factory. This affects the price of the final product and the cost of
the material and technology. On the other hand, commercial devices operating with the electron
beam (~1950 for TEM, SEM, X-ray tubes, and many others) in most cases use tungsten as the
primary building material for the electron sources, particularly for cathodes. It is extracted from
commodities such as scheelite and wolframite and is harder than steel, more resistant to fracturing than
diamond, and it withstands high temperatures (melting point: about 3400 ◦C). In a natural deposit,
it is provided by China that covers about 80% of the total demand, while the remains are recycled
(https://minerals.usgs.gov/minerals/pubs/commodity/tungsten/myb1-2013-tungs.pdf, accessed on 23rd
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January 2019). It is widely accessible for about 20 USD per unit, and it has been successfully applied
in electron microscopes. In these circumstances, the lack of diversity among candidate materials
limits the development of novel devices. Therefore, researchers have directed their interest toward
novel and recently discovered materials with new outstanding properties, such as nanowires made of
silicon carbide (SiC) [7], copper sulfide (Cu2S) [8,9], nanocarbons (carbon nanotubes (CNTs), graphene,
etc.) [10,11].

Nanocarbons, in the form of highly viscous suspensions, are already present as commercial
products and are being used in emerging applications that evolve into mobile and wearable
electronics [12,13]. Viscous suspensions as fabrication material have opened new opportunities
in terms of large-area and low-cost processability, especially in the case of complex systems. For
example, industrial research has indicated that slurry screen printing is a potential technology for
creating a large FE area. Therefore, after more than forty years, the FE array concept has been brought
to light again [14,15], highlighted by its application for X-ray tubes [16,17] to achieve higher current
densities and to avoid screening effect, which is present in case of densely grown CNT forest.

In this review, the author would like to take a closer look at FE cathodes for the electron sources
based on viscous suspensions made of CNTs and review their design, technology, and performance,
together with their integration into specialized instruments. The author believes the data included in
this review will be useful for technologists and researchers from an interdisciplinary field who would
like to widen their interest in the application of CNT suspensions to form a FE cathode, especially
in terms of their miniaturization, multiplication, and arrangement, which might be extended from
screen printing and contact techniques toward developing 3D printing. The review content includes
basics of the FE cathodes (p. 2), with the evaluation of the cathodes (p. 3) and performance factors
(p. 4), CNT as an electron-emitting material (p. 4), CNT suspension for FE cathodes (p. 5), including
screen-printed CNT-FE cathodes (p. 9) and CNT-FE on the tip of a rod/wire (p. 12), methods to enhance
field emission, including postprocess treatment (p. 13) and addition of fillers and coatings (p. 17), and
finally, a summary (p. 19), issues, and perspectives (p. 22).

2. Basics of the FE Cathodes

In order to initiate an electron beam, an electron source is needed. In the simplest setup, an
electron source is built of an opposing cathode and anode separated by a vacuum gap. Various electron
sources can be used to emit electrons. In the literature, we can find electron emission sources based on
thermal energy [18], field emission (FE) [19], Schottky emission [20], photoemission, and secondary
emission [21]. Murphy and Good [19] identified that either one of the primary conditions (temperature
or electric field strength) governs electron emission or that an intermediate region exists, where the
temperature and electric field both contribute to the electron emission. In the case of thermal emission,
the high temperature prevails. Typically, it is required for a cathode to be heated about 103 K [19,22].
The emission takes place over the barrier, and the emission current varies with temperature. In the case
of cold field emission, high field strength dominates over temperature. Emitted electrons have energies
below the Fermi level. The emission current varies with the electric field strength that determines the
barrier shape. In field emission, electrons are emitted in the presence of a high electric field over 108
V/cm, at high or ultra-high vacuum (UHV; ~10−5–10−10 Torr), and through quantum tunneling at room
temperature [23]. In UHV, the electrons do not collide, e.g., with the residual particles, and can travel
far faster than in semiconductors, without dissipation of energy. The FE cathode, also known as a cold
cathode, is used to emit electrons with high energy from keV to MeV from a solid surface. However, in
Schottky’s sources, there is an ambiguous condition, i.e., the electric field is below 108 V/cm and acts
together with thermal enhancement.

For an appropriate and thorough theoretical discussion, the author would like to refer to the
tutorial papers on the electron sources by Jensen [21] and Forbes [24]. For field emission, usually,
the Fowler–Nordheim (F–N) equation is commonly applied [19,20]. Albeit, there is still no decisive
experimental evidence for the theoretical calculations [25]; the readers should consider works of
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Murphy and Good, or Forbes, and others who are not mentioned here, who reported the progress in
correction of the F–N equation [19,25–27].

2.1. Evaluation

For the basic evaluation, the FE electron sources are measured in a diode configuration, i.e.,
cathode–anode, with a gap between them and with vacuum pressure below 10−7 Torr in a device or
chamber for stable electron emission. Such a configuration is faster and more cost-efficient compared
to the triode configuration, which is formed by a cathode, an extraction electrode/gate, and an anode.
The triode and diode configurations both can be regarded as an electron gun [28]. The latter is used
for more sophisticated assessment, e.g., if we need to steer the emission current or focus the electron
beam. The measured sample is placed in the UHV chamber and heated to ~200 ◦C, in order to attain
the required pressure and to ensure the presence of residual gases (coming from the cathode materials,
e.g., not completely removed non-water solvent), and water is excluded or at least highly reduced. In
such a condition, stable emission is expected, though it is not always the rule [29–31]. To visualize
the electron emission, as an anode, the phosphor film is used deposited on a semi-transparent or
transparent substrate. As a separator, it is made either a space gap, or a dielectric frame is used made
of Teflon, or glass, and then placed between the cathode and the anode.

Usually, the principal characteristic is the current–voltage (I–V) graph, with the relation of the
emitted current and applied voltage difference or electric field expressed in Vµm−1.

For an array of the field emitters, in most of the papers, including some recently reported [32,33],
it is related to the Fowler–Nordheim law and it has a simplified form (considered as too simplified and
inadequate—for more details please refer to [25]):

J ≈ A·E2/φ exp(−B·φ3/2/E) (1)

where J is the current density, and E is applied local electric field at the cathode surface. E is related
to the macroscopic electric field with the field enhancement factor, β; φ is the work function of the
material—an intrinsic material property defined by the energy difference between the Fermi level and
the vacuum level. A and B are constants, where A = 1.54 × 10−6 AV−2 eV and B = 6.83 × 107 cm−1 V
eV−3/2 [32].

Furthermore, to determine the field-emission properties, the I–V relation is often translated
to the relation of the current density and the applied electric field (JE2 vs. 1/E), so-called “F–N
coordinates” [26].

The resulted F–N plot is then approximately a linear curve, which indicates only that the emission
process is probably F–N tunneling [25] The field enhancement factor, β, can be estimated from the F–N
plot, using the following equation [34,35]:

β = B·φ3/2
·s−1 (2)

where s is the slope of the F–N plot. The factor β depends on the emitting material geometry, the
material crystallography [36,37], and the distance between the electrodes. In case of CNT film emitters,
there is an additional difference that arises due to differences in morphology, chemical state, and
variations in the experimental setup [38]. As the Fowler–Nordheim theory was derived for a flat
surface, it has been proposed that a correction may be needed for surfaces when applied to a single
carbon nanotube or for an emitting material shape with an extremely large curvature [39–41].

