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INTRODUCTION

The forkhead box protein C2 (FOXC2) transcription factor has recently emerged as a key regulator
of tumor progression in many cancer types. First implicated as a potential oncogenic transcription
factor due to its overexpression/nuclear localization in invasive breast carcinomas, particularly
those of the aggressive basal-like subtype (1), FOXC2 has since been linked to the progression of a
number of epithelial-derivedmalignancies. Indeed, FOXC2 overexpression and nuclear localization
are poor prognostic indicators of survival in patients with prostate cancer (2), hepatocellular
carcinoma (3), NSCLC (4), colorectal cancer (5), glioma (6), gastric cancer (7), and esophageal as
well as oral tongue squamous cell carcinomas (8, 9). Studies employing murine and human tumor
cell lines have confirmed the oncogenic potential of the FOXC2 transcription factor, highlighting
its ability to promote several hallmarks of cancer progression, including proliferation (5, 9),
epithelial-mesenchymal transition (EMT) (10), invasion andmetastasis (11), glycolytic metabolism
(12), stemness (13), and drug resistance (14, 15). Based on these diverse tumor-promoting functions
and the breadth of tumor types in which FOXC2 is dysregulated, it is important to improve our
understanding of this transcription factor’s regulation of oncogenic pathways in cancer cells.

While previous studies have focused on FOXC2 in the context of cancers originating from
epithelial tissues, we recently demonstrated that FOXC2 is also a key contributor to the progression
of melanoma (16). Using CRISPR-Cas9 gene editing technology, we engineered a variant of the
B16-F1 murine melanoma cell line that carries a bi-allelic disruption in the Foxc2 gene and that
does not express FOXC2 protein, and we reported that this B16-F11FOXC2 variant grows out
with slower kinetics as a subcutaneous tumor than its parental counterpart. We also reported select
data from RNA-sequencing (RNA-seq) and pathway-focused qRT-PCR array-based differential
gene expression studies in the B16-F1 vs. B16-F11FOXC2 melanomas that highlighted a role for
FOXC2 in: (1) the positive regulation of genes associated with the cellular response to xenobiotics
and oxidative stress and (2) the negative regulation of genes associated with interferon (IFN)
responsiveness. These findings were particularly intriguing in light of our analysis of data from The
Cancer Genome Atlas (TCGA), which revealed that FOXC2 expression levels correlate negatively
with survival of melanoma patients treated with either dacarbazine chemotherapy or ipilimumab
immunotherapy. In this Data Report, we now provide amore thorough description of our RNA-seq
data obtained from the B16-F1 and B16-F11FOXC2 melanoma cell lines. Importantly, these
data reveal a role for FOXC2 in the regulation of multiple pathways with oncogenic potential in
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melanoma, and they offer mechanistic insights into FOXC2-
associated tumor progression that may be applicable to other
cancer types as well.

METHODS

Cell Lines
B16-F1 murine melanoma cells were purchased from the
American Type Culture Collection (Manassas, VA, USA) and
grown in RPMI-1640 medium supplemented with 2mM L-
glutamine, 2 g/l glucose, and 2 g/l sodium bicarbonate (Thermo
Fisher Scientific, Waltham, MA, USA), as well as 10% fetal
bovine serum (Premium Select, Atlanta Biologicals, Norcross,
GA, USA). B16-F11FOXC2 cells were generated as described
(16) and maintained in the same growth medium as the parental
cell line. All cultures were grown at 37◦C in a 5% CO2 incubator
and passaged at 80–90% confluence.

RNA Isolation
B16-F1 or B16-F11FOXC2 melanoma cells (1e6) were plated
onto 60 × 15mm cell culture dishes and grown for 24 h
to ∼90% confluence before isolating RNA with an RNeasy
Mini Kit (Qiagen, Germantown, MD, USA) according to the
manufacturer’s recommendations. On-column DNase-digestion
with Qiagen’s RNase-free DNase Set was performed during
extraction. RNA integrity and genomic DNA contamination were
examined by standard denaturing agarose gel electrophoresis,
and all samples (five independent replicates per group)
passed quality control assessment. RNA was quantified with
an Epoch Spectrophotometer (BioTek, Winooski, VT, USA),
and A260/280 and A260/230 ratios were both ≥2.0 for
all samples.

