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Abstract

Preterm birth affects 1 out of every 10 infants in the United States, resulting in substantial neonatal
morbidity and mortality. Currently, there are few predictive markers and few treatment options
to prevent preterm birth. A healthy, functioning placenta is essential to positive pregnancy out-
comes. Previous studies have suggested that placental pathology may play a role in preterm birth
etiology. Therefore, we tested the hypothesis that preterm placentae may exhibit unique transcrip-
tomic signatures compared to term samples reflective of their abnormal biology leading to this
adverse outcome. We aggregated publicly available placental villous microarray data to generate
a preterm and term sample dataset (n = 133, 55 preterm placentae and 78 normal term placentae).
We identified differentially expressed genes using the linear regression for microarray (LIMMA)
package and identified perturbations in known biological networks using Differential Rank Con-
servation (DIRAC). We identified 129 significantly differentially expressed genes between term
and preterm placenta with 96 genes upregulated and 33 genes downregulated (P-value <0.05).
Significant changes in gene expression in molecular networks related to Tumor Protein 53 and
phosphatidylinositol signaling were identified using DIRAC. We have aggregated a uniformly nor-
malized transcriptomic dataset and have identified novel and established genes and pathways
associated with developmental regulation of the placenta and potential preterm birth pathology.
These analyses provide a community resource to integrate with other high-dimensional datasets
for additional insights in normal placental development and its disruption.

Summary Sentence

Distinct transcriptional profiles of spontaneous preterm birth placentae compared to term placentae
identify gestational regulation or potential pathogenic mechanisms.
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Introduction

Preterm birth is a devastating pregnancy outcome and the leading
cause of death for children under 5 years of age. Every year 15 mil-
lion children worldwide are born at less than 37 weeks’ gestation
and 1 million of those die from complications related to their pre-
maturity. In the United States, the incidence of prematurity is 9.6%
[1]. In 2007, treating preterm birth cost about $26 billion dollars
in the United States [2]. Globally, 60% of preterm births occur in
Asia and Africa with rates as high as 15% [3]. The majority (70%)
of preterm births are idiopathic and spontaneous, rather than be-
ing related directly to diagnosed medical causes (e.g. pre-eclampsia).
While there are known risk factors, including smoking, stress, infec-
tion, and family history, there remains a lack of understanding of
the key biological mechanisms and perturbed networks that underlie
preterm birth [4].

Over the last decade, advances in the acquisition and analysis
of high-dimensional “omics” data have allowed for the discovery
of biomarkers and increased insight into various disease states, in-
cluding placental pathologies [5–8]. The vast majority (76%) of
transcriptomic placental studies to date have examined medically
indicated preterm birth (i.e. from pre-eclampsia and chorioamnioni-
tis), although these samples only represented 30% of the causes of
preterm birth [9]. Only 18% of these studies focused on spontaneous
preterm birth (sPTB), although this represents 45% of the causes of
preterm delivery <37 weeks [9]. This discrepancy results in a gap in
knowledge of the etiology of sPTB.

Analysis of omics data has been used to identify molecular sig-
natures for pathologies in different organ systems [7]. Integrating
disparate datasets from independent studies generally increases the
robustness of the identified molecular signatures as the data rep-
resent a better approximation of population variation as well as a
broader range of pathologies. It also amplifies the signal from the
disease, while mitigating apparent signals that can be confounded
with batch and lab effects [7,10]. Meta-analyses of placental gene
expression have been used to identify validated biomarkers that were
associated with different phenotypes of pre-eclampsia [11,12]. These
types of systematic studies allow for qualitative exploration, and fa-
cilitate in silico modeling, hypothesis generation, and even the po-
tential for prediction of disease.

Applying the same integrative systematic approaches utilizing
placental villous tissue, we aimed to detect molecular signatures of
preterm birth. During gestation, fetal growth and development are
entirely dependent on the placenta, a transient organ that is a large
part of the fetal/maternal interface. A fully developed and functional
placenta is essential for a healthy and successful pregnancy. Under-
standing the biological differences between normal and pathological
placentae is essential to ensuring positive pregnancy outcomes. To
this end, we chose to initiate our study utilizing publicly available
transcriptomes to identify potential molecular signatures through
gene and network-level analyses of placental villous tissues. The dif-
ferences we have observed provide insights into the etiology of sPTB
and may point toward molecular signatures for therapeutic and clin-
ical interventions.