The author decided to compare only I–V and lifetime characteristics of various
CNT-suspension-based FE sources. The reasons are as follows: (1) The review focuses on a technological
aspect of the FE sources made of CNT-based suspensions, and (2) to avoid the misjudgment, considering
the wide spectrum of the F–N equations and recent progress, as it has been mentioned at the begin
of this section. Especially, as in recent reported scientific discussion [25], it was proposed to use the
modified F–N equations named Murphy–Good equations and the Schottky–Nordheim barrier that
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represent better physics to explain and interpret the FE characteristics. The Seppen–Katamuki (SK)
analysis should also be recalled here, as it enables us to obtain the exact work function of the emitter,
as well as to extract geometrical parameters of the field emitter [42]; for example, SK analysis has been
used to evaluate the changes in work function at elevated temperature [43] or to derivate the length of
carbon nanotubes in the field-emission arrays [44].

In addition to the F–N plot, the emission current stability is evaluated for its lifetime stability, often
referred to as a lifetime or aging test. The aging test is considered due to a few factors. One of them is
residual ionized gases present in the cathode, surrounding and coming into physical and chemical
reaction with the emitting material. Another one is degradation due to resistive heating, which takes
place during emission. Resistive heating promotes the thermal decomposition of the emitting material
due to high emission currents. It leads to the thermal instability of the cathode [45,46]. It has an
influence on the electrical and thermal conductivity of the emitting material. On the other hand, it
promotes emission. Hence, there might be a transition from field emission to thermal emission.

2.2. Performance Factors

To describe field emission quantitatively, few parameters are used, such as turn-on field, TOF,
threshold field, Eth, or threshold voltage, Vth, with the corresponding total current or current
density [45]. These parameters can be read from I–V plots. TOF describes the required applied electric
field to switch on to achieve a target emission current density; usually, it is 10 µA/cm2. A low TOF
means an emitter is characterized by low applied voltages to initiate emission, low power consumption,
and a long lifetime [47]. In the literature, it is also known as a turn-on electric field [12]. It should
be distinguished from the “Time of Flight” (ToF) measurement used to describe the time the object
(particle, wavelength, etc.) needs to travel through a defined distance in a medium. It should be
separated from the threshold voltage or threshold field, which represents the tip at which measured
currents exceed 0.1 pA [39].

In the literature, authors usually assign the indicated current density to the electric field or voltage
applied. Therefore, this electric field and voltage were here named as the subsequent threshold electric
field, Eth, or the subsequent threshold voltage, Vth, following the definition from [48].

3. CNTs as Electron-Emitting Material

To achieve the efficient FE cathode, there are two factors to be considered: the material and the
cathode shape. The material should possess a low work function, to enhance electron emission. For
the cathode shape, a high aspect ratio structure is a common choice, because this intensifies the electric
field. In addition, from a practical standpoint, the cathode material must be compatible with current
technology so that it can be shaped and arranged with the other components into an electron gun at a
relatively low cost.

As mentioned in the introduction, researchers are interested in novel nanomaterials that possess
outstanding properties. One such nanomaterial is the quasi-one-dimensional CNT discovered by Iijima
et al. in 1991 [49]. There are numerous advantages of CNTs: (1) a high aspect ratio with a small radius
curvature of the tip, which is useful to generate a high-intensity electric field to kick out the electrons;
(2) high thermal end electrical conductivity; (3) mechanical strength; and (4) thermal and chemical
stability [50,51]. The work function for CNT equals to 5.1 ± 0.1 eV [34]. Therefore, shortly after CNTs
were discovered, they were considered to be useful as the stable FE cathodes with promising long
lifetimes [52,53] that can offer high brightness, outperforming the other sources by a factor of ten [54].

CNTs were mentioned as a potential material for FE displays [55], providing a current density of a
few mA/cm2 under ultra-high vacuum (~10−8 mba or 10−11 Torr) [31,56], which is close to the required
level of 10–100 mA/cm2 to ensure bright electroluminescence [45]. The mechanism of electron emission
from CNTs, as well as the accompanying phenomena, is described widely in [23,57–61] and in many
other studies. With the progress in understanding further CNT-based field emission, the developments
of cathodes have focused on growth techniques of CNTs in order to (1) obtain a designable device
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configuration on large-area substrates, (2) obtain uniform emission, (3) overcome the field screening
effect [62], and, finally, (4) overcome obstacles in reducing stability of CNT-based field emission in
long-term testing [63].

Work on CNT-FE cathodes started to be conducted at an industrial site by Sony, in cooperation
with Candescent Technologies Corp. [64], Samsung [65,66] (Figure 1a,b), and Philips [67] (Figure 1c).
The research stopped because of the emergence of the OLED; the latest news about commercial
field-emission displays (FEDs) comes from 2009 [68] and 2010 [69]. Despite the stoppage, CNTs
and their composites continue to be researched in terms of cold emission, which is unveiling new
phenomena and mechanism models [70–73] from doped CNTs [74], CNT fibers [75,76] and rods [77],
or triangular spatial film [78].

Figure 1. Examples of the field-emission displays (FED): (a) the emitting color (red–green–blue)
phosphor columns image of fully sealed SWNT-FED presented by Samsung (reprinted with permission
from [65]); (b) further results from Samsung presenting the color image (reprinted with permission
from [66]); and (c) a scanning electron microscopy (SEM) image of CNT arrays for the FED by Philips
(reprinted with permission from [67]).

4. CNT Suspension for FE Cathodes

There are various methods for synthesizing CNTs for FE electron source cathodes, e.g., arc
discharge, chemical vapor deposition (CVD), and laser vaporization [79]. The first FE cathodes
were isolated multi-walled CNTs grown by a plasma arc discharging directly onto a substrate,
then attached to a graphite fiber electrode [80] (Figure 2a), and followed by accurately aligned
arrays of CNT forests [52,57] (Figure 2b,c). FE cathodes can be formed as well by the deposition of
synthesized CNTs in electrophoresis (Figure 2d,e) [81,82]. However, each of these methods are difficult
to incorporate into the technology flow of, e.g., the electron gun fabrication, because of a several
reasons: (1) low-throughput [83], (2) neither the synthesized CNT forest nor deposited CNTs are fully
technologically compatible with the common thin-film technology to fabricate electronics [84], and (3)
the emission is affected by the screening effect between vertically standing nanotubes [85].

A breakthrough to these issues was the development of an FE film cathode. It was made of
dispersed CNTs in ethanol mixed into non-conducting epoxies [86]. Contrary to the vertical array, such
CNT film/layer forms a mesh, i.e., randomly aligned CNTs, with a flattened surface with only a few
jutting/protruding CNT tips (Figure 3a). The emission current was close to that of a single nanotube
(0.1–10 µA vs. 0.1–1 µA) but at a higher bias voltage (200 V vs. 80 V) [80]. Research into this precursory
film idea has been stopped for the next few years because of weak applicability, which is reflected
in the lack of high brightness usually accomplished by a good electrical contact [87,88] and a high
current [45]. One of the main reasons was the dependence of the emission current on the CNT density
in the matrix [46]. The proof of this hypothesis was conducted by Nilsson et al. [85], who researched
an FE cathode made by ink-jet printing CNT suspensions (Figure 3b,d).
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Figure 2. First approaches toward CNT field-emission (FE) cathodes: (a) a single CNT attached to
a stalk—a high-resolution SEM image and transmission electron microscope (TEM) image (inset)
(reprinted with permission from [80]); (b,c) synthesized and aligned arrays of CNT forest (reprinted
with permission from [52])—SEM images of CNT towers (b) and its side-view variation (c), and
the schematic cross-section illustration of the array (c—lower image); (d) CNT film deposited by
electrophoresis—a schematic illustration presenting the process (reprinted with permission from [82])
with an SEM image of the deposited CNT by electrophoresis (insert view) (reprinted with permission
from [81]); (e) the working FED from CNTs deposited by electrophoresis (reprinted with permission
from [82]).