Preparation of Libraries for RNA-seq
RNA samples were shipped overnight on dry ice to Arraystar, Inc.
(Rockville, MD, USA) for analysis using the company’s Illumina
Hi-seq 6G RNA-sequencing service. mRNA was isolated from
total RNA (1–2 µg per sample) with oligo (dT) magnetic beads
using the NEBNext R© Poly(A) mRNAMagnetic IsolationModule
(New England BioLabs, Ipswich, MA). RNA was fragmented
to sizes between 400 and 600 bp and reverse transcribed into
1st strand cDNA using random hexamer primers according
to manufacturer recommendations in the KAPA Stranded
RNA-Seq Library Prep Kit (Illumina, San Diego, CA). Using
this kit, 2nd strand synthesis was performed to incorporate
dUTP into strand-specific libraries, and the double-stranded
cDNA was end-repaired, A-tailed, adaptor ligated, and PCR
amplified. Completed libraries were qualified with an Agilent
2100 Bioanalyzer using the Agilent DNA 1000 Kit (Agilent,
Santa Clara, CA) and quantified by absolute quantification qPCR.
Barcoded libraries were mixed in equal amounts, denatured to
single stranded DNA with 0.1M NaOH, loaded onto channels of
the flow cell at 8 pM concentration, and amplified in situ using
a TruSeq SR Cluster Kit v3-cBot-HS (Illumina). Sequencing was
carried out by running 150 cycles for both ends on an Illumina
HiSeq 4000 instrument.

RNA-seq Data Processing and Analysis
Image analysis and base calling were performed using Solexa
pipeline v1.8 (Off-Line Base Caller software, v1.8). Sequence
quality was examined using FastQC software (v0.11.7), and raw
sequencing data that passed Illumina chastity filtering were
analyzed. Fragments were 5′, 3′-adaptor trimmed and filtered
≤20 bp reads with cutadapt software (v1.17). The trimmed
reads were mapped to reference genome GRCm38 using Hisat
2 software (v2.1.0). Transcript abundances for each sample were
estimated with StringTie (v1.3.3), and the normalized expression
level (FPKM value) of known genes was calculated with the R
package ballgown (v2.10.0). An FPKM mean of ≥0.5 in a given
biological group was used to calculate the number of identified
genes per group. Using these identified genes, differential gene
expression analysis was performed with ballgown and the
following cutoffs to filter differentially expressed genes: fold
change ≥ 1.5, p ≤ 0.05, and mean FPKM ≥ 0.5 in at least one
group. Gene ontology (GO) enrichment analysis of differentially
expressed genes was performed using standard GO Terms from
the Gene Ontology Resource (http://www.geneontology.org) and
a Fisher’s exact test to estimate statistical significance of the
enrichment of terms between the B16-F1 and B16-F11FOXC2
cell lines. Similarly, pathway analysis of differentially expressed
genes was performed using the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database, and a Fisher’s exact test was used
to estimate the statistical significance of pathways enriched with
differentially expressed mRNAs between the two cell lines.

Data Deposition
RNA-seq data discussed in this publication have been deposited
in NCBI’s Gene Expression Omnibus (17) under Dataset
Name “RNA-seq Analysis of Differential Gene Expression
in Wild-type Versus FOXC2-deficient B16-F1 Melanomas”
and are freely accessible through GEO Series accession
number GSE134296, available at https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE134296 (18). This dataset includes
both raw data in .fastq format as well as a matrix table
of processed data (.xlsx format) with the normalized FPKM
expression values for known genes from each sample.