Materials and methods

Sample selection
We performed a targeted search of Gene Expression Omnibus
(GEO) and ArrayExpress for all publicly available microarray

transcriptome studies that included term and preterm placental vil-
lous samples and identified 294 placental transcriptomes within
six studies [11–16]. Four of these studies [12,14–16] examined the
molecular basis of pre-eclampsia, utilizing preterm birth samples as
gestational age (GA)-matched controls (<37 weeks’ GA) in addition
to normal term controls (38–42 weeks’ GA). One study (GSE18809)
[13] analyzed preterm birth specifically, using preterm samples
(27.0–32.6. weeks’ GA) and term samples (38.4–40.0 weeks’ GA).
The sixth study examined the inflammatory pathways between term
and preterm (unpublished publicly available data, Genomic and Pro-
teomic Network (GPN) for Preterm Birth Research (GSE73685)).
These studies utilized both Affymetrix and Illumina microarray plat-
forms, and analyses were performed with RNA extracted from pla-
cental villous tissues only. We removed all placental samples with
known pregnancy complications, including chorioamnionitis (if sta-
tus known), and pre-eclampsia from the raw data. We excluded
samples between 36.0 and 37.6 weeks to mitigate inconsistencies in
methods of dating GA. This final dataset included 55 preterm and
78 term placentae (total n = 133 placental samples). Preterm preg-
nancies were categorized as 25–36 weeks’ GA with term pregnancies
categorized as 38–41 weeks’ GA. For studies lacking fetal sex data
[13,15,16], fetal sex was imputed from expression of probes located
within the Y chromosome using the Bioconductor package massiR
[17].

Microarray data preprocessing, normalization, and
aggregation
Microarray datasets were preprocessed using the methods described
in Ramasamy et al. [18]. For each of the six selected studies, raw mi-
croarray data were reprocessed using only samples that met our
inclusion criteria: sPTB <36 weeks’ GA, no other pathology (if
known), and term birth <38 weeks’ GA with all other samples
being discarded. Raw data from Affymetrix microarrays were nor-
malized using Robust Multi-Array Average [19] and raw data from
Illumina arrays were normalized using quantile normalization [20].
All data were log2 transformed and each dataset was assessed for
within study batch effects through histograms and principle compo-
nents analysis. For each specific dataset, individual probe identifiers
were annotated with Ensembl Gene IDs using biomaRt [21]. Probes
that did not map to any Ensembl Gene IDs or mapped to multi-
ple Ensembl Gene IDs (cross-hybridizing probes) were discarded,
as described in Ramasamy et al. [18] (Supplemental Table S1). For
each individual array dataset, a gene level expression value was cal-
culated by taking the mean expression value of all probes which
mapped to an Ensemble Gene ID. While there are six datasets, two
of the datasets were generated from the same array platform; thus,
we only have five array platforms to consider for these analyses. An
aggregated dataset was generated with only those genes that were
present in all five array platforms used in the initial datasets (a total
of 14,251 genes for analysis) (Figure 1).

Principle components analysis was used to identify batch effects,
both platform and study related, in the aggregated dataset. Batch
effects were mitigated using parametrical empirical Bayesian adjust-
ments implemented through utilization of the ComBat algorithm
which selects effect parameter values related to batch and adjusted
for them to mitigate expression related to study of origin [22]. Ad-
ditional normalization to further mitigate batch effects was not con-
ducted as it was unnecessary and would further diminish the ability
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Figure 1. Representation of genes present in the datasets included in aggre-
gated expression matrix: only genes present in the six datasets were included
in the final aggregated dataset. GSE73685 and GSE75010 were conducted on
the same array platform, and thus are represented by the same set of genes.

to detect meaningful biological variation [22] (Supplemental Figure
S1 and Supplemental Table S2).

Differential gene expression analysis
Differentially expressed genes were identified through a series of
linear regression models fit for each gene within LIMMA (lin-
ear regression for microarray data) [23], which were adjusted
for fetal sex. Statistically significant genes were identified based
on the Q-value cutoff of <0.05, representing a false discovery
rate after adjusting for multiple comparisons using the Benjamini–
Hochberg approach [24]. We also examined differentially ex-
pressed genes using pairwise comparisons (sPTB versus term births)
through t tests implemented within AltAnalyze [25]. Statistically
significant genes were identified utilizing the Q-value cutoff of
<0.05 after the Benjamini–Hochberg correction. The AltAna-
lyze results were concordant with the LIMMA results (data not
shown).