Figure 3. Cont.
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Figure 3. The FE cathodes made of a CNT matrix: (a) an SEM image of the dispersed CNT laminated
onto a 50 × 50 µm2 area, the inset—the schematic illustration presenting the CNTs matrix laminated
between two glass slides (reprinted with permission from [86]); (b) an SEM image of FE cathode made
by ink-jetting of dispersed CNTs—the inset presents a macroscopic emission image of 2.5 × 2.5 mm2 on
the phosphor screen; (c) the illustration presenting the field screening effect issue—a simulation of the
electric field penetration depth for various CNT inter-distances; (d) SEM images (left) and FE maps
(right) of the FE film cathodes, relevant to simulations presented in (c)—from the top to the bottom:
the FE film with the highest, medium, and the lowest density of CNTs. Figure 3b–d reprinted with
permission from [85].

On the other hand, in the early stages of research on FE CNT film cathodes, the low content of
CNTs in the suspensions represented a significant obstacle. Typically, these suspensions contained
CNT concentrations below 0.3 wt.% and were well-suited for spraying and ink-jet printing [89–93].
Due to the low density of these formed films, these techniques were not extensively used for FE cathode
technology [94]. Nonetheless, research into film FE cathodes has continued to reveal attractive findings:
(1) CNTs can emit from sidewalls (Figure 4) [95,96], and (2) despite CNT degradation during FE, the
current level for a single CNT in a film is relatively high, from 300 nA to even 10 µA per emitter. This
is enough to raise the substrate temperature toward the melting point (e.g., silicon [97]). The emission
current depends on the type of CNTs and the methods used to synthesize them [48]. The higher
crystallinity of the CNTs resulted in less Joule heating and led to improved stability and enhanced
emission current density [98], as well as in brightness homogeneity [99].

This research had an impact on the development of a uniform and large area of FE electron sources
formed in a simplified process like dip-coating, drop-casting, or filtration (Figure 5a,b) [98,100–103], and
finally screen printing (Figure 5c) [104–106], which is an established and well-known method for fine
patterning, with increasing use for flexible electronics [107–109], including vacuum electronics [110,111].
The graph summarizing the techniques for the FE cathodes upon the alignment of the CNTs and the
scalability is presented in Figure 6 (author’s work).
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4.1. Screen-Printed CNT-FE Cathodes

Screen printing is a well-established and significantly old technique for reproducibly writing
patterns on flat surfaces [112]. The print industry has been using it to transfer black-and-white and color
patterns on solid and non-solid materials [113], without any limits on the patterned area. The technique
uses a wire-mesh frame that is placed over a fixed substrate. The wire-mesh design and material
type [114] are two important factors in considering the affinity of the wire mesh, together with the choice
of the substrate and suspension (paste, ink, or emulsion) [109,114]. The important parameter in screen
printing is the viscosity of the suspension, which depends on the solvent: if it is too viscous, it will not
transfer through the wire-mesh opening; if it is insufficient, it will not hold the pattern [114,115]. The
fabrication of the suspension is also important. Commonly used ultra-sonication or harsh mechanical
crushing is well-known to damage CNTs, diminishing the suspension cohesion [115]. In addition,
damage to the CNTs has shown to have a negative influence on I–V characteristics of the FE cathodes
(Figure 7) [105], as well as on the resistivity of the obtained film from the suspension and threshold
field (adequate voltage) at which the emission starts [55].
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The first report on screen CNT-FE cathodes came from Kwo et al. [104]. Initially, they synthesized
multi-walled CNT (MWCNT) clusters by arc discharge between a pure graphite rod and a graphite disc
in a helium atmosphere. They obtained micrometer-long CNT bundles and demonstrated FE condition
with turn-on field (TOF) at 1.5 V/µm with an emission current density up to 7.3 mA/cm2. Next, the
fibers were crushed in a ball mill for several hours, with the addition of binders (conductive pastes
composed of carbonaceous particles), resulting in a CNT slurry. Finally, the slurry was screen-printed
and heated (500 ◦C in air for 1 h), forming a CNT film. Next, its surface was etched in microwave
Ar plasma for 30 s, in order to remove the binders. This improved emission characteristics (I–V). To
demonstrate the potential large area patterning, the CNT cathode array was fabricated and worked
as the FED (Figure 8a). The cathodes were characterized by cycling the I–V profiles, with similar
emission current densities (1.5–6.5 mA/cm2) at 3 V/µm (Figure 8b) and lifetimes of about 1500 min
(Figure 8b inset).

An interesting concept to combine screen printing and lithography patterning was presented
by Bouchard et al. [116]. This was one of the earliest ideas on how to make a flat panel display
greater than 30 inches (76 cm) in size, with the resolution limited to single micrometers. The CNT-FE
cathode was fabricated in a three-electrode setup (triode), with various components. In a sequence of
patterning steps similar to thin-film technology, all of the triode setup components were screen-printed,
layer by layer, as follows: a conductive path, a dielectric separator, a gate electrode, and a layer of
emitting material (a cathode). Additionally, all components were screen-printed, using suspensions, to
which a photosensitive agent was added. In this way, a series of various photo imageable pastes were
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developed that differed by composition and weight percentage (wt.%) content. A similar process used
for photolithography, e.g., in semiconductor technology, was used to pattern all triode components.
The screen-printed films were UV irradiated through the mask to transfer the patterns and then
baked. Next, the unnecessary material was removed, leaving the patterned area. If the films, made of
various pastes, were screen-printed layer by layer, then all components could be patterned at once.
The technology prevented the formation of electrical shorts between electrodes and assured that the
components were finely aligned and adjusted vertically. The FE cathode arrays emitting light from the
phosphors are presented in Figure 8c, with the current density up to about 1 × 10−5 A/cm2 (Figure 8d).
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It has been found that the design of the field emitter determines its performance. Kwon and
Lee [117] showed that the peripheral length of the patterned emitters cannot be neglected as emission
primarily occurred from the edges. Hence, changes in the cathode design, from the high aspect
ratio lines to the matrix of squares have resulted in more uniform and 1.4 times higher emission
current, probably due to the non-uniform distribution of CNT tips from the surface of the film. Further
experiments by following researchers [118,119] showed an increase of emission currents with the
reduction of the emitter area and the spacing between them (Figure 9a,b). All the results indicated the
potential of a microscale design and the importance of the fine patterning for CNT-FE cathodes.
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Currently, photo imageable pastes can achieve tens of micrometer resolutions of the patterns
and the separation distances if used in screen printing. However, UV exposure is still limited to thin
films, as the UV irradiation cannot completely penetrate thicker films to reach cross-linking agents at
the bottom. Moving forward, this issue in advanced processing was presented by Chung et al. [66],
and the resulting CNT FED product is presented in Figure 1b. The cathode consisted of an array
of field emitting CNT with a diameter of 20 µm on indium tin oxide (ITO) (Figure 10—an upper
inset). Over the tips, there was an opening window with a diameter of 30 µm in a chromium film
(Figure 10 a lower inset). Both the cathode and opening were electrically isolated by silicon dioxide
(SiO2) and amorphous silicon (a-Si) films. The role of the chromium film with the opening was to
extract electrons that diverged radially. First, the films were deposited and patterned for conducting
pads (ITO), electrical isolation (a-Si, SiO2) and photo-masking (a-Si). After that, the chromium film
with the electron extraction opening was made and covered by photo imageable CNT paste. Next, the
paste was UV-exposed through the transparent back-side substrate, revealing the CNT cathode film.
Nonetheless, the cathode thickness was only a few micrometers (4 µm), showing that it is indeed an
example of a smart technique for photopatterning thick films surrounded by other components. This
is particularly important, as the usage of CNT paste usually takes place at the end of the process flow
to preserve its properties. The FED worked in a triode configuration: 1.5 kV and 100 V were applied to
the anode and gate, respectively. The FED achieved over 0.4 mA (see Figure 10a).

