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A B S T R A C T   

The complex, unpredictable nature of pathogen occurrence has required substantial efforts to accurately predict 
infectious diseases (IDs). With rising popularity of Machine Learning (ML) and Deep Learning (DL) techniques 
combined with their unique ability to uncover connections between large amounts of diverse data, we conducted 
a PRISMA systematic review to investigate advances in ID prediction for human and animal diseases using ML 
and DL. This review included the type of IDs modeled, ML and DL techniques utilized, geographical distribution, 
prediction tasks performed, input features utilized, spatial and temporal scales, error metrics used, computa-
tional efficiency, uncertainty quantification, and missing data handling methods. Among 237 relevant articles 
published between January 2001 and May 2021, highly contagious diseases in humans were most often repre-
sented, including COVID-19 (37.1%), influenza/influenza-like illnesses (9.3%), dengue (8.9%), and malaria 
(5.1%). Out of 37 diseases identified, 51.4% were zoonotic, 37.8% were human-only, and 8.1% were animal- 
only, with only 1.6% economically significant, non-zoonotic livestock diseases. Despite the number of zoono-
ses, 86.5% of articles modeled humans whereas only a few articles (5.1%) contained more than one host species. 
Eastern Asia (32.5%), North America (17.7%), and Southern Asia (13.1%) were the most represented locations. 
Frequent approaches included tree-based ML (38.4%) and feed-forward neural networks (26.6%). Articles pre-
dicted temporal incidence (66.7%), disease risk (38.0%), and/or spatial movement (31.2%). Less than 10% of 
studies addressed uncertainty quantification, computational efficiency, and missing data, which are essential to 
operational use and deployment. This study highlights trends and gaps in ML and DL for ID prediction, providing 
guidelines for future works to better support biopreparedness and response. To fully utilize ML and DL for 
improved ID forecasting, models should include the full disease ecology in a One-Health context, important food 
and agricultural diseases, underrepresented hotspots, and important metrics required for operational 
deployment.   

1. Introduction 

Infectious disease (ID) events have plagued human and animal 
populations throughout history, resulting in massive numbers of mor-
bidities and mortalities as well as substantial social and economic im-
pacts across the world [1]. These ID events can take the form of a 
localized endemic disease outbreak, emergence or reemergence of a 
disease in a new location, or an epidemic/pandemic affecting multiple 
countries. ID prediction is a field of epidemiology that is broadly 
comprised of predicting when (i.e., the temporality of a disease inci-
dent), where (i.e., geographical presence along with the extent of spread 

of a disease), and identifying how an ID event is going to occur (i.e., 
various factors that influence disease occurrence) in a population based 
on a variety of information influencing disease presence. The effects of 
climate change, urbanization, and globalization have rendered these IDs 
borderless, enabling them to spread easily across regions and inevitably 
increasing the risk of epidemics and pandemics. Currently, ID prediction 
is one of the most important operational epidemiological tools with the 
potential to provide early warning towards actively preventing disease 
occurrence and spread. By combining robust data collection at the speed 
of relevance, engineering, and analytic strategies, models can now 
predict disease event information, such as location, timing, intensity, 
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and the influence of various factors responsible for its occurrence, which 
can be used to effectively mitigate ID impacts. The timeliness and ac-
curacy of this predicted ID information are crucial for decision makers to 
adequately mobilize health resources to the area of concern and prop-
erly implement control and prevention strategies [2]. 

Predicting ID is a challenging task mainly due to the complex and 
unpredictable nature of pathogen ecology and evolutionary dynamics 
[3]. These inherent complexities demand robust uncertainties quantifi-
cation systems for better decision making. The challenge of ID predic-
tion is exacerbated due to inadequate and biased disease surveillance 
initiatives, a lack of disease reporting systems, as well as incomplete and 
delayed epidemiological data sharing [4,5]. Despite these limitations, 
significant efforts have been made in the past couple of decades to utilize 
ID prediction models in operational control and prevention strategies. In 
particular, the emergence of the coronavirus disease 2019 (COVID-19) 
pandemic has resulted in accelerated development and integration of ID 
prediction models in worldwide public health decision making [6]. 