Network level analysis
We used Differential Rank Conservation (DIRAC) [26] to identify
gene networks where the relative expression of the genes in the net-
works was most significantly altered between placentae in term and
preterm births. We calculated P-values based on permutation test-
ing within DIRAC and reported on predictive ability of each tested
network independently using DIRAC as a classifier and estimating
accuracy using leave-one-out cross validation (LOO-CV). The net-
works used were defined in the Kyoto Encyclopedia of Genes and
Genomes (KEGG), which contains 151 gene sets that are manually
curated or computationally generated based on biological evidence
[27]. For our analysis, only gene sets which contained between 5 and
100 genes and were curated in the Molecular Signatures Database
[28]. Networks were considered statistically associated with preterm
birth if they had adjusted P-value <0.05, after correction for mul-
tiple comparisons using the Benjamini–Hochberg approach, and a
LOO-CV accuracy of 0.70 or higher. Here, LOO-CV uses rankings
of genes within networks to predict expression of the remaining sam-
ple. Each network was assessed using the accuracy, with higher accu-
racy representing better predictive capacity. Differentially expressed

genes within the significant networks were further characterized us-
ing unpaired t-tests with a P < 0.05.

All data were analyzed and visualized in R (version 3.3.1) using
packages lumi [29], oligo [30], and bioMart [21] to process the
microarray data, SVA [31] to adjust for batch effects, LIMMA [23]
and AltAnalyze [25] to identify differentially expressed genes. Data
were visualized within Cytoscape Version 3.2.1 [32] using the plugin
Keggscape [27]. Specific codes used to aggregate data and perform
DIRAC are available at https://github.com/alipaquette

Results

Dataset aggregation
We identified six GEO datasets with preterm and term data, which
contained 133 samples (55 preterm and 78 term) after exclusion of
data that did not meet our inclusion criteria. Three of the studies
(GSE18809, GSE73374, and GSE54618) did not report fetal sex;
therefore, we imputed fetal sex utilizing massiR, which uses Y chro-
mosome gene expression to predict fetal sex [17] (Table 1). In the
three studies that did report fetal sex, we also imputed sex using
massiR to test the accuracy of this method, and found that mas-
siR was able to predict sex in these samples with >95% accuracy.
The average prediction accuracy for massiR is 96%–100% across
various tissues depending on total sample number and skew of the
sex ratio for each dataset [17]. The aggregated dataset contained a
relatively even distribution of female and male samples (46% female
and 54% male, see Table 1).

Initially within the aggregated dataset, transcriptome expression
values were strongly associated with each study, with the majority
of variation in expression (first principal component 81%) associ-
ated with study of origin (p < 0.0005, analysis of variance of first
principal component based on study of origin (Supplemental Figure
S1A and Supplemental Table S2)). As the studies were conducted on
various array platforms, this variation is likely due to differences in
experimental factors such as sample or array preparation; however,
differences in study population cannot be ruled out. After utilizing
the ComBat algorithm, such batch effects, whether due to platform
or study population differences, were greatly reduced, as the first
and second principal components were no longer associated with
study of origin (Supplemental Figure S1B and Supplemental Table
S2). Mean gene expression values for the top six differentially ex-
pressed genes before and after ComBat normalization are shown in
Supplemental Table S3.

Gene level analyses
We performed a series of linear regressions using LIMMA to iden-
tify significant differences in gene expression based on prematurity
status, adjusting for fetal sex as a confounding variable. Ninety-
six genes were identified with significantly reduced expression in
preterm samples and 33 genes with significantly higher expression
in preterm samples after correcting for multiple comparisons us-
ing the Benjamini–Hochberg approach with a cutoff of Q < 0.05.
The top genes with decreased expression in preterm placentae were
HBD(hemoglobin subunit delta), GABRB1(gamma-aminobutyric
acid type A receptor beta1 subunit), and CLDN1(claudin 1), and
the top increased genes in preterm placentae were TREM1(triggering
receptor expressed on myeloid cells 1), BIN2(bridging integrator 2),
and VEGFA(vascular endothelial growth factor A) (Figures 2 and 3
and Table 2).

https://github.com/alipaquette
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Table 1. Publicly available studies selected for aggregated analyses.

Original ref. Array platform
No. of preterm
(GA∗∗)

No. of term
(GA∗∗)

No. of
female

No. of
male Imputed∗

Chorio-
amnionitis
status Total

GSE25906 [14] Illumina HT 6V2 5(24–36/33) 18(38–40/38.7) 9 14 No Unknown 23
GSE18809 [13] Affymetrix HG

U133
5 (<34)1 5(38–39)1 7 3 Yes Unknown 10

GSE73374 [16] Affymetrix
Human Gene 2.0
ST

4(35–36/35.7) 12(38–41/39.6) 11 5 Yes Unknown 16

GSE54618 [15] Illumina HT
12V4

6(26–35.5/32.1 5(38–40.1/39.4) 5 6 Yes Unknown 11

GSE75010 [12] Affymetrix
Human Gene 1.0
ST

29(26–36/31.5) 27(38–41/38.7) 24 32 No Status
known

56

GSE73685 Not yet published Affymetrix
Human Gene 1.0
ST

6(25–34/30.1) 11(38–40.1/38) 5 11 No Unknown 17

TOTALS 55 78 61 71 133

∗Fetal sex was imputed from array data using massiR package.
∗∗Gestational ages of samples in the dataset range/mean
1Study did not include exact gestational age for samples.