Another, but less popular, technique that was reported as using the viscous CNT suspension is
electro-plating [120]. In the process, a glass substrate was dipped in a nickel sulfate bath containing
CNTs, leaving on the glass surface a film with field-emission properties. After dipping for 60 s at 80 ◦C,
the film was dried and washed in deionized (DI) water. Finally, the sample was plasma-treated to
remove the organic materials present in the suspension and the plating bath. The addition of CNTs
made a film with a matrix of sharp edges and tips (Figure 10b inset), which is believed to contribute to
the electric field enhancement factor. However, in this case, uniformity characterization of this coating
proved to be difficult, as well as making patterns on the film, as in the previous examples. The FE
measurements resulted in 1 mA/cm2 at 1.7 V/µm (Figure 10b). However, during the long emission (>
20 h), the characteristics became less stable, and the TOF almost doubled. The authors related this
to the degradation of the film, i.e., heat-induced fracturing. Although the morphological changes
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increased the film resistivity and finally increased Joule heating, the cathodes operated for about 80 h
at their current density, which is a significant result for potential applications.
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4.2. CNT-FE Cathodes on the Tip of a Rod/Wire

Because X-ray imaging and therapy require a highly focused beam, the CNT-FE cathodes on the
tip of a rod or wire were found to be the best structure for this. At the beginning of technology for
an FE cathode on a tip, either electrophoresis or direct synthesis was used to deposit CNTs on the
tip [121]. A single CNT was also mounted on a tip by a specialized piezo nano-manipulator [54]. The
use of printable CNT pastes for an FE cathode on a tip was first presented by Kim et al. [2], who made
a sub-millimeter-wide cathode film on the tip (dia.~ 800 µm) of a W rod (Figure 11a). The cathode
of such a small dimension was made by using the contact method: The rod was simply covered
by a viscous CNT paste that bonded physically to the tip. The authors wanted to cover only the
cross-section of the tip surface in order to get a focused beam; hence, they used only a 1 uL droplet
of a prepared suspension of CNTs mixed with Ag nanoparticles. Next, the dropped suspension was
dried and thermally annealed. The annealing conditions (800 ◦C for 2 h under vacuum) melted the
Ag nanoparticles that are believed to contribute to physical bonding between the W tip and CNTs
(Figure 11b inset). This kind of FE cathode achieved 10 mA/cm2 at 1.15 V/µm (Figure 11b).
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Figure 11. The CNT-FE cathode on tip: (a) a schematic illustration of the FE cathode on a tip, using a
CNT suspension with silver nanoparticles (NPs); (b,d) the FE characteristic of the cathode, the inset—a
zoom on a tip with drop-casted suspension; (c) SEM images of the surface of CNT cathode on a tip with
various ratios of graphite powder and CNTs; (e) an OM image of the top of CNT-FE cathode (upper
view); (e) the photography of the diode configuration, including the FE cathode on a tip (lower view);
(f) I–V characteristic of the CNT FED in a triode configuration, and insets shows the simulated result of
a collimated electron beam. Figure 11a,b from [2], Figure 11c,d from [116], and Figure 11e,f reprinted
with permission from [122].

A similar strategy was approached by Sun et al. [123]. Following the other research results, they
concluded that the addition of powder graphite to a CNT paste is a better choice to enhance adhesion to
the surface tip. This is due to the similar nature of the materials bonded together, i.e., graphite powder
and a graphite rod. The paste was dropped on a rod tip (diameter ~700 µm) and annealed in air at least
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100 ◦C (The authors actually performed annealing at various temperatures and duration times.), to
remove residual materials. After polishing the tip in order to protrude the CNTs, the cathode was ready
for testing. The cathodes were made of pastes with three various ratios of CNTs to graphite powder:
10:100, 10:300, and 10:500 (Figure 11c). As expected, the highest content of graphite powder resulted in
fewer CNTs being visible on the surface of the tip (Figure 11d inset). However, surprisingly, the best
FE characteristic was obtained for the cathode with a moderate ratio of CNTs (10:300) (Figure 11d).
This might be explained by the diminished screening effect for a looser density of CNTs, following the
conclusion raised by Nilsson et al. [85], that there exists an intermediate regime defining the optimal
inter-distance between CNTs. The highest emission current was 4.1 mA and the lowest TOF was
2.8 V/µm. Additionally, the performed lifetime tests exhibited over 20 h of working, with the current
declining from 1.0 to 0.6 mA.

A smaller FE cathode on the tip of a Kovar wire was reported by Choi et al. [122], and it was made
by using the tip contact method. Here, CNT suspension was brought in a precisely defined contact with
the polished tip surface through Ohm measurement, involving a dedicated tool. By using this method,
the authors were able to make a smaller FE cathode with a diameter of 50 µm (Figure 11e—upper view).
After all necessary drying, removal of organic binders, and postprocessing, the authors presented the
working cathode in the diode (Figure 11e—lower view) and triode (Figure 11f inset) configuration.
In such a configuration, the cathode achieved an emission current of 220 µA (11.2 A/cm2) at 3.7 kV
(Figure 11f).

Further research might be provided to improve the stability and to lower TOF and threshold field
at high field-emission current compared to pristine CNTs, by analogy to the reported field emitters,
where CNT were grown/sprayed on or between low-melting-point (below 500 ◦C) metals [124], metal
oxides [125], and alloys [126].

Additionally, the local deformation of the substrate should be considered. Svensson et al. [127]
noticed the substrate deformation (silicon dioxide) during field emission from a single-walled CNT
(SWCNT). In their experiments, they intended to grow SWCNTs by the CVD with the presence of the
low electric field (10–4 Vcm−1). After the growth process, they noticed the radial deformation around
the location, where SWCNT was anchored. This deformation, which is a few nm in height and a few
hundred nm in width, Svensson attributed to local melting of the SiO2 in a small region underneath
the SWCNTs. Because at the tip of a single CNT, a field can be on the order of V/nm, it might induce
additional local field emission from the tubes. This induces Joule heating with temperatures on the
order of 2000 K. Together with electron bombardment, the SiO2 substrate lower its viscosity, which
causes the liquid silica to flow locally. This additionally reveals the complex nature of the field emission.

5. Methods to Enhance Field Emission

5.1. Postprocess Treatments

The FE cathode made of a viscous suspension contains randomly distributed and aligned CNTs
within a medium containing additives, such as binders (Figure 12a,b). This raises the problem of
electrical contact between the CNTs and the substrate [128]. Hence, to realize the optimal performance
of the cathode, a post-treatment process, such as to remove additive materials and improve material
cohesiveness, is needed (Figure 12c,d). This increases the emission current level and, in most cases,
reduces the emission TOF. In addition, the removal of residual organic binders and additive materials
diminishes the amount of outgassing of the high surface area cathode material and reduces the
probability of the formation of amorphous carbon within the cathode. These aspects lead to a decrease
in the overall performance of the emitter. Hence, an important issue is to remove organic additives
from the dried CNT film. Most of these evaporate at a temperature above 300 ◦C. If the annealing is
done in the air, there is a fear of burning CNTs, which can normally withstand temperatures up to
750 ◦C [129,130]. Hence, researchers performed a thermal process in a high vacuum, as this helps to
stick to the to the temperature threshold and makes the outgassing of residual material easier [122]. A
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strong electric field can also be used to orient the CNTs along the field directions permanently [131],
but this has not been reported for films of randomly aligned CNTs.
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Figure 12. CNT matrix films made of CNT suspension: (a,b) The SEM images of the CNT film made of
dried suspensions, between CNTs there are visible additives in a form of balls; (c) the SEM image of CNT
film with additives and (d) after they were removed; Figure 12a,b from author’s work. Figure 12c,d
reprinted with permission from [132].

