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Introduction

Lung cancer (LC) is the third human malignant tumor and 
the leading cause of cancer-associated mortality around the 
world (1,2). Surprisingly, survival from a diagnosis of LC 
is longer for those who experienced a previous cancer than 
for those without previous cancer (3). LC is a serious cancer 
which can be cured if it is diagnosed at early stages, but its 
early diagnosis is not good (4). Thus, it is very critical to 

understand the molecular mechanism of LC progression 
and to discover novel therapeutic targets. Circular RNAs 
(circRNAs), which are discovered as a class of endogenous 
non-coding RNAs, have recently shown huge capabilities 
to regulate gene expression including viruses, plants, and 
animals (5). As a novel class of noncoding RNAs, circRNAs 
was reported to play important roles in various biological 
processes (6). CircRNAs have the potential in application of 
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individualized cancer medicine (7). Microarray analysis of 
circRNAs identifies hsa_circ_0014130 as a new biomarker 
in non-small cell lung cancer (NSCLC) (8). Many studies 
showed that circRNAs were potential biomarkers for tumor 
diagnosis (9-11). In this study, circRNA circZFR (circBase 
ID: hsa_circ_0072088) located at chromosome 5p13.3. 
CircZFR was highly expressed in LC tissues compared with 
adjacent normal tissues. The deficiency and overexpression 
of circRNA circZFR in LC cell lines were performed to 
study its effects on tumor propagation, and its potential 
mechanism was explored. 

Methods

Patients and sample collection

Thirty LC patients were recruited from Department of 
Respiratory Medicine, Beijing Aerospace General Hospital 
(Beijing, China) in this study. Pathological diagnosis was 
made according to the histology of tumor specimens or 
biopsy and examined by experienced pathologists. All 
tissue samples were obtained from consenting patients and 
this study was approved by Ethics committee of Beijing 
Aerospace General Hospital (Ethical approval number: 
KS-2016-01). The clinical data for the above patients were 
summarized in Table 1.

Cell lines and reagents 

LC cell lines were from ATCC and maintained in DMEM 
supplemented with 10% fetal bovine serum (FBS) 
(Invitrogen, NY, USA), 100 μg/mL penicillin G, and 100 
U/Ml streptomycin (Invitrogen, NY, USA). 

ShRNA-mediated interference 

ShRNAs against circRNA were designed with MIT's 
siRNA designer (http://sirna.wi.mit.edu/home.php). At 
least four quadruplexs were designed for each gene, and the 
most effective shRNAs were used for subsequent studies. 
The sequences of the effective shRNAs were provided as 
follows: Sh 1#: 5'-TACCTCGAGTGTAGCTACG-3', 2# 
5'-CGCATAACTCGCATCGACC-3'. shRNAs and control 
hairpins were cloned into pSICO R vector. Production of 
lentiviral particles and transduction of cells was performed 
according to protocols from the RNAi consortium (http://
www.broadinstitute.org/rnai/trc). Cells were transfected 
with lentiviral constructs expressing shRNA or shCtrl as 
described above for 24 hours. Positive cells were selected 
with puromycin (MCE, NJ, USA) for 5 days. Then, cells 
were collected for protein and RNA analysis. 

CircRNA overexpression 

Full-length circular cDNA was cloned into pCDNA3.1 
vector, and transfected cells were generated as described 
above. Stable clones were obtained by selection with G418 
(Thermo Fisher Scientific, USA). All constructs were 
confirmed by DNA sequencing. 

Immunoblotting assay 

Cells were lysed in RIPA lysis buffer supplemented with 
cocktail protease inhibitor (Roche, UK). Cytoplasamic 
or nuclear proteins were separated by SDS-PAGE and 
transferred onto polyvinylidene difluoride (PVDF) 
membrane (GE Healthcare, USA). The PVDF membranes 
were incubated with primary antibodies, followed by 
incubation with secondary antibodies coupled to horseradish 
peroxidase (R&D systems, USA). 

Quantitative real time PCR (qRT-PCR) assay 

Total RNA was isolated using TRIzol (Invitrogen, USA) and 
an RNeasy kit (QIAGEN, USA) with DNase I digestion 

Table 1 Clinical characteristics of lung cancer patients

Characteristics Lung cancer (n=30)*

Sex 

Male 18 [60]

Female 12 [40]

Age (yr) 55.2±10.2 

≤55 16 [53] 

>55 14 [47] 

Tumor size (cm)

≤5 17 [57]

>5 13 [43]

Differentiation 

Low 12 [40] 

Medium 15 [50] 

High 3 [10] 