Figure 2. Results of the LIMMA analysis on the aggregated data set adjusted for fetal sex as a confounding variable. The dotted line represents unadjusted
P < 0.05. Significant samples adjusted for multiple comparisons by the Benjamini–Hochberg correction P < 0.05 are shaded in orange. The six most differentially
expressed genes selected by fold-change are shaded in magenta.

Identification and characterization of network level
perturbations
We identified two networks with significant differences between
preterm and term placenate, phosphatidylinositol (PI3K) signaling
and tumor protein 53 (TP53) signaling, which contained genes with
the most significant and reliable reversals in relative gene expression
based on rank (Figure 4 and Table 3). Networks were considered
highly predictive if they had Benjamini–Hochberg adjusted P < 0.05
and a cross validation accuracy of >0.7 [33].

Phosphatidylinositol signaling
Relative changes of expression amongst the 66 genes within
the PI3K signaling network were associated with preterm birth

with a LOO-CV accuracy of 0.71. Expression of 11 of the 66
genes in this network was individually associated with preterm
birth (unadjusted P < 0.05, t-test, Table 4, Figure 5A and
B). Expression of PIK3R1 (phosphoinositide-3-kinase regulatory
subunit 1) and PIK3CB (phosphatidylinositol-4,5-bisphosphate 3-
kinase catalytic subunit beta) was decreased in preterm placen-
tae. PLCB1(phospholipase C beta 1), PLCB4(phospholipase C
beta 4), INPP5D(inositol polyphosphate-5-phosphatase D), PIK-
FYVE(phosphoinositide kinase, FYVE-type zinc finger containing),
PIP5K1B (phosphatidylinositol-4-phosphate 5-kinase type 1 beta),
CDS1(CDP-diacylglycerol synthase 1), CDS2(CDP-diacylglycerol
synthase 1), INPP4(inositol polyphosphate-4-phosphatase type
II B ), and PI4KA(phosphatidylinositol 4-kinase alpha) expression
was increased in preterm placentae compared to term placentae. Two
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Figure 3. The six top differentially regulated genes in preterm placentae vs term placentae. Boxplots of the top three genes with the greatest positive and
negative log/fold changes. Expression of preterm samples (n = 55) is shown in blue, and expression of term samples (n = 78) is shown in purple. (A) TREM1,
BIN2, and VEGFA are all upregulated in preterm placentae compared to term. (B) HBD, GABRB1, and CLDN1 are all downregulated in preterm placentae
compared to term.

Table 2. Significantly differentially expressed genes with the largest
fold-changes in relation to sPTB.

Fetal sex adjusted model

Gene symbol Log fold change Adjusted P < value∗

CLDN1 –0.54 0.017
GABRB1 –0.47 0.014
HBD –0.45 0.011
TREM1 0.65 9.9 × 10−4

BIN2 0.45 7.0 × 10−4

VEGFA 0.35 0.036

Log-fold of preterm placentae vs term placentae, ∗Benjamini–Hochberg
correction P < 0.05.

of these genes (PIK3CB, CDS2) were considered statistically signif-
icant in our genome wide analysis (Benjamini–Hochberg adjusted
P < 0.05), and three more genes showed trends toward genome
wide significance (Benjamini–Hochberg adjusted P < 0.1). The po-
tential impact of changes in gene expression on the network is shown
in Figure 6.

Tumor protein 53 signaling
Relative changes of expression of the 53 genes within TP53 sig-
naling network are potentially predictive of preterm birth with a
LOO-CV accuracy of 0.71. Expression of 8 of the 53 genes in this
network was individually associated with preterm birth (unadjusted
P < 0.05, t-test, Table 5, Figure 7A and B). Expression of SERPINE1
(serpin family E member 1) and CCNB (cyclin B) was decreased and

ZMAT3 (zinc finger matrin-type 3), RRM2B (ribonucleotide reduc-
tase regulatory TP53 inducible subunit M2B), CASP3(caspase 3),
SESN3(sestrin 3), DDB2(damage specific DNA binding protein 2),
and CCNB3(cyclin B3) was increased in preterm placentae com-
pared to term placentae. The potential impact of changes in gene
expression on the network is shown in Figure 8.