Zhao et al. [133] and Shin et al. [105] used the idea that specific wavelengths (266 and 349
nm) can break the chemical bonds in organic binders. As a consequence, the emission sites in the
temperature threshold make the outgassing of residual material easier [122]. CNT cathodes became
activated (Figure 13a,b). The authors assigned the emission improvement to photodecomposition or
photo-oxidation rather than to the photothermal effect. Indeed, as irradiation intensity increased, the
emission current rose from 0.0027 to 14.45 mA/cm2, while the TOF decreased from 3.7 to 1.2 V/µm
(Figure 13b). A laser was also used by Rinzler et al. [80] for oxidative etching nanotubes, to open
them, which contributed to field-emission enhancement. A similar approach was used by Kim et
al. [134]. They developed oxidative trimming where O2 reacted selectively with the highly emitting
CNTs. According to the authors, the film consisting of CNTs with uniform height ensures the spatial
uniform field emission (Figure 13c,d). During the experiments, they observed gradual etching of
selected CNTs. This was reflected in I–V trend lines, which exhibited the current decrease and increase
with the operational time (Figure 13d inset). Despite that, during the trimming, the emission current
became 80 times smaller (from 4 mA down to 0.05 mA, after the third oxidative trimming cycle), the
final cathode presented a remarkably uniform emission (Figure 13d) with a stable lifetime.
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Figure 13. Emission enhancement by a postprocess treatment: (a,c) the pair of emission patterns from
CNT FE cathode arrays before (upper view), and after laser irradiation (lower view); (b,d) the FE
characteristic of the cathodes before and after laser irradiation. The inset in (d) shows the cathode
operation at a periodic O2 supply, i.e., oxygen trimming is on or off. Figure 13a,b reprinted with
permission from [133], and Figure 13c,d reprinted with permission from [134].

Vink et al. [132], following Dupont patent [116], presented a mechanical approach to improve I–V
characteristics. Cathodes were screen-printed on Al-coated glass and Au-coated Si, using a commercial
screen printer, then dried (at 120 ◦C) and annealed (at 400 ◦C) for 1 h in the air. Then the adhesive tape
was applied to modify the film morphology; this simple process created a sparsely distributed array of
vertically oriented CNTs, which was significantly sparser than what could be grown. Meanwhile, the
binders detached from the cathode surface by tensile forces and adhered to the tape (Figure 12c,d).
As a result, the cathodes achieved one thousand times higher current (0.5 vs. 500 mA/cm2 at 400 V)
(Figure 14a,b), close to that which was achieved by the CNT forest [52,135] or a CVD-grown CNT array
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net [131] (10 mA/cm2), and two orders higher than the screen-printed film cathode post-treated with
Ar plasma (7 mA/cm2) [104].
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density image with (left) and without (right) postprocess treatment.Figure 14a,b reprinted with 
permission from [133].  

From all reported postprocess treatment techniques, the most significant improvement was 
found by using poly-dimethylsiloxane elastomer (PDMS) [139]. Contrary to the other tools used in 
the mechanical approach, it offered several advantages: (1) It makes contact with a film surface with 
an inhomogeneous morphology, (2) it does not damage the CNTs, which ensures good electrical 
conductivity in the film, and (3) it can be applied for a complex structure containing a mask or a gate 
electrode, as was presented by the authors. The cathode was made from a mixture of CNTs, glass 
frits, and organic binders, screen-printed on an ITO glass, and dried in air (at room temperature for 
10 min and at 150 °C for 1 hour, and then at 300 °C.) and in a nitrogen atmosphere (at 400 °C for 30 
min). Next, liquid PDMS was poured on the prepared cathode and cured at 150 °C for 10 min, to 
make it solid (Figure 15a). Finally, the solidified PDMS was detached from the cathode, leaving the 

Figure 14. Emission enhancement by a postprocess treatment: the FE characteristics of a screen-printed
CNT film before (a) and after the postprocess treatment (b). The inset in (a)—the emission site density
image with (left) and without (right) postprocess treatment.Figure 14a,b reprinted with permission
from [132].

A similar postprocess treatment was also applied in [136–139]. However, it is difficult to discuss
the effect of the treatment on emission due to a lack of data provided for comparison or other aspects
influencing FE cathode properties, e.g., technology. Other methods were also investigated, such as
the use of liquid elastomer [140], a soft rubber-roller [122,123,141–143], mechanical crush [144], and
plasma [119,133,145–147]. The last one is believed not only to make CNTs protrude from the matrix
(Figure 14c), but also to clear the cathode surface, improving the uniformity and reducing the cathode
aging, and thus improving the FE characteristics (Figure 14d). In some instances, more than one
technique was used [123,138,139,143]. For example, mechanical polishing and rubber rolling doubled
the emission current (from 4.6 to 8.4 mA) [123]. On the other hand, the TOF increased from 2.8 to
3.2 V/µm, which the authors related to the shortened length of CNTs after the combined postprocess
treatment methods.

From all reported postprocess treatment techniques, the most significant improvement was found
by using poly-dimethylsiloxane elastomer (PDMS) [140]. Contrary to the other tools used in the
mechanical approach, it offered several advantages: (1) It makes contact with a film surface with
an inhomogeneous morphology, (2) it does not damage the CNTs, which ensures good electrical
conductivity in the film, and (3) it can be applied for a complex structure containing a mask or a gate
electrode, as was presented by the authors. The cathode was made from a mixture of CNTs, glass
frits, and organic binders, screen-printed on an ITO glass, and dried in air (at room temperature for
10 min and at 150 ◦C for 1 h, and then at 300 ◦C.) and in a nitrogen atmosphere (at 400 ◦C for 30 min).
Next, liquid PDMS was poured on the prepared cathode and cured at 150 ◦C for 10 min, to make it
solid (Figure 15a). Finally, the solidified PDMS was detached from the cathode, leaving the CNT film
surface with much microscale roughness (Figure 15b). The I–V characteristics improved, showing the
rise of a nearly flat curve to a nonlinear shape with the emission current over 12 mA, with a uniform
luminescence (Figure 15c). However, due to the lack of extensive data on optimizing the emission
parameters, the possibility for significant improvement remains.
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of the connection of CNTs which broke down due to Joule heating [71], but also enables us to avoid 
the arcing during emission [150]. It improves the field enhancement effects as a consequence of the 
protruding CNTs [138] or thermal stability, where fillers may play the role of oxidation-inhibiting 
compounds similar to the boron- or phosphorous-related compounds, as it has been presented by 
Floweri et al. [73], where the addition of Ni prevailed the degradation of the field emission.  

The right choice of fillers and their ratio content have shown to prolong the lifetime of the 
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to 20 h [115] (Figure 16b), while for metallic particles added to the suspension, it is up to 100 h [142] 
(Figure 16a,c). The ratio balance can also improve the electrical conductivity of the film [138]. Thus 
far, film cathodes without fillers enable current densities of tens of μA/cm2, which results in up to 1 
μA (the author of the reference paper calculated the effective current density based on works of [118] 
and assuming that the area included in calculation is an effective emission area.), and, in some cases, 
to 1 mA (as previous notes.). Such a level is sufficient for the purpose of a FED source. However, for 
some applications, such as micro-thrusters in spacecraft or microwave amplifiers, the required 
current density is 100 μA/cm2 or more [153]. Cui et al. demonstrated the successful use of metal 
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Figure 15. Emission enhancement by a postprocess treatment: (a) SEM images of the printed CNT
films before (upper view) and after (lower view) postprocess treatment; (b) I–V characteristic of the
cathode before and after postprocess treatment with the inset, showing emission images of the relevant
cathodes reprinted with permission from [140].