*, data are shown as means ± standard deviation (SD) or 
numbers [%].
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according to the manufacturers’ instructions. cDNA 
was synthesized from total RNA using M-MLV reverse 
transcriptase (Promega) and random primers (Promega, 
USA). qRT-PCR was performed on an ABI7300 Real-Time 
PCR System (ABI 7300, Applied Biosystems). Data were 
normalized to 18S rRNA or β-actin or to control samples. 
Primers sequences for the detected genes were as follows: 
Circ-F: 5'-TTATCCCTACCTACTGCTGTGCC-3'; 
Circ -R:  5'-CCTTACT CTCCTGTTGTTGC-3'; 
CCND1-F: 5'-CAATCACTCCGCTCATGCTC-3', 
CCND1-R: 5'-CATGTGCAGCCTACCGGTT-3'; 
CCND2-F: 5'-TTACTCCTACTGCACTGCATC-3’, 
C C N D 2 - R :  5 ' - AT T C G G C ATA C AT G A AT G - 3 ' ; 
18S-F:  5 ' -AATCCGTTGAACCCCATT-3' ,  18S-
R :  5 ' - C C A T C C A A T C G G T A G T A G C G - 3 ' ; 
A C T B - F :  5 ' - T C C C A A C A G C T T- 3 ' ,  A C T B - R : 
5'-ATGACGTCTGGGCCTGTCTA-3'. 

In situ hybridization (ISH) assay 

D i g o x i g e n i n - c o n j u g a t e d  c i r c R N A  p r o b e s 
( t a r g e t i n g  j u n c t i o n  s e q u e n c e  o f  c i r c R N A ,  # 1 : 
5 ' - AT T C C ATA G T T C T C G G C T C G - 3 ' ,  # 2 : 
5 ' - A G C T T G C A AT TAT C G A G A G C - 3 ' ,  # 3 : 
5'-GAACTTGTGCGTTCCAAT-3') were designed 
according to protocols of Biosearch Technologies (https://
www.biosearchtech.com/). Indicated samples treated in 
non-denaturing conditions were hybridized with probe sets 
overnight, then incubated with HRP-conjugated secondary 
antibodies. After rinsing with RNA-free PBS, the sections 
were incubated with DAB, counterstained with hematoxylin, 
dehydrated and mounted. All experiments were performed 
according to manuals of Biosearch Technologies. 

Northern blot 

Total RNA was extracted from indicated samples using 
Trizol, then subjected to electrophoresis on a formaldehyde 
denaturing agarose gel for 1.5 h. Samples were transferred 
to positively charged NC membranes (GE Healthcare, USA) 
with 20× SSC (Invitrogen, USA) buffer for 12−16 hours.  
After UV cross-linking and prehybridization, the with 
secondary antibodies coupled to horseradish peroxidase 
(R&D systems, USA). Membrane was incubated with 
biotin-labeled probes at 65 ℃ for 16−20 hours. After 
washed with washing buffer, biotin signals were detected 
with Chemiluminescent Nucleic Acid Detection Module 

according to the manufacturer’s instructions. For detecting 
circRNAs only, junction sequences were used for probes. 
For detecting both circRNAs and linear RNAs, exon 
sequences were used for probes. 

Cell proliferation assay 

About 2,000−5,000 indicated cells were planted to a well of 
a 6-well plate and incubated for 2−3 weeks until growing 
to 80% in a CO2 incubator at 37 ℃ with 5% CO2. After 
washing three times with PBS, the cells were fixed with 4% 
PFA (Sigma, USA) for 10 min and incubated with 0.1% 
crystal violet for 30 min at room temperature. Plates were 
washed gently with distilled water until the background 
is clear, then subsequent to air-dry. After photographed, 
33% acetic acid was added to each well to decolorize, then 
subsequent to measuring their absorbance value at 570 nm 
after sufficient shaking. 

RNA fluorescence in situ hybridization (FISH) 

Fluorescence-conjugated CircRNA probes were used for 
RNA FISH. RNA FISH was performed as previously 
described. Hybridization was carried out using DNA probe 
sets (Biosearch Technologies) according to the protocol 
of Biosearch Technologies. Oncosphere and control cells 
were observed with a FV1000 confocal laser microscopy 
(Olympus, Japan).

Xenograft growth in nude mice 

For subcutaneous injection models, different dilutions of 
control and treated cells were implanted into mice (male 
BALB/c nude mice), aged 4 to 6 weeks, with a matrigel 
scaffold (BD matrigel matrix, BD biosciences) into two sides 
of the same nude mouse at the posterior dorsal flank region 
(n=4 to 6 per group). Tumors were measured every other 
day. Mouse experiments were approved by the Institutional 
Animal Care and Use Committees at Peking Union 
Medical College Hospital. The mice were maintained under 
standard conditions according to the institutional guidelines 
for animal care.