Discussion

The lack of molecular signatures for preterm birth etiology has
made identification of biomarkers and potential therapeutic in-
terventions difficult. Furthermore, there has been a shortage of
studies specifically examining the role of the placenta in preterm
birth [9]. To overcome this gap in knowledge, we have performed
an aggregate analysis of six publicly available placental transcrip-
tomic datasets and used known computational methodologies to
examine gene expression and identify differences in molecular net-
works [23,26]. Using only the genes quantifiable in all six datasets,
we identified genes and networks with significant changes in ex-
pression between the normal term and the preterm pathological
placentae.

The placenta is a dynamic organ, changing over gestation via
the interactions between mother and fetus within the in utero en-
vironment. The placenta matures, grows, and remodels through-
out gestation to accommodate the growing fetus [34–36]. Essential
placental developmental processes include cellular proliferation and
differentiation as well as many others [37]. Placental insufficiency,
which is defined as aberrant placental growth and function, has been
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Figure 4. The results of DIRAC analysis. The top 20 KEGG networks identified by DIRAC. The dashed line represents an LOO-CV accuracy equal to 0.70. The
networks are shaded according to their adjusted P-value (Benjamini–Hochberg correction for multiple comparisons). Red P < 0.005, orange P < 0.01, yellow
P < 0.05, gray bars are not significant.

Table 3. KEGG networks identified in DIRAC analyses.

Significantly different genes∗

KEGG network Adjusted P-value
LOO-CV
accuracy

Number of genes
in network

Downregulated
(PTB vs. term)

Upregulated (PTB vs.
term)

Phosphatidylinositol
signaling

0.0214 0.71 66 PIK3R1, PIK3CB PLCB1, PLCB4,
INPP5D, PIKFYVE,
PIP5K1B, CDS1, CDS2,
INPP4B, PI4KA

P53 signaling <0.001 0.71 53 SERPINE1,
CCNB

ZMAT3, RRM2B,
CASP3, SESN3, DDB2,
CCNB3

∗T-test, unadjusted P < 0.05.

Table 4. Differentially expressed genes in the phosphatidylinositol signaling network.

Gene
symbol

Average expression of
genes in PTB placentae

Average expression of
genes in term placentae

Log fold change (PTB vs
term)

Unadjusted
P-values∗

Adjusted
P-values∗∗

CDS1 8.16 8.06 –0.11 0.011 0.12
CDS2 7.93 7.79 –0.14 1 × 10−4 0.0039
INPP4B 6.26 6.15 –0.11 0.031 0.2
INPP5D 7.38 7.24 –0.14 0.002 0.029
PI4KA 9.00 8.91 –0.09 0.022 0.16
PIK3CB 8.11 8.38 0.27 5 × 10−4 0.017
PIK3R1 8.24 8.36 0.12 0.020 0.16
PIKFYVE 7.01 6.95 –0.07 0.015 0.14
PIP5K1B 7.12 6.93 –0.19 9 × 10−4 0.019
PLCB1 7.36 7.11 –0.25 0.0012 0.02
PLCB4 5.77 5.66 –0.11 0.033 0.2

∗T-test, unadjusted P < 0.05 ∗∗ Benjamini–Hochberg correction P < 0.05.

implicated in adverse pregnancy outcomes including pre-eclampsia,
intrauterine growth restriction (IUGR), and small for gestational age
(SGA) [38]. Additionally, the placenta acts as a selective barrier, pro-
viding protection to the fetus from maternal factors including stress
and sex hormones as well as xenobiotic factors [36]. If this barrier

function is compromised, then the fetus is potentially exposed to
adverse intrauterine conditions that could have an etiological role
in preterm birth. Thus, by examining the transcriptional differences
between term and preterm placentae, we may identify insights to the
potential etiologies of preterm birth.
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Figure 5. Differentially expressed genes in phosphatidylinositol signaling network. (A) Changes in expression between preterm and term placentae for each of
66 genes in the network. Genes considered statistically different (P < 0.05, t-test) are purple. Nonsignificant genes are gray. (B) Average expression of statistically
significant genes from panel A. Preterm placentae are shaded dark green and term placentae are shaded in light green.

Gene level analyses
Several genes with the greatest differential expression (BIN2,
GABRB1, and HBD) have not previously been associated with any
adverse pregnancy outcomes or placental physiology. The remaining
genes have either been implicated in adverse pregnancy outcomes or
associated with specific placental physiological mechanisms.