5.2. Fillers and Coatings

A filler might be understood as any type of material, other than the CNTs, that is not a solvent
and has an insulating or conducting feature. The filler is added to a suspension during its preparation
or postprocessing and forms solidified additives that can be geometrically defined. Common fillers are
particles of nanometer or micrometer size (micro- or nano-particles), which benefit from a lower melting
temperature (hundreds of ◦C) than their bulk form [148]. Fillers can be non-organic and organic, e.g.,
conductive pastes, glass frits, and metallic and polymer particles, as well as their composites and
additives characterized by UV exposure sensitivity for fine patterning [105,149]. Fillers are added to
the low content of CNTs in suspension, in order to serve as a bonding material for strengthening the
film [150]. For example, fillers help to prevent field-dependent degradation, when the loosely bonded
CNTs are extracted from the cathode by electrostatic force [97]. Fillers, then prevalent as binders, fill the
empty spaces between the CNTs and the CNTs and the substrate. This improves the adhesion [2,123]
necessary to perform mechanical post-treatment, ensures the recovery of the connection of CNTs which
broke down due to Joule heating [72], but also enables us to avoid the arcing during emission [151].
It improves the field enhancement effects as a consequence of the protruding CNTs [139] or thermal
stability, where fillers may play the role of oxidation-inhibiting compounds similar to the boron- or
phosphorous-related compounds, as it has been presented by Floweri et al. [74], where the addition of
Ni prevailed the degradation of the field emission.

The right choice of fillers and their ratio content have shown to prolong the lifetime of the cathode
by as high as 10 times [143] (Figure 16a), which, in the case of carbonaceous particles, is up to 20 h [123]
(Figure 16b), while for metallic particles added to the suspension, it is up to 100 h [143] (Figure 16a,c).
The ratio balance can also improve the electrical conductivity of the film [139]. Thus far, film cathodes
without fillers enable current densities of tens of µA/cm2, which results in up to 1 µA (the author of the
reference paper calculated the effective current density based on works of [118] and assuming that the
area included in calculation is an effective emission area.), and, in some cases, to 1 mA (as previous
notes.). Such a level is sufficient for the purpose of a FED source. However, for some applications, such
as micro-thrusters in spacecraft or microwave amplifiers, the required current density is 100 µA/cm2

or more [152]. Cui et al. demonstrated the successful use of metal nanoparticle fillers to the cathode
material [153]. In this way, they achieved emission levels at about 33.9 mA, with an emission current
density of 4.2 A/cm2 from a 0.8 mm2 area of the film cathode. Despite significant progress in the
technology of FE cathodes since this report, this level of performance remains exceptional.
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binders (glass frit vs. Ag paste) showed that the CNT film cathode with the highest resistance resulted 
in the highest current density, following the highest field enhancement factor for this sample. The 
authors claimed that this was due to the processing, as Ag paste served as a catalyst for the oxidation 
of the CNTs during the heat treatment (at 390 °C in the air). Hence, for the sample with the higher 
weight ratio of Ag paste, more CNTs were damaged by oxidation, which was visible by the lower 
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could be achieved. In the case of a dielectric addition to the CNT array, the threshold electric field 
might be lower about a few times. Due to the presence of high dielectric constant material, the 
screening effect between CNTs is reduced, together with the mechanical stress that was generated by 
Joule heating. However, the work function was reported to be about half of the CNT [97,162].  

The relevant work to the FE films made of CNT suspension comes from Wu et al. [34] and Song 
et al. [163]. The first group formed screen-printed carbon nanotubes (CNTs) and coated it with TiO2. 
The Ni-F was chosen as a substrate (Figure 18a) because of good electrical and thermal conductivities, 
whereas three-dimensional (3D) structure possessing high porosity and specific surface area 
enhances mechanical adhesion between the CNTs film and substrates. Finally, it can be easily and 
commercially obtained. The TiO2 in a form of the gel was spin-coated on the CNT film and tested. 
The results showed a significant reduction of the turn-on electric field and threshold voltage after 
coating with TiO2: from 0.75 and 1.75 V/μm to 0.40 and 0.75 V/μm, respectively (Figure 18b). The 
cathode operated without noticeable degradation for about 5 hours. Moreover, the substrate, because 
of its morphology, allows for the increasing of FE sites by spreading the CNTs and, in consequence, 
the current density.  

Figure 16. The lifetime tests, time vs. current, of the FE cathodes made of CNT pastes, with an addition
of fillers. Figure 16a reprinted with permission from [143]. Figure 16b reprinted with permission
from [123], and Figure 16c reprinted with permission from [142].

There are also unexpected trends in the research provided toward knowing how the fillers and
their ratio influence the performance of CNT film cathodes. Shin et al. [139], by changing the ratio of
binders (glass frit vs. Ag paste) showed that the CNT film cathode with the highest resistance resulted
in the highest current density, following the highest field enhancement factor for this sample. The
authors claimed that this was due to the processing, as Ag paste served as a catalyst for the oxidation
of the CNTs during the heat treatment (at 390 ◦C in the air). Hence, for the sample with the higher
weight ratio of Ag paste, more CNTs were damaged by oxidation, which was visible by the lower
number of protruded CNTs over the cathode film surface. Sun [123] showed that a high content of
fillers might result in fewer emission sites. On the other hand, a lower content of fillers decreased the
emission current as a consequence of the screening effect caused by higher CNT density.

One of the recent approaches to improve the field-emission performance is coating the CNT
film with a low work-function material, to form a composite cathode. The approach is based on
earlier findings, whereas grown-in-CVD-process CNTs were coated with lower work-function metal
nanoparticles, such as Cs [154], Ti [155], Ag [156], Al [157], In [158], or Ta [159], and metal oxides,
e.g., titanium oxide (TiO2) [160], and resulted in lower turn-on electric field, and threshold electric
field could be achieved. In the case of a dielectric addition to the CNT array, the threshold electric
field might be lower about a few times. Due to the presence of high dielectric constant material, the
screening effect between CNTs is reduced, together with the mechanical stress that was generated by
Joule heating. However, the work function was reported to be about half of the CNT [98,161].

The relevant work to the FE films made of CNT suspension comes from Wu et al. [35] and Song
et al. [162]. The first group formed screen-printed carbon nanotubes (CNTs) and coated it with TiO2.
The Ni-F was chosen as a substrate (Figure 17a) because of good electrical and thermal conductivities,
whereas three-dimensional (3D) structure possessing high porosity and specific surface area enhances
mechanical adhesion between the CNTs film and substrates. Finally, it can be easily and commercially
obtained. The TiO2 in a form of the gel was spin-coated on the CNT film and tested. The results
showed a significant reduction of the turn-on electric field and threshold voltage after coating with
TiO2: from 0.75 and 1.75 V/µm to 0.40 and 0.75 V/µm, respectively (Figure 17b). The cathode operated
without noticeable degradation for about 5 h. Moreover, the substrate, because of its morphology,
allows for the increasing of FE sites by spreading the CNTs and, in consequence, the current density.
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Figure 18. The field-emission enhancement by use of film coating with the material different from 
CNTs: (a) a schematic illustration of CNT FE cathode on Ni–Fe foam coated with TiO2 film and (b) 
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The second group chose LiF/Al (ϕ ~ 3.0 eV) to deposit on the CNT film due to the material’s low 
work function, equal to about 3.0 eV, and its usefulness as an efficient electron extraction layer in 
organic light-emitting diodes and organic solar cells [163]. In addition to the previous work, the 
authors precisely defined the thickness of LiF to be constant and equal to 5 nm, while the Al film to 
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emit from their sidewalls too. In many cases, various postprocess treatment methods or the addition 
of fillers to the suspension level up the CNTs, which indeed improves field emission and the lifetime 
of the cathode compared to the as-made mesh cathode. Though the overall performance of the FE 
cathodes fabricated from CNT suspensions is slightly inferior to that of synthesized CNTs (Table 2), 
from this review and other referenced works, postprocess treatments and the addition of fillers are 
viable approaches to improve the emission characteristics of these cathodes. As Kim [132] reported, 
theoretically, only a 10% difference in height of CNT tips leads to an almost 90% difference in 
emission currents. Thus, the precise control of the emitter array is essential to provide spatial 
emission uniformity. It is possible to assess the uniformity by the postprocess treatment. Therefore, 
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Figure 17. The field-emission enhancement by use of film coating with the material different from
CNTs: (a) a schematic illustration of CNT FE cathode on Ni–Fe foam coated with TiO2 film and (b) its
FE characteristics with and without TiO2 film. Reprinted with permission from [35].