OVERVIEW AND REUSE OF DATA

We recently reported that expression of the FOXC2 gene in
melanoma biopsies is an unfavorable prognostic indicator of
patient survival following treatment with either chemotherapy
or immunotherapy (16). In that study, we also described a
novel CRISPR-Cas9 gene-edited variant of the murine B16-F1
melanoma that we engineered to lack the FOXC2 transcription
factor (B16-F11FOXC2). Using this model, we demonstrated a
role for FOXC2 in promoting melanoma progression, and we
highlighted select data from an RNA-seq analysis of the B16-
F1 and B16-F11FOXC2 melanomas that we now describe here
in more detail. With 5 replicate RNA samples isolated from
each tumor cell line, a Quality score of Q30 >82% for each
sample (Q30 = 99.9% base calling accuracy), and a high level
of correlation between samples within each biological group
(Pearson R2 correlation > 0.993 between replicates, Figure 1A),
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FIGURE 1 | RNA-seq correlation and differential gene expression analyses of B16-F1 and B16-F11FOXC2 murine melanomas. RNA-seq analysis was performed on

RNA isolated from five replicate samples for each biological group. The Pearson R2 correlation heat map of gene expression levels between all samples is shown in

(A). The hierarchical clustering heat map of differentially expressed genes between B16-F1 and B16-F11FOXC2 is shown in (B). KEGG Pathway and Gene Ontology

analyses were performed to identify pathways and biological processes significantly enriched with differentially upregulated and downregulated genes in B16-F1.

Enrichment score dot plots showing gene counts and statistical significance as determined by a Fisher’s exact test are presented for the top 10 KEGG pathways

enriched in differentially expressed (DE) genes in (C,D) and for the top 10 Biologic Process-related GO Terms enriched in DE genes in (E,F).
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TABLE 1 | Summary of RNA-seq differential gene expression in B16-F1 vs. B16-F11FOXC2 melanoma.