Statistical analysis

Statistical analysis was performed with SPSS 17.0 software 
(IBM, Chicago, IL). Data were shown as mean ± SD. The 
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significance of the differences was determined by Student’s 
t-test. P<0.05 was considered significant. 

Results 

CircZFR is highly expressed in LC tumor tissues

Based on circRNA sequencing and circBase (http://www.
circbase.org/) analysis, circZFR transcript was transcribed 
from the ZFR gene due to variable cyclizations (Figure 1A).  
CircZFR was an exon circRNA consisting of 13th to 
17th exons of ZFR gene (Figure 1A). The circRNA 
was further validated by RNase R digestion (Figure 1B) 
and actinomycin D treatment (Figure 1C). In addition, 
circZFR was highly expressed in tumor tissues than 
peri-tumor tissues (Figure 1D). These observations 
were further validated by qRT-PCR analysis (Figure 
1E). Furthermore, circZFR was mainly distributed in 
the nucleus of LC cells by RNA FISH (Figure 1F).  
Collectively, a conserved circRNA circZFR was highly 
expressed in LC tumors.

circZFR deficiency inhibits LC tumor propagation 

To further test the role of circZFR in LC, we depleted 
circZFR in LC cells and examined its ability of tumor growth 
in vitro and in vivo. Given that intronic complementary 
sequences flanking exons are required for formation of 
exonic circRNAs, the exonic circRNAs do not generate if 
either of intronic complementary sequences is missing. The 
circZFR was silenced in two LC cell lines using lentivirus-
mediated short hairpins RNAs (shRNAs) (Figure 2A). 
CircZFR deficiency significantly abrogated clone formation 
(Figure 2B). The circZFR deficient or wild type (WT) cells 
were subcutaneously injected into BALB/c nude mice. We 
observed that circZFR depletion substantially decreased 
tumor propagation compared to WT control cells (Figure 
2C,D). Collectively, circZFR depletion impaired the lung 
tumor growth in vitro and in vivo. 

circZFR overexpression promotes LC tumorigenic capacity

CircZFR was overexpressed in LC cell lines (Figure 3A). 
Results indicated that circZFR overexpression did not 
affect the expression of its parental gene ZFR (data not 
shown). CircZFR overexpression was dramatically increased 
the capacity of cell growth in LC cell lines (Figure 3B). 
Consequently, circZFR overexpression substantially promoted 

tumor propagation (Figure 3C). Taken together, circZFR 
overexpression enhances tumorigenic capacity of LC. 

CircZFR promotes tumor propagation via CCND1 
mediated cell cycle activation 

To further determine target genes of circZFR, transcriptome 
microarray analysis was performed for circZFR deficiency 
and WT control LC cells. We noticed that the circZFR 
was positively correlated with cell cycle signaling (Figure 
4A). These observations were validated in LC cell lines. 
Consistently, circZFR deficiency reduced the expression 
of CCND1 and other cell cycle genes in LC cell lines 
(Figure 4B,C). In contrast, circZFR depletion did not alter 
the expression of ZFR. Consequently, circZFR deficiency 
dramatically decreased H3K4me3 levels on the CCND1 
promoter at ‒1,100 to ‒900 bp segment of CCND1 
promoter (Figure 4D,E). Taken together, circZFR-mediated 
CCND1 transcription activates cell cycle signaling in LC.