The second group chose LiF/Al (φ ~ 3.0 eV) to deposit on the CNT film due to the material’s
low work function, equal to about 3.0 eV, and its usefulness as an efficient electron extraction layer
in organic light-emitting diodes and organic solar cells [162]. In addition to the previous work, the
authors precisely defined the thickness of LiF to be constant and equal to 5 nm, while the Al film to
be 1 or 3 nm thick (Figure 17c). Both films were thermally evaporated on the already screen-printed
CNT film. In addition to the above conditions, there was also a sample without Al coating. Next, they
evaluated their relation to the field-emission properties. The authors found that the increase of the Al
film thickness from 1 to 3 nm actually decreased the field-emission properties and resulted in bare
improvement, considering the lifetime tests. Further research here is needed to get more data to define
the right trend and confirm what the authors of the referred paper claimed, that the field-emission
results are correlated with the conductivity of the composite film.

6. Summary

This paper presents field-emission-electron sources that use carbon nanotubes as the
electron-emitting material. Approaches to form the FE cathode of the electron source from CNT
suspensions were described and compared, including synthesis, electrophoresis, and screen printing.
From all of these techniques, so far only screen printing offers a simple and scalable approach to
fabricate large area and uniform for emission cathodes or cathode arrays, including their different
arrangements and shapes. Meanwhile, the development of modified techniques, e.g., a combination of
screen printing and photolithography, the resolution of a patterned single line can achieve even tens of
micrometers. It has been shown that a suspension was successfully used for a cathode on the tip of a
wire or a rod to get a highly focused electron beam. Additionally, it has been found that CNTs could
emit from their sidewalls too. In many cases, various postprocess treatment methods or the addition of
fillers to the suspension level up the CNTs, which indeed improves field emission and the lifetime
of the cathode compared to the as-made mesh cathode. Though the overall performance of the FE
cathodes fabricated from CNT suspensions is slightly inferior to that of synthesized CNTs (see the
following table), from this review and other referenced works, postprocess treatments and the addition
of fillers are viable approaches to improve the emission characteristics of these cathodes. As Kim [134]
reported, theoretically, only a 10% difference in height of CNT tips leads to an almost 90% difference
in emission currents. Thus, the precise control of the emitter array is essential to provide spatial
emission uniformity. It is possible to assess the uniformity by the postprocess treatment. Therefore, it
is important to adjust the parameters of post-treatment, such as process duration. For example, etching
might result in over-etching of CNTs.

Tables 1 and 2 summarize the selected cathodes mentioned in this review. Table 1 includes FE
cathodes in the form of a film made of the suspension grouped by the technology used to make the
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cathode. Table 2 includes the cathodes made of pristine CNTs grown directly on the substrate by
CVD-based methods and grouped by the structure of the cathode. The tables include the materials
used for cathodes, technologies, the performance of the cathodes, and adequate references. For the
performance, the best values were chosen, particularly a subsequent threshold electric field, Eth, or
voltage, Vth, required for the particular emission current or current density, and duration of emission
following the lifetime test. As can be seen from the wide spectrum of referenced works, the screen
printing is, so far, the efficient and alternative technique to the CVD and perhaps the best solution for
the large-area fabrication of the FE arrays. Additionally, the increased interest in this technique pushes
forward dynamic development in viscous suspensions containing novel materials.

Table 1. The summary of the FE cathodes in a form of a film made of the suspension, grouped according
the method to form a film.

CNT
Solvent,

Additives/Fillers Technology Eth
&

(V/µm) Vth
% (V) t $ (h)

I
(mA/cm2)

I
(µA) Ref.

SW Nitric and sulfuric acid/− electrophoresis − 900 18 − 103 [82]
MW unknown/− Screen printing 1,5 ~300 8000 10 ~200 [23]

MW polystyrene/−
Screen printing or

casting 30 − 50 0,8 1 [55]

SW IPA, nitrocellulose/- Screen printing 3.0 − − 90 1500 [65]

MW
EtOH, tributyl

Phosphate, texanol, ethyl
cellulose/Ni, TiO2

Screen printing − 1500 10 − 5 × 103 [74]

Un-known unknown Screen printing 3.0 − 25 0.4 − [104]

MW polyvinyl alcohol, dibutyl
phthalate/frits Screen printing 2.5 − ~1.5 35 − [105]

Un-known Unknown/unknown Screen printing − 2.5 (tri) 24 − 48.2 [106]

Un-known Terpinol, organic binders,
inorganic frits/− Screen printing 1.5 − 100 1 − [111]

DW # Organic binders/− Screen printing 3.05 1220 − − 20 × 103 [128]
SW Organic binders/− Screen printing ~12.5 − − − 5 × 105 [132]

MW Texanol, acryl/Ni and
TiO2 nanoparticles Screen printing 2.2 − − − 1 × 105 [138]

MW Glass frits, organic
binders/− Screen printing − 4500 − − 103 [139]

MW Terpinol/Cu alloy and
Al2O3 nanoparticles Screen printing −

3 × 104

(tri.)
− − 5 × 104 [142]

DW Ethyl cellulose/− Screen printing 1.3 − − 1 − [146]

MW
Ethyl cellulose,

terpineol/SiC and Ni
nanoparticles

Screen printing 3500
(tri.) − − 20 10 [163]

Un-known −/Bi and Na Screen printing 6.5 − − 4 3 × 104 [152]

SW Photo-sensitive vehicles/− Screen printing and
photo-lithography − 80 (tri.) +

− − ~50 [66]

MW

Spin-on-glass, organic
vehicle, photosensitive

monomers,
photosensitive oligomers,

and photoinitiators

Screen printing and
photo-lithography 2.46 − − 9 − [110]

Un-known
Ethyl cellulose, terpinol,
photosensitive resin/Ag

particles

Screen printing and
photo-lithography 10 2000 − 0.2 − [117]

Un-known IPA, acrylate, cellulose,
frit glass/SnO2

Screen printing and
photo-lithography 3.6 − 12 2.0 − [140]

MW

Texanol, photosensitive
compounds, acryl/TiO2

microparticles and SnO2
nanoparticles

Screen printing and
photo-lithography 17 − − 50 − [149]

MW Organic binders/− Screen printing and
laser irradiation 6.2 − − 20 − [130]

MW Photoimageable
compounds/−

Screen printing and
oxygen trimming −

5000
(tri.) 120 − 200 [134]

SW Organic binders/− Screen printing and
Ar plasma − 1280 − − 3 × 104 [144]

MW SiO2 sol, carboxymethyl
cellulose, glycol/−

Screen printing and
reactive ion etching 3.5 − − 200 − [145]

MW 1,2-dichloroethane/− Spray coating 1.90 − 12 1.52 − [94]
MW 1,2-dichloroethane/− Spray coating 2.5 − − 2 − [124]



Micromachines 2020, 11, 260 22 of 32

Table 1. Cont.

CNT
Solvent,

Additives/Fillers Technology Eth
&

(V/µm) Vth
% (V) t $ (h)

I
(mA/cm2)

I
(µA) Ref.