Bridging integrator 2 (BIN2) is a member of the BAR (Bin/
Amphiphysin/Rvs) family of proteins that possess a BAR domain,
connecting the actin cytoskeleton and outer plasma membranes
[39,40]. The BAR domain allows the plasma membrane to change
its curvature promoting dynamic changes in membrane structure
that accompanies cellular processes such as differentiation, cell in-
teractions, and proliferation which are processes present in the de-
veloping and maturing placenta [39,40]. While BIN2 has not been
previously studied in the context of placental physiology or adverse
pregnancy outcomes, upregulation in preterm placentae could indi-
cate any number of essential processes such as proliferation, differen-
tiation, and syncytialization may be altered, thus leading to placental
insufficiency.

Claudin 1 (CLDN1) is an integral membrane protein and is local-
ized to the apical surface of the syncytiotrophoblast (STB) in placenta
[41]. Upregulation is promoted by PPARG (peroxisome proliferator
activated receptor gamma) and PKC (protein kinase C), which are
central players in placental development [42,43], and it is repressed
by TNF(tumor necrosis factor), NFKB1(nuclear factor kappa B

subunit 1), IL1B (interleukin 1 beta), and TGFB1 (transforming
growth factor beta 1), cytokines associated with initiation of par-
turition [42,44,45]. It is unclear if the reduction in CLDN1 ex-
pression is causative or the result of repression due to increased
levels of cytokines at the initiation of parturition. A recent meta-
analysis of pre-eclampsia [46] demonstrated that CLDN1 was also
downregulated suggesting a potential underlying mechanism to both
idiopathic spontaneous and medically induced pre-eclampsia (PE)
preterm birth.

Hemoglobin subunit delta (HBD) codes for the hemoglobin delta
subunit, which is expressed during the late third trimester and
throughout adulthood, making up <3% of the adult hemoglobin
[47,48]. The β-like hemoglobin locus consists of five paralo-
gous genes—EPSILON, GAMMA-G, GAMMA-A, DELTA, and
BETA—which code for the β-globin chains and are expressed in
5′-3′ order during development [48]. We cannot confirm the origin
of the HBD mRNA. It could originate from maternal or fetal RBCs
which are typically present in the villous samples or from the STB
[49, 50]. Various hemoglobin subunits have been shown to be ex-
pressed outside erythroid lineages, but their function is unclear [47].

Vascular endothelial growth factor A (VEGFA) is a member of
the VEGF growth factor family of proteins and shown to be essential
in placental development and growth across gestation through its
roles in vascularization and angiogenesis [51,52]. VEGFA expres-
sion peaks early and then declines over gestation in trophoblasts,
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Figure 6. KEGG diagram of the phosphatidylinositol signaling network. Genes overexpressed in preterm birth placentae are orange, and downregulated genes are
yellow. Genes with statistically significant changes in expression based on rank (P < 0.05, t-test, Small grey ovals represent molecules or chemical compounds.
Arrows indicate molecular interactions.) are outlined in blue.

Table 5. Differentially expressed genes in the TP53 signaling network.

Gene symbol
Average expression of
genes in PTB placentae

Average expression of
genes in term placentae

Log fold change
(PTB vs term)

Unadjusted
P-values∗

Adjusted
P-values∗∗

RRM2B 6.99 7.19 –0.20 5 × 10−6 0.00025
DDB2 6.44 6.55 –0.10 0.0029 0.076
SESN3 7.43 7.63 –0.20 0.011 0.19
CCNB1 6.14 6.01 0.13 0.019 0.25
CASP3 7.40 7.49 –0.09 0.025 0.27
SERPINE1 10.79 10.56 0.22 0.031 0.27
CCNB3 4.95 5.01 –0.06 0.042 0.32
ZMAT3 6.71 6.80 –0.09 0.049 0.32

∗T-test, unadjusted P < 0.05 ∗∗ Benjamini–Hochberg correction P < 0.05.

while decidual and maternal serum levels rise over time [51]. Previ-
ous studies examining VEGFA expression levels in placental villous
tissues have been inconclusive [13,53]. A study by Andraweera, et al.
[53] demonstrated that VEGFA expression was reduced in sPTB pla-
cental villous tissues compared to normal villous tissues. However,
Chim et al. [13] demonstrated that VEGFA expression increased
in villous placental tissue from sPTB when compared to sponta-
neous term births. In our analysis, VEGFA is upregulated in sPTB
(Table 2). The lack of age-matched controls for the placental tissues
makes it difficult to distinguish if the changes are due to GA or are
pathological.