Top 30 DE genes upregulated in B16-F1 vs. B16-F11FOXC2

Gene Fold change p-value q-value Gene Fold change p-value q-value

Fscn1 20.17 1.04E-07 1.19E-05 Iqgap 3.65 9.60E-09 2.88E-06

Cbr3 9.24 3.04E-10 2.76E-07 Ece1 3.60 5.30E-12 6.14E-08

Mbp 8.53 1.71E-09 9.88E-07 Cntln 3.60 1.28E-11 6.14E-08

Pdpn 7.51 2.26E-10 2.39E-07 Trim25 3.59 6.35E-09 2.28E-06

Foxr2 7.27 1.52E-10 1.91E-07 Zfp521 3.54 6.63E-11 1.05E-07

Mcoln3 5.77 3.10E-11 7.27E-08 Cort 3.51 1.72E-05 0.00031

Lmo1 5.53 1.85E-08 4.52E-06 Epha3 3.45 6.81E-07 3.81E-05

Dcdc2a 5.10 6.71E-10 5.01E-07 Tmlhe 3.42 2.11E-11 6.70E-08

Plp2 4.88 3.24E-08 6.03E-06 Cyp26b1 3.39 3.12E-06 9.21E-05

Nqo1 4.77 3.03E-10 2.76E-07 Pafah1b3 3.33 6.56E-11 1.05E-07

Taf9b 4.67 1.58E-07 1.49E-05 Prrg4 3.27 1.43E-07 1.37E-05

Nostrin 4.64 4.77E-09 2.13E-06 Hoxd13 3.26 4.86E-09 2.13E-06

Col4a1 4.52 4.54E-08 6.95E-06 Rnf113a2 3.22 2.08E-07 1.77E-05

Vgll3 4.37 1.18E-07 1.24E-05 Armcx1 3.20 3.75E-08 6.45E-06

Tor4a 3.65 6.21E-08 8.57E-06 Pmp22 3.16 2.91E-08 5.68E-06

Top 30 DE genes downregulated in B16-F1 vs. B16-F11FOXC2

Lgals3 −7.73 2.22E-09 1.22E-06 Pla2g2e −2.70 3.27E-05 0.00049

Oas1a −6.41 9.54E-09 2.88E-06 Ksr1 −2.66 3.64E-09 1.78E-06

Mgll −5.87 1.99E-05 0.00034 Itgb3 −2.66 2.85E-08 5.68E-06

Isg15 −4.22 3.24E-07 2.41E-05 Pet2 −2.63 1.45E-11 6.14E-08

Tagln2 −4.21 3.28E-08 6.03E-06 Sphk1 −2.63 2.45E-05 0.00040

Oas1g −3.82 5.70E-08 8.04E-06 Stat1 −2.61 2.08E-07 1.77E-05

Lcp1 −3.59 1.76E-06 6.49E-05 St6gal1 −2.61 8.63E-05 0.00095

Hsd11b1 −3.36 1.13E-07 1.24E-05 Met −2.58 0.0014 0.0074

Mogat1 −3.35 8.77E-07 4.51E-05 Arfgef3 −2.58 4.20E-06 0.00011

Ifi27 −3.11 1.92E-07 1.70E-05 Tinagl1 −2.54 5.38E-06 0.00014

Trpm1 −2.88 1.37E-05 0.00026 Adam23 −2.54 8.24E-10 5.81E-07

Ifitm3 −2.83 3.62E-06 0.00010 Fam129a −2.54 1.50E-06 6.03E-05

Ddx58 −2.81 1.52E-06 6.03E-05 Mapre3 −2.54 7.81E-07 4.11E-05

Xaf1 −2.77 1.13E-05 0.00023 Egr1 −2.54 8.19E-05 0.00091

Fam178b −2.74 6.35E-08 8.68E-06 Ecm1 −2.53 1.44E-05 0.00027

List of the top 30 upregulated and downregulated genes in B16-F1 vs. B16-F11FOXC2 melanoma cells as determined by RNA-seq analysis. q value = false discovery rate

(FDR)-adjusted p-value.

this dataset provides a high-quality profile of the FOXC2-
associated transcriptome in melanoma cells, and it will serve
as a useful tool to investigators interested in studying FOXC2
function in the context of cancer.

In the differential gene expression analysis of our RNA-
seq data, we defined B16-F11FOXC2 as the reference sample
so that genes upregulated in the wild-type B16-F1 cell line
could be interpreted as those positively regulated (directly or
indirectly) by FOXC2, whereas genes downregulated in B16-
F1 would represent those negatively regulated by FOXC2. We
identified 598 genes differentially expressed (fold-change ≥ 1.5,
p ≤ 0.05, and mean FPKM ≥ 0.5 in at least one group)
by these cell lines: of these, 254 genes were upregulated in
B16-F1, implicating a role for FOXC2 in their induction, and

344 genes were downregulated in B16-F1, reflecting FOXC2-
associated repression of these genes (Figure 1B). We performed
KEGG Pathway analysis and GO Biologic Process analysis of
this cohort of genes and report here the top 10 pathways and
GO Terms enriched with these differentially expressed genes
(Figures 1C–F). The 30 most highly up- and downregulated of
all of these genes are also shown in Table 1.

Our recent study highlighted several differentially expressed
genes upregulated in B16-F1 that are associated with GO Terms
related to the cellular response to xenobiotics and oxidative
stress. We also noted in that study the downregulation in
B16-F1 of several genes associated with GO Terms related to
IFN responsiveness (16). Our current KEGG Pathway analysis
supports these findings, with significant enrichment of B16-F1
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upregulated genes in pathways related to xenobiotic metabolism
and glutathione metabolism as well as significant enrichment of
B16-F1 downregulated genes in pathways related to viruses and
Nod-like receptor signaling, all of which include several genes
involved in cellular responses to IFN. Indeed, many of the most
significantly up- and downregulated genes listed in Table 1 have
functions related to these particular pathways and were validated
by qRT-PCR in our previous study.