Discussion 

CircRNA, a class of non-coding RNAs, is a new group of 
RNAs that are related to tumorigenesis, and the role of 
circRNAs in various diseases has been already highlighted 
(12). CircRNAs shape a covalently closed continuous loop 
which have no 5'-3' polarity and contain no polyA tail (13). 
There is increasing evidence that circRNAs are involved 
in cancer development (14-16). Our results that compared 
with adjacent normal tissues, circZFR was highly expressed 
in LC tissues. CircZFR depletion impaired the lung tumor 
growth in vitro and in vivo, while its overexpression 
enhanced tumorigenic capacity of LC. CircRNA circZFR 
(circBase ID: hsa_circ_0072088) was first reported by 
Wei et al. (17). They found that circRNA circZFR was 
significantly upregulated in papillary thyroid carcinoma 
tissues compared with adjacent normal tissues, and circZFR 
expression level was negatively correlated with clinical 
severity, demonstrating that circRNA circZFR exerted 
oncogenic roles via regulating miR-1261/C8orf4 axis in 
papillary thyroid carcinoma. In another study, circZFR 
knockdown significantly suppressed cell proliferation 
and epithelial-mesenchymal transition in hepatocellular 
carcinoma, and may play carcinogenic role in hepatocellular 
carcinoma through regulating miR-3619–5p/CTNNB1 axis 
and activating Wnt/β-catenin pathway (18). CircZFR could 
significantly distinguish the cancer samples, with an AUC of 
0.7069 to distinguish live cancer cases and normal controls 
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Figure 1 CircZFR is highly expressed in lung cancer tumor tissues. (A) Schematic representation of human circZFR; (B) total RNAs were 
digested with or without 2 Unit/g RNase R for 1 hour (h) at 37 ℃, followed by RNA extraction and analysis. For Northern blot, RNA was 
extracted from LC cells. 18S rRNA was used as a loading control; (C) LC cells were treated with 2 g/mL Act D for 16 h, and corresponding 
RNAs were extracted for qRT-PCR analysis; (D,E) expression levels of circZFR in LC primary tumors and peri-tumors by Northern blot 
(D) and qRT-PCR analysis (E); (F) human circZFR expression was tested in LC primary samples by RNA FISH. Representative images 
are shown. Scale bar, 10 μm. **, P<0.01; ***, P<0.001 by two-tailed Student’s t test. Data are representative of at least three independent 
experiments. E, exon; LC, lung cancer; Act D, actinomycin D; qRT-PCR, quantitative real-time PCR; Ctrl, control; nt, nucleotide; DAPI, 
4',6-diamidino-2-phenylindole; DIC, differential interference contrast.
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Figure 3 CircZFR overexpression enhances LC tumorigenic capacity. (A) CircZFR-overexpressing LC cell lines were established; (B) 
Overexpression of circZFR enhanced the capacity of clone formation. Representative images and statistical results are shown; (C) 1×106 circ-
overexpressing or oeVec LC cells were subcutaneously injected into BALB/c nude mice for tumor growth measurement. Representative 
tumor images (right panel) and statistical results are shown as means ± SD (left panel). n=5 for each group. oeVec, overexpression of empty 
vector; oecirc, overexpression of circZFR. **, P<0.01.

Figure 2 CircZFR deficiency impairs LC tumor propagation. (A) CircZFR was deleted in LC cell lines by short hairpin RNA (circ sh#1) 
compared with control (shCtrl) cells. 18S rRNA served as a positive control; (B) clone formation capacities were tested in circ-depleted 
and control LC cell lines. Representative pictures are shown (right panel), and statistical results are shown as means ± SD (left panel); 
1×106 circZFR deficient or shCtrl A549 (C) and H460 (D) cells were subcutaneously injected into BALB/c nude mice for tumor growth 
measurement. Representative tumor images (right panel) and statistical results are shown as means ± SD (left panel). n=5 for each group. *, 
P<0.05; **, P<0.01.
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Figure 4 CircZFR depletion suppresses tumor propagation via CCND1. (A) GO analysis of downregulated genes in circZFR deficiency 
vs. control cells. (B,C) quantitative measurement of cell cycle-related genes in circZFR-depleted and Ctrl LC cells by qRT-PCR (B) and 
western blot (C); (D,E) ChIP-qPCR analysis of H3K4me3 enrichment on the CCND1 promoter in Circ-depleted cells. Results are shown as 
means ± SD. **, P<0.01, by two-tailed Student’s t test. Data are representative of at least three independent experiments. GO, gene ontology; 
qRT-PCR, quantitative real-time PCR; ChIP, chromatin immunoprecipitation.

(19). However, there are still few studies to explore circRNA 
circZFR in cancer research. Through many articles have 
showed the relationship of circRNAs with LC (8,11,20), 
to our knowledge, our study firstly reported that circRNA 
circZFR exerted carcinogenic role on LC. And possible 
mechanism is that circZFR-mediated CCND1 transcription 
activates cell cycle signaling in LC. CCND1 gene encodes 
Cyclin Dl, a cyclin involved in cell cycle regulation at 
the Gi-S transition (21). CCND1 G870A polymorphism 
may be a risk factor for LC (22). Study found that miR-
326 played a pivotal role on NSCLC through inhibiting 
cell proliferation, migration, invasion, and promoting 

apoptosis by targeting oncogenic CCND1 (23). The results 
were consistent our results, circRNA circZFR deficiency 
dramatically decreased H3K4me3 levels on the CCND1 
promoter at ‒2,700 to ‒2,500 bp segment of CTNNB1 
promoter and suppressed chromatin accessibility of the 
CTNNB1 locus, indicating that circZFR played important 
role in cell cycle signaling of LC by targeting CCND1. In 
conclusion, circZFR as a new circRNA was highly expressed 
in LC tumors, its depletion impaired the LC growth in 
vitro and in vivo and overexpression enhanced tumorigenic 
capacity of LC, and possible mechanism was related with 
expression of CCND1. Our results suggested the circZFR/
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CCND1 signaling might be a promising therapeutic target 
for LC treatment. 
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