Machine learning (ML) is a branch of computer science and artificial 
intelligence that aims to enable computers to autonomously learn and 
improve in the tasks that they perform using data and experience, 
without explicit programming by a human [7]. Deep learning (DL) is an 
advancement in the field of ML that uses an artificial neural network 
framework (i.e., a biologically-inspired network of artificial neurons 
that convert multiple input features into a single output) to generate 
highly accurate predictions [8]. Though ML and DL models are funda-
mentally governed by statistical, mathematical, and computational 
theories, they differ greatly from a traditional statistical or mathematical 
model [9,10]. Traditionally, statistical and mathematical models have 
been used in epidemiological studies to better understand the nature and 
dynamics of ID. The statistical approaches mainly utilize regression- 
based techniques to determine the nature of a relationship between 
explanatory features and the disease outcome as well as use time series 
techniques to predict patterns of presence. On the other hand, mathe-
matical approaches are based on compartmental modeling that parti-
tions the population into different groups or “compartments” and 
models disease outcomes based on known disease dynamics and simu-
lation techniques [11,12]. One of the major advantages that the ML and 
DL techniques have over traditional approaches is that they do not 
impose major constraints on the data, such as prior assumptions about 
data distribution and structure, the number of input feature variables, or 
a complete understanding of the input features influence on disease 
presence [13,14]. These advantages can drastically decrease the human 
resources and time required to build a prediction model. Due to the data- 
driven nature of the algorithms, ML and DL models can handle large 
amounts of data and understand hidden connections between the input 
features, which leads to better predictions. Furthermore, these tech-
niques can accommodate sudden changes in ID transmission while still 
producing highly accurate predictions, which is key for real-time, 
operational decision-making [15,16]. A broad conceptual comparison 
between statistical, compartmental and ML and DL models is presented 
in Table 1. 

In recent years, factors, such as an exponential increase in computing 
power, easy access to large and diverse datasets, and advancements in 
artificial intelligence, have facilitated extraordinary growth in the field 
of infectious disease predictions [17]. The ML and DL methods are 
gaining popularity and are widely being used for a variety of disease 
intelligence tasks, including temporal, spatial, and risk factor pre-
dictions [18]. ML models have been shown to outperform traditional 
statistical techniques to give more accurate and reliable predictions 
[19,20]. The popular ML techniques most widely used in the field of ID 
prediction include tree-based approaches [20–22] and Support Vector 
Machines (SVM) [23–25] due to their ease of implementation and 
interpretability. On the other hand, DL techniques, such as feed-forward 
neural networks (FNN) [26,27] and recurrent neural networks (RNN) 
[28,29], are popular for their ability to integrate large and complex data 
into their predictions. 

Many, complex factors contribute to and influence the presence of an 
ID event, such as epidemiologic, geographic, climatic, demographic, 
behavioral, and sociopolitical. Traditional ID prediction models can only 
process a limited number of explanatory variables and do not perform 
well on cross-correlated features. On the other hand, ML and DL models 
excel at processing large amounts of feature data and finding complex 
and hidden connections among data sources. ID prediction modeling 
has, therefore, greatly benefited from the recent “big data” revolution 
[30]. Remote sensing satellite imagery and census data yield high res-
olution information about critical disease related factors, such as 
climate, environment, population density, and demography. With the 
increase in worldwide internet and mobile phone usage, non-traditional 
information (e.g., internet searches, social media usage, phone call re-
cords, news media trends, and population mobility data) are also readily 
available. The ML and DL approaches have become highly efficient in 
utilizing large and complex information gathered through multiple 
channels to provide a unique opportunity to understand and model ID 
dynamics like never before [3,31]. However, the utilization of large 
datasets and increased complexity of the prediction models could lead to 
an exponential rise in computational requirements. Hence, optimizing 
the memory and processing requirements of the ML and DL algorithms 
without compromising their predictive capabilities is crucial. 

This study investigates the advances to and quality of ID prediction 
capabilities, focusing on ML and DL techniques applied over the past two 
decades. To do this evaluation, we systematically reviewed the scientific 
literature to identify research that included ML and/or DL models to 
predict IDs in humans and/or animals. Within the collection, we 

Table 1 
A broad comparison between statistical, compartmental, and machine learning 
and deep learning models.   

Statistical models Compartment 
models 

Machine learning and 
deep learning models 

Definition Probability theory- 
based models with a 
set of statistical 
assumptions 
concerning the 
generation of data 
used to estimate 
quantitative 
measures. 

Ordinary differential 
equation-based 
models that partition 
the population into 
different 
compartments, used 
to simulate the 
movement pattern of 
the population 
between the 
compartments. 

Data-driven models 
built to learn and self- 
improve based on 
past experiences with 
the aim of finding 
patterns in that data 
and making accurate 
predictions. 