Our data supports previously reported functions of FOXC2 in
other cancer types and provides potential molecular insights into
the oncogenic activity of this transcription factor. With regard
to FOXC2’s well-established role in promoting chemotherapy
resistance in tumor cells (14, 15, 19, 20), our data suggests
potential mechanisms by which this chemoresistance may be
achieved, including induction of genes associated with drug
metabolism such as the carbonyl reductase gene Cbr3, the
oxidoreductase gene Nqo1, the cytochrome P450 family member
Cyp26b1, and several members belonging to the glutathione
S-transferase gene family (which fall outside of the top 30
upregulated genes shown in Table 1). Our findings are also
consistent with work in other tumor and non-tumor models
demonstrating a role for FOXC2 in the activation of PI3K-Akt-
mTOR signaling (5, 20, 21), as we found that several genes
associated with the PI3K-Akt signaling pathway (mmu04151)
and the mTOR signaling pathway (mmu04150) were upregulated
in B16-F1 as compared to its FOXC2-deficient counterpart. These
genes include the Pik3r2 gene, which encodes the p85β regulatory
subunit of PI3K known to induce oncogenic transformation
and cellular proliferation (22, 23), and the Insr gene, whose
protein product drives various oncogenic activities through
PI3K signaling (24). FOXC2 is also well-known for its ability
to promote EMT and tumor cell migration/invasion (10, 25),
and our findings suggest potential mechanisms by which these
hallmarks of cancer progression might be regulated by FOXC2
as well. In this regard, some of the most highly upregulated
genes in B16-F1 include Fscn1 (20.17-fold upregulation) and
Pdpn (7.51-fold upregulation). The fascin protein encoded by
Fscn1 organizes F-actin into bundles needed to form cellular
protrusions that enhance tumor cell migration (26), and the
actin-rich podoplanin protein encoded by Pdpn enhances tumor
cell invasion, most likely by stabilizing invadopodia that trigger
extracellular matrix (ECM) degradation (27, 28). Additionally,
FOXC2-associated downregulation of genes belonging to the
Focal adhesion pathway (mmu04510), such as the fibronectin-
encoding Fn1 gene and the integrin-encoding Itgb3 gene, the
latter of which is a known direct target of FOXC2 (29),
may contribute to ECM remodeling and the altered adhesion
of tumor cells to ECM components that occurs during the
invasion process.

In addition to offering molecular insight into the previously
described oncogenic activities of FOXC2, the RNA-seq dataset
described herein highlights potentially novel tumor-promoting
functions for this transcription factor as well. Of note, although
previous work has demonstrated FOXC2-associated regulation
of glycolysis (12), fatty acid oxidation (30), and mitochondrial
metabolism (31), a role for FOXC2 in other metabolic pathways
has not been reported to date. Interestingly, our differential

gene expression analyses suggest the likelihood that FOXC2 also
contributes to amino acid metabolism, as several GO Terms
and Kegg Pathways related to amino acid biosynthesis and
metabolism were significantly enriched with genes upregulated
in the FOXC2-expressing B16-F1 cell line. Many of these genes,
including Phgdh, Psat1, and Psph, play important roles in
serine biosynthesis, a process that has been shown to accelerate
melanoma progression and confer resistance of BRAF V600E
mutant melanoma to the targeted inhibitor vemurafenib (32, 33).
To date, only one other group has demonstrated a role for
FOXC2 as a regulator of amino acid metabolism. In a recent
study by Ramirez-Peña et al., FOXC2 was found to negatively
regulate glutamine utilization in breast cancer cells undergoing
EMT by downregulating expression of the GLS2 glutaminase
(31). Our data now highlight the potential for FOXC2 to modify
additional metabolic pathways in cancer cells, suggesting that
this transcription factor may contribute to a variety of metabolic
adaptations over the course of tumor progression.