MW EtOH Deposition on a rod 4.6 − ~2 8.5 5.9 × 103 [77]

SW Sodium dodecyl sulfate

Forming the
triangular shape from

a filtered and dried
paste

~1.5 − 20 100 22.4 [78]

MW sodium dodecyl
sulfate/graphite powder Deposition on a rod 3.2 − 20 2 × 104 8.5 [123]

SW Water, surfactant buckypaper 0.56 − 50 1 − [102]
MW Ferrocene-xylene buckypaper 4.9 − 5 0.4 1 [103]
MW nickel sulfate bath electroplating 1.7 − 100 1 − [117]

Un-known Terpineol/Ni and SiC
nanoparticles Point contact method − 3700 <1 1 × 104 220 [122]

Un-known EtOH, epoxy resin/−
A film was mounted
between glass slides − 200 − 400 0.1–10 [86]

# MW = multi-walled nanotubes; in particular, DW = double-walled nanotubes; ˆ SW = single-walled nanotubes; *
CVD = chemical vapor deposition; & subsequent electric field required for the particular emission current or current
density, beyond the emission initiation [45]; % subsequent voltage applied and required for the particular current or
current density, beyond the emission initiation. (in case of the triode configuration, it is not a gate voltage); $ it is the
best-reported value in the reference; + tri. = triode configuration.

Table 2. The summary of the remain FE cathodes, grouped according to the structure.

CNT Structure Technology Eth
(V/µm) Vth (V) t (h) I

(mA/cm2)
I

(µA) Ref.

Un-known A single CNT CVD − ~700 − − 2 [125]

MW A single CNT mounted
on W tip − − 319 − − 1.1 [54]

Un-known A single CNT with MgO
coating

CVD and electron
beam evaporation − 1000 − − 1 [125]

MW Film PECVD 4 − − − 10 [58]
Un-known film CVD 2.08 − 24 − 202 [121]
Un-known film CVD 6.5 − 125 10 − [135]
Un-known film microwave PECVD 1.2 − 5 400 − [126]

SW Forest CVD 1.85 − 12 1.25 − [94]
MW Bundle forest PECVD 4.05 * − 7 7 ~1 [164]

Un-known Bundle forest PECVD − − − − 630 [165]

SW Forest parallel aligned to
the substrate HFCVD − 520 − − ~71 [95]

SW Bundle forest Arc discharging − 1200 − − 0.1 [23]

MW
Radially aligned tubes in

arrays Spray pyrolysis 0.78 − >14 7.71 − [31]

MW Forest pitch array CVD * 4.8–6.1 − 20 10 − [52]

MW CNT array in a shape of a
star CVD − 1000 368 9.08 − [63]

Un-known CNT array CVD 5.33 − − 50 2 × 104 [67]

MW Uniform array of
individual tubes PECVD − − − − ~20 [87]

Un-known Patterned forest as a
bundle

CVD and
photolithography 2.4 − 200 150 3 [118]

MW Patterned forest arrays CVD 6.7 − 3300 − 5000 [119]
MW Patterned forest arrays thermal CVD − 600 10 10−2 2230 [166]
SW CNT wire mesh CVD 1.5 − − − 103 [136]
MW Yarn - 0.15–0.5 500–1100 − − ~600 [56]

Un-known Fiber Wet spinning − 850 − − 3.5 [88]
MW fiber Twisted CNT yarns − 750 − − 1500 [76]

* The authors of [166] determined Vth at 1 mA/cm2.

7. Issues and Perspectives

7.1. Field-Emission Theoretical Model

Though in the literature, for film cathodes, there is a developed theoretical model which might
explain to some degree the evolution and self-assembly of the system of CNTs during field emission [158],
the readers should also note the ongoing scientific discourse on the right theoretical model that describes
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the field emission; the commonly used Fowler–Nordheim equations were found to be inadequate and
need to be corrected. So far, it is proposed to use the corrected F–N equation named Murphy–Good
equations [19] in order to prevent the research-integrity problem, as it was called by R. Forbes in his
latest paper [25]. Additionally, the Seppen–Katamuki (SK) analysis might be used to obtain the exact
work function of the emitter, as well as to extract geometrical parameters of the field emitter [42–44].

7.2. Screen Printing

The major obstacle of screen printing and viscous suspensions as material for technology is the
outgassing caused by the paste components during operation under vacuum conditions. In addition,
the rheology of the suspension to more properly characterize the suspension is also needed to identify
the critical properties, e.g., viscosity, viscoplasticity, homogeneity, etc., that determine the structure of
the desired printed pattern. Another important point is that not all CNTs are the same. For example,
the electronic properties of CNTs have a strong relationship with their structure, and so far it is a
challenge to grow CNTs with unique electronic properties on an out-of-laboratory scale [81], making
it difficult to repeat their field-emission performance. Therefore, it is important to consider that
cathode performance and their processability depend on the type of CNTs used [70], as well as on their
crystallinity. It was reported that high crystallinity reduced Joule heating, improved emission stability,
and enhanced emission current [94] and brightness homogeneity [99]. If the FE cathode is made of
CNT suspensions, its performance depends not only on the used CNTs but also on the type of solvents
(organic, resins, and acids) and additives (surfactant, organic, and non-organic nanoparticles), as well
as the process condition and postprocess treatment needed either to remove the solvent and additives
or to protrude or rearrange the CNTs.

Finally, homogenous dispersion of the high crystalline metallic CNTs with minimal damage for
field-emission purposes is not a trivial task. This point ensures the CNT cathode film stability during
emission [30].

7.3. Screening Effect and Side-Wall Emission

With recent data about sidewall electron emission, flat CNT cathodes might bring some advantages,
although this needs to be confirmed. Contrary to field emission from a CNT forest, in field emission
from a flat CNT cathode, electric field screening phenomena seems to not play a major role. However,
this issue has been not yet been investigated for the CNT matrix.

7.4. Electron Beam Focusing

Experimental data have already shown that, in the case of X-ray tubes, the sharp and irregular
shape of the cathode surface causes problems with focusing the beam. An improvement was established
by using a flat cathode, consisting of a CNT mesh or matrix [10]. On the other hand, the same group
showed how the side-attached CNTs work as an emitter, which has a bad effect on the focusing of the
electron beam, again providing an argument for planar cathodes.

7.5. Film Adhesion and Stability

Another issue related to the film cathodes is their self-assembly during emission caused by
electrodynamic force and experimentally presented for CVD-grown CNTs [167]. Moreover, it will be
good to investigate the influence of the adhesive layer on the field-emission properties of the CNT
film, as it is suggested by Lim et al. [124], especially because there is already evidence that the weak
adhesion between CNT and substrate might lead to emission instability and lowering the overall
emission performance [168,169].
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7.6. Addition of Fillers and Coating

Experimental proof prevailed that the presence of the intercalated metallic particles might enhance
and reduce the field-emission parameters, depending on their ratio and type of the particles used [139].
The interesting comparison is between the works with attempts: (1) to make CNT film cathode free of
organic or dielectric particles, and, in case of aligned CNT arrays, (2) to percolate the CNT aligned
array with a dielectric material, which might have a significant impact on field-emission enhancement,
and coating the cathode with a metallic film possessing lower work function than CNT showed it
might be the right trend to improve the field-emission properties of the CNT film cathodes [170].
Although it had an effect on the decrease of the threshold voltage, the drawback of this approach
is even three orders lower current density compared to the film cathodes without metal covering
(see, for example, Figure 17 vs. Figures 4, 9 and 13). The influence of the coating film thickness on
field-emission properties, as well as its correlation to the composite conductivity, should be further
investigated to confirm the line trends and its correlation with the composite conductivity. It might
also contribute to a better understanding.

All of these listed challenges should be again considered in order to have a better understanding
of the electron emission from film cathodes made of CNT suspensions.
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