It is known that a male bias exists with adverse pregnancy out-
comes linked to placental insufficiency [54]. Buckberry et al. [55] per-
formed a meta-analysis of publicly available data in one of the first
large-scale studies of fetal sex differences and the potential impact
on nonpathological placental physiology. These authors showed that
sex differences are not limited to the X chromosomes, but genome
wide and spread across the autosomes [55]. Our analyses identified
11 genes whose relationship in response to sPTB appears to be influ-
enced by fetal sex. Of these 11 genes, LDLR (low density lipoprotein
receptor), ENG (endoglin), MT1E (metallothionein 1), and KEAP1
(kelch like ECH associated protein 1) have either been implicated
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Figure 7. Differentially expressed genes in P53 signaling network. (A) Changes in expression between preterm and term placentae for each of 53 genes in
network. Genes considered statistically different (P < 0.05, t-test) are purple. Nonsignificant genes are gray. (B) Average expression of statistically significant
genes from panel A. Preterm placentae are shaded dark green and term placentae are shaded in light green.

in preterm birth or as having essential roles in placental physiology
[56–60].

Network level analyses
Network analyses can reveal mechanistic insights into gene func-
tionality, which in turn allows for hypothesis generation and pri-
oritization of potential functional experiments. We utilized DIRAC
to perform network analyses, which is a combinatorial approach to
examine networks in terms of relative changes in gene expression
between cases and controls [26]. One strength of DIRAC is that it
utilizes a rank-based approach that can detect statistically robust
differences between phenotypes allowing for accurate detection of
molecular signatures [26]. DIRAC uses LOO-CV to determine how
accurately the statistically significant networks (as determined from
the permutation testing) can predict the phenotype of interest in
samples. The higher the LOO-CV accuracy, the more predictive a
network’s state is likely to be for the phenotype of interest [26].
In our study, none of the networks achieved a LOO-CV accuracy
above 0.71; thus, their individual predictive capacity was limited.
The accuracy of these networks to predict sPTB is likely limited
by factors such as intrinsic differences in populations of individ-
ual studies including race and ethnicity, remaining undetected batch
effects that were not removed through combat adjustment, lack of

standardization of sample experimental protocols, and heterogeneity
of the clinical subtypes of sPTB.

Phosphatidylinositol signaling
The phosphatidylinositol signaling network is composed of a family
of membrane-bound phospholipid enzymes targeting multiple cell
physiological processes. Through the activation of AKT1 (AKT ser-
ine/threonine kinase 1), additional subnetworks are activated and
mediate physiological processes such as cell survival via BCL2 an
apoptosis inhibitor, actin polymerization through AKT1, cell cycling
through GSK3(glycogen synthase kinase 3), and protein synthesis
and autophagy through MTOR(mechanistic target of rapamycin ki-
nase) [61–63]. Furthermore, recent studies have indicated a role of
PI3K signaling in modulating immune responses, with inhibition
of the PI3K/AKT/MTOR pathway leading to a reduction in proin-
flammatory cytokines [64]. Each of these physiological processes is
essential to placental physiology and birth timing, and thus alter-
ation of the PI3K signaling pathway could directly alter preterm
birth etiology through these molecular mechanisms [56,62,65–67].

Tumor protein 53 signaling network
TP53 is a master transcription factor regulating many physiolog-
ical processes including tumor suppression, apoptosis, cell cycling
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Figure 8. KEGG diagram of the P53 signaling network. Genes overexpressed in preterm birth placentae are orange, and downregulated genes are yellow. Genes
with statistically significant changes in expression based on rank (P < 0.05, t-test, Arrows indicate molecular interaction. “+P” indicates phoshorylation events
and “e” indicates expression.) are outlined in blue.

arrest, and senescence among others [68–71]. Recent studies have
illuminated the role of TP53 in placental physiology. TP53 localiza-
tion, quantified through immunohistochemistry, was limited to the
STB in normal placentae, while in the pathological placentae, TP53
was localized to both the cytotrophoblasts and STB. TP53 has been
implicated in altered trophoblast physiology and adverse pregnancy
outcome [69,70,72,73]. Expression of TP53 was increased in IUGR
placentae with a corresponding increase in downstream apoptosis
[73]. Studies of preeclamptic placenta showed an increase in TP53
protein levels but not mRNA suggesting that there may be a seques-
tration of the protein in response to stressors [72]. In addition, TP53
function in mouse decidua, demonstrated by conditional inactiva-
tion experiments, resulted in increased frequency of sPTB in mice,
as well as a substantially augmented sensitivity to inflammation-
induced preterm birth in this species [74]. Furthermore, a physiolog-
ical role for TP53 in cellular senescence within human chorioamni-
otic membranes during parturition has been described [75]. While
these findings reflect action on the maternal side component of the
placenta, they serve to further highlight the importance of the TP53
pathway in preterm birth.