Another previously unappreciated function of FOXC2
revealed by our data is its negative regulation of genes associated
with IFN signaling, a finding that is particularly intriguing in
light of recent studies demonstrating that both type I IFN and
IFNγ signaling pathways within tumor cells are critical to the
efficacy of cancer immunotherapies (34–37). Indeed, our recent
analysis of melanoma patient TCGA data showed that FOXC2
expression correlates negatively with progression-free survival
(PFS) of patients treated with the CTLA-4 immune checkpoint
inhibitor ipilimumab (16). Though the mechanism by which
FOXC2 might promote resistance to checkpoint blockade
therapy remains to be elucidated, it is interesting that in our
murine model FOXC2 negatively regulated the expression of
several IFN signaling pathway components, including the Ddx58
gene encoding RIG-I and the Stat1/Stat2/Stat3 and Irf7/Irf9
transcription factor genes. FOXC2 expression was also associated
with downregulation of various IFN-stimulated genes, including
Oas1a, Oas1g, Isg15, Ifi27, Ifi35, Ifitm3, Ifit1, and Ifit3, among
others. In keeping with our observation of FOXC2-associated
downregulation of Ddx58 expression and the aforementioned
link between FOXC2 expression and poor PFS of melanoma
patients on ipilimumab, it is worth noting that Heidegger et al.
recently demonstrated the importance of tumor cell-intrinsic
activation of RIG-I in the success of checkpoint blockade
therapy (38). Interestingly, RIG-I deficiency in cancer cells was
also recently linked to the induction of tolerogenic dendritic
cells (39), a cell type that could impact the efficacy of several
immune-based therapies and one that is of particular interest
to our laboratory (40, 41). We are therefore eager to explore
in our model how FOXC2’s negative regulation of RIG-I and
other IFN pathway genes might contribute to tumor immune
evasion and various forms of resistance to clinically relevant
cancer immunotherapies.

It is worth noting that one potential limitation of our
current study is its utilization of a murine, rather than human,
melanoma cell line. Going forward, it will indeed be worth
validating our findings with a similar approach in frequently
studied human melanoma cell lines, such as A375 and SK-
MEL-3. In order to gain additional insights into FOXC2
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activity in human melanoma, we are also in the process of
evaluating by immunohistochemistry how FOXC2 expression
levels in melanoma patient biopsies correlate with expression
of proteins of interest that have emerged from this study.
Together with analyses evaluating how FOXC2 expression
and subcellular localization correlate with clinicopathological
features and patient outcome, these findings are likely to yield
important questions related to the basic biology of FOXC2
function in melanoma that can be easily addressed in our
B16-F1/B16-F11FOXC2 model. Additionally, though B16-F1
is a subclone of B16 melanoma and therefore lacks the
genetic diversity of a naturally arising heterogeneous tumor,
it nevertheless recapitulates many features of highly aggressive
human melanomas, and it has become a useful model system
for investigating several hallmarks of tumor progression both
in vitro and in vivo (42). Ongoing work in this model, which does
not carry mutations in the BRAF and PTEN genes frequently
associated with melanoma (43, 44), may be particularly relevant
to understanding the progression of the still large percentage
of melanomas not driven by mutations in these two genes.
In this regard, that our B16-F11FOXC2 model represents to
our knowledge the first complete FOXC2 knockout cell line
underscores the potential utility of this system for gaining
important mechanistic insights into a potentially alternate driver
of melanoma progression. Moreover, with evidence continuing
to emerge that FOXC2 can function as an oncogenic driver of
various other cancer types, comparative studies between our
wild-type and complete FOXC2 knockout melanoma cell lines
are likely to reveal important functions for this transcription
factor that are of broad relevance to other forms of cancer as well.

In conclusion, this Data Report describes a high-quality
RNA-seq dataset that we believe will serve as an important
resource for investigators interested in studying the oncogenic
activity of FOXC2. Importantly, our differential gene expression
analyses not only offer potential molecular explanations for
well-established FOXC2-driven hallmarks of cancer progression
but also suggest novel tumor-promoting functions for this
transcription factor. Going forward, we hope these data will
invite new questions about the oncogenic functions of FOXC2

and ultimately drive future studies that aim to: (1) improve
our understanding of FOXC2 activity in cancer cells and (2)
inform therapeutic strategies designed to interfere with FOXC2-
associated cancer progression.
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