Pros  • Models can 
quantify the 
influence of input 
feature data on 
the outcome and 
verify a given 
hypothesis.  

• Results are highly 
interpretable 
with clear 
uncertainty 
boundaries.  

• Models represent a 
well-defined sys-
tem and are built 
upon prior knowl-
edge of that spe-
cific system.  

• By simulating 
perturbations, one 
can test various 
scenarios and the 
effects of control 
measures on 
outcomes.  

• Models can handle 
a large amount of 
data, including 
high dimensional 
data where the 
number of features 
exceeds the 
number of 
observations.  

• Models can be 
automatized and 
continuously 
improve with 
minimal human 
involvement. 

Cons  • Models adhere to 
strict probability 
distribution 
assumptions, 
which may not 
apply in all 
situations.  

• Models cannot 
use or only use a 
minimal number 
of input feature 
variables.  

• Models cannot 
adapt to abrupt 
changes in disease 
dynamics; 
parameter 
assumptions are 
established before 
modeling.  

• Models cannot 
easily utilize 
feature data 
related to the 
disease.  

• The model 
building usually 
requires a large 
amount of quality 
data and 
computational 
resources during 
training.  

• Models are not 
easily interpreted.  
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highlighted specific tasks performed by each prediction model type, 
input features used for model building, the study spatial and temporal 
scales, and error metrics applied. We specifically noted if the studies 
addressed the important issues of uncertainty quantification, computa-
tional efficiency, and missing data when building the models. By 
focusing on the above-mentioned research areas, we identified the best 
approaches and strategies as well as revealed gaps present in the field of 
ID prediction modeling. This systematic analysis can be used as a guide 
to improve future research studies, to better address operational needs 
for model deployment, and inform areas where public health and vet-
erinary policies can help improve predictive capabilities. 

2. Methodology 

To assess the application of ML and DL techniques in the field of 
infectious disease prediction, we conducted a systematic review 
following Preferred Reporting Items for Systematic Reviews and Meta- 
Analyses (PRISMA) guidelines [32]. A diverse set of subject matter ex-
perts, spanning infectious diseases, public health, epidemiology, com-
puter engineering, data science, and statistics, formulated the following 
specific research questions:  

• Which IDs are modeled using ML and DL techniques?  
• Which global geographic regions are modeled in the ID prediction 

studies?  
• What is the trend and extent of ML and DL types and sub-types used 

in ID predictions?  
• What are the various tasks performed by ID prediction models?  
• What are the different input features used for ID predictions?  
• What are the spatial (geographic extent) and temporal (duration) 

scales of the studies?  
• What are the error metrics used?  
• Is uncertainty quantification, computational efficiency, or missing 

data handling addressed? 

2.1. Eligibility criteria 

Specific eligibility criteria were developed based on subject matter 
expert recommendations. Inclusion criteria required that the study (1) 
must explicitly include temporal, spatial, and/or risk prediction models 
of infectious diseases; (2) must utilize ML and/or DL techniques for 
predictions; (3) must be an original study; and (4) must be published in a 
peer-reviewed journal in the English-language between Jan 2001 and 
May 2021. We excluded prediction studies containing diseases that are 
primarily transmitted by sexual contact, cancer, clinical trials, and only 
biomarker data (e.g., genomics, proteomics, transcriptomics). In addi-
tion, we did not include research that primarily utilized traditional 
statistics-based regression or classification methods (e.g., linear, non- 
linear, autoregressive moving average, logistic or Poisson models). 
Preprints, book chapters, conference presentations, reviews, opinions, 
commentaries, and dissertations were excluded. We also excluded arti-
cles with missing or inaccessible full texts. 

2.2. Search strategy 

In May 2021, the scientific literature databases of PubMed, Web of 
Sciences, Embase, Scopus, and Google Scholar were searched to guar-
antee effective and adequate coverage of targeted studies (Table 2). The 
literature published between Jan 2001 and May 2021 was searched 
using the keywords recommended by subject matter experts. We 
restricted the Google Scholar searches to the first 300 results, which 
provides an acceptable search coverage of academic literature without 
excluding useful references [33]. The citation manager Mendeley (https: 
//www.mendeley.com/) was used to manage imported review citations. 

2.3. Selection strategy 

Citations were first de-duplicated before proceeding to the manual 
screening of abstracts. As the first step, each abstract was evaluated by 
two independent reviewers for possible eligibility in the systematic re-
view based on defined eligibility criteria. Next, the full texts of potential 
candidate articles were evaluated in detail by the reviewers to ensure all 
criteria were met. Articles that passed the two-part screening were 
included in the final publication list and, ultimately, in the systematic 
review. Any differences in opinion between the independent reviewers 
were resolved through internal discussion until consensus was achieved. 

2.4. Information extraction 

The ML and DL models present in the review literature were classi-
fied into broad categories based on the tasks they performed listed 
below. 

Temporal prediction models utilize historic disease information to 
predict future disease events. These models attempt to answer when the 
next disease outbreak would occur in the future based on past events. 

Spatial prediction models utilize historic disease information to 
predict the geographic distribution of disease events. These models 
attempt to answer where the next disease outbreak might occur by imputing 
the locations where disease occurrence information is not available. 

Risk prediction models assess the relationship between disease 
events and various factors associated with their occurrence. These 
models attempt to estimate spatial and/or temporal risk factors correlated 
with the disease event. 

During the process of full-text review, the reviewers recorded the 
following information: model types and subtypes, disease names, pri-
mary study hosts, input features or explanatory variables used for pre-
dictions, study area, study duration, temporal forecasting distance, error 
metrics used, uncertainty quantification, missing data handling, and 
computational efficiency. These groupings are not mutually exclusive. 
For example, Zhang et al. [a211] (Supplementary material 2) compared 
the performance of temporal prediction models belonging to FNN and 
RNN to forecast typhoid fever incidence in China. To evaluate their 
model performance, they used three error metrics (mean absolute error, 
mean absolute percentage error, and mean square error). Hence, this 
citation was placed under multiple prediction model subtype and error 
metric categories. Similarly, if a publication model performed multiple 
tasks, such as modeling multiple diseases, geographic locations, or 
prediction categories, the citation was placed in all relevant categories. 
Any differences in opinion between the independent reviewers raised 
during the collection, screening, and information recording processes of 
the review were resolved through internal discussion until consensus 
was achieved. 

Table 2 
Search keywords and scientific literature databases used to identify potentially 
relevant publications for systematic review.  

Search keywords Databases 

(Forecast* OR Predict* OR Distribution OR 
Estimate) AND (Machine learning OR Deep 
learning OR Artificial Intelligence OR 
Random Forest OR regression tree OR extreme 
gradient boosting OR Neural Network OR 
Time-Series OR LSTM) AND (Infect* OR 
zoonos* OR vector borne OR Virus OR 
bacteria OR parasite) NOT (geno* OR gene* 
OR protein OR proteomics OR transcript* OR 
lipidomics OR metabol* OR plant OR imag* 
OR Biomarker OR cancer)  

• PubMed (https://pubmed. 
ncbi.nlm.nih.gov/)  

• Web of Sciences (https://www 
.webofscience.com/)  

• Scopus (https://www.scopus. 
com/)  

• Embase (https://www.em 
base.com/)  

• Google Scholar (https://scho 
lar.google.com/)  
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3. Results 

We identified 16,148 articles that were published in peer-reviewed 
journals between January 2001 and May 2021 (Fig. 1). After 
removing the duplicates and screening the records for inclusion and 
exclusion criteria, 237 articles were selected for the final systematic 
review. The complete list of articles that were included in this systematic 
review is provided in Supplementary material 2 [a1–a237]. 

3.1. ML and DL modeling for infectious disease prediction 

A large and diverse number of IDs and prediction models applying 
ML or DL methods were found in the literature based on our search 
criteria. Out of the 37 unique diseases identified, 37.8% were human- 
only, 8.1% were animal-only, and 51.4% were zoonotic in nature. 
Among them, COVID-19 undoubtedly received the most attention and 
was studied in 88 (37.1%) articles. Influenza and influenza-like illnesses 
were modeled in 22 (9.3%) articles followed by dengue and malaria in 
21 (8.9%) and 12 (5.1%) articles, respectively. The complete list of all 
the infectious diseases identified in the literature review along with their 
citations is presented in Table 3. 

A large majority (205, 86.5%) of articles focused on modeling only 
humans followed by only domestic animals (9, 3.8%), only wildlife (6, 
2.5%), and only vectors (6, 2.5%) (Fig. 2). There were only a few articles 
(12, 5.1%) that used more than one host species for modeling IDs. 

3.2. Regional distribution of studies 

Of the 237 included studies, the majority of them were focused on 
Eastern Asia (77, 32.5%), followed by North America (42, 17.7%), 
Southern Asia (31, 13.1%), Latin America (i.e., South and Central 
America) (20, 8.4%) and Western Europe (18, 7.6%). There were 36 
(15.2%) studies that included multiple (more than four) regions which 
were grouped as a separate category. A complete breakdown of the ar-
ticles with ID models belonging to each geographical region grouped by 
diseases is presented in Fig. 3. 

3.3. Trend and extent of use of ML and DL in infectious disease prediction 
models 

There has been an increasing trend in the use of ML and DL tech-
niques for ID prediction since 2001 with a substantial rise between 
January 2019 and May 2021 (Fig. 4). Of the 237 articles included in the 
study, 127 (53.6%) of them applied at least one type of ML approach and 
129 (54.4%) used at least one DL technique for disease prediction 
(Fig. 4a). For the DL models, the FNN (63, 26.6%), RNN (48, 20.3%), 
and DL hybrids/ensembles (27, 11.4%) were the most common ap-
proaches (Fig. 4b). Tree-based methods (91, 38.4%) followed by SVM 
(36, 15.2%) and then likelihood-based methods (22, 9.3%) were the 
most common ML approaches (Fig. 4c). Within tree-based ML methods, 
Random Forest (RF) (44, 18.6%) followed by Boosted Regression Trees 
(BTR) (30, 12.7%) and Extreme Gradient Boosts (XGB) (12, 5.1%) were 
most often used (Fig. 4d). More details including the citations grouped 
by model type and subtype are presented in Supplementary material 1 

Fig. 1. PRISMA flow diagram. The illustration of the overall selection process. 
* Google Scholar searches were restricted to the first 300 results. 
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(S1 Table 1). 

3.4. Utilization of ML and DL approaches for different prediction 
categories 

We grouped the 237 articles into prediction categories based on the 
tasks they performed. The majority of the articles performed temporal 
predictions (158, 66.7%) followed by disease risk predictions (90, 
38.0%) and spatial predictions (74, 31.2%). COVID-19 was the most 
frequently modeled disease with the majority being temporal prediction 
models (Fig. 5). More details, including the citations grouped by pre-
diction categories and model types, are presented in Supplementary 
material 1 (S1 Table 1). 

3.5. Spatial and temporal scales of the dataset used in the studies 

The spatial scale (geographic extent) and temporal scales (duration) 
of the datasets used to make predictions were identified through the 
geographic extent/size and duration of the studies, respectively. Overall, 
for all ID prediction model categories, most articles predicted ID at the 
country level (123, 51.9%) using only up to one year of data (132, 
55.7%) (Fig. 6a, b). Among temporal prediction models, near-term 
forecasting (up to one month) using one year’s worth of data was the 
most common (53, 33.5%) (Fig. 6c). A complete breakdown of the 

spatial and temporal scales of the dataset used by each model category 
for ID prediction is presented in Fig. 6. 

3.6. Input feature groups utilized for disease prediction 

The articles included in the study utilized input features that 
belonged to the following eight groups: case counts (154, 65.0%), 
climate/weather (98, 41.4%), demographics/socioeconomics (63, 
26.6%), landscape/geography (58, 24.5%), social media/internet 
searches (18, 7.6%), health and comorbidity (7, 3.0%), human mobility 
(4, 1.7%), and news (3, 1.3%). Each disease modeled has a unique 
signature of input feature groups used for prediction (Fig. 7a). Focusing 
on the model prediction type categories, the number of input feature 
groups used in each category ranged from a minimum of one feature 
group (n = 151, 63.7%) to a maximum of five groups (n = 3, 1.3%) 
(Fig. 7b). A complete breakdown of the characteristics of each input 
feature group utilized for ID prediction is presented in Fig. 7. 

3.7. Uncertainty quantification, computational efficiency, and missing 
data 

We identified only 21 (8.9%) of the articles to quantify uncertainty in 
their model predictions. The uncertainty quantification techniques used 
included frequentist (10, 4.2%) [a46, a67, a68, a91, a107, a123, a145, 
a152, a193, a195], simulation/sampling based (7, 3.0%) [a26, a53, 
a156, a200, a213, a214, a219], and Bayesian techniques (3, 1.3%) [a94, 
a111, a115]. 

Only 7 (3%) publications [a10, a13, a22, a63, a64, a79, a102, a103] 
meeting the review criteria included information about computational 
efficiency while evaluating the performance of their models