This study is limited by a lack of true normal placentae at ear-
lier gestational time points. This is not unique to our study and is
a known limitation in the fields of placental biology and preterm
birth. The lack of entirely normal age-matched controls limits the

distinction of gestational differences and preterm birth patholo-
gies. Furthermore, because the villous tissue was collected at the
time of delivery, regardless of status, it is unclear if the molecu-
lar signatures we have identified are due to etiology or a reflec-
tion of pathology. Additionally, these analyses are confounded by
the mixed cell population of the placental villous samples which
would be problematic even at earlier gestational ages. These tissue-
specific limitations highlight the need to develop new methods to
assess placental development and function through data acquired
from noninvasive methodologies on mothers with normal term
deliveries.

Like many multifactorial diseases, sPTB may have clinical sub-
types that have yet to be identified. Several broad categories are
proposed: spontaneous idiopathic preterm birth with and without
premature rupture of membranes, sPTB leading to preterm prema-
ture rupture of membranes, and medically induced preterm birth
for cases such as pre-eclampsia. While we selected studies based on
the criteria of sPTB, we lacked essential covariate information that
would help us further define the subtype of preterm birth and lim-
ited the types of analyses we could conduct. We were not able to
categorize the samples by mode of delivery, indication of labor, or
chorioamnionitis status, which was not available for all included
samples. Ideally, cohorts of idiopathic spontaneous preterm with
no additional underlying maternal pathologies should be utilized to
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identify molecular signatures of sPTB, which was beyond the scope
of this study.

As the first aggregated transcriptomic study of PTB, our anal-
ysis acts as a resource in assessing the potential molecular differ-
ences between preterm and term placental villous tissues. While
there are limitations to this study, we were able to detect gene and
pathway level molecular signatures that may suggest a role for the
placental villous tissue in preterm birth. Functional assessment of
these signatures should provide insight into placental development
and potentially preterm birth etiology. Future studies will include a
genome-wide assessment of placental villous transcriptomes to as-
sess essential placental genes. These genes, such as CGB (chorionic
gonadotrophin beta) were beyond the scope of the current analysis.
This was due to the limitation of microarray technologies and is-
sues the aggregation of the data across platforms, both known issues
with microarray meta-analyses. Additionally, these future studies
will include expanded covariate information for further refinement
of analyses and include a highly specific cohort of sPTB samples with
better defined clinical characteristics.

Supplementary data

Supplementary data are available at BIOLRE online.

Supplemental Figure S1. Adjustment of aggregated dataset to elimi-
nate batch effects. (A) Aggregated dataset without batch adjustment.
(B) Aggregated dataset after adjustment with ComBat. Data points
are colored based on the original study identifier. Preterm placentae
are marked as circles and term placentae are marked with triangle.
Supplemental Table S1. Annotation indices for each individual
dataset to be included in the final aggregated dataset.
Supplemental Table S2. Principle component analysis of aggregated
dataset to identify batch effect variation.
Supplemental Table S3. Normalized expression values of highly sig-
nificant genes before and after ComBat adjustments.
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dothelia of term human placentae display diminished expression of
tight junction proteins during preeclampsia. Cell Tissue Res 2006;
324:433–448.

42. Günzel D, Yu ASL. Claudins and the modulation of tight junction perme-
ability. Physiol Rev 2013; 93:525–569.

43. Huppertz B, Ghosh D, Sengupta J. An integrative view on the physiology
of human early placental villi. Prog Biophys Mol Biol 2014; 114:33–48.

44. Tossetta G, Paolinelli F, Avellini C, Salvolini E, Ciarmela P, Lorenzi T,
Emanuelli M, Toti P, Giuliante R, Gesuita R, Crescimanno C, Voltolini C
et al. IL-1β and TGF-β weaken the placental barrier through destruction of
tight junctions: An in vivo and in vitro study. Placenta 2014; 35:509–516.

45. Stockert J, Adhikary T, Kaddatz K, Finkernagel F, Meissner W, Muller-
Brusselbach S, Muller R. Reverse crosstalk of TGF and PPAR / signaling

identified by transcriptional profiling. Nucleic Acids Res 2011; 39:119–
131.

46. Vaiman D, Miralles F. An integrative analysis of preeclampsia based on the
construction of an extended composite network featuring protein-protein
physical interactions and transcriptional relationships. PLoS One 2016;
11:e0165849–16.

47. Saha D, Koli S, Patgaonkar M, Reddy KVR. Expression of hemoglobin-
α and β subunits in human vaginal epithelial cells and their functional
significance. PLoS One 2017; 12:e0171084–26.

48. Ohls RK. Core concepts: The biology of hemoglobin. Neoreviews 2011;
12:e29–e38.

49. Uhlen M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P,
Mardinoglu A, Sivertsson Å, Kampf C, Sjöstedt E, Asplund A, Olsson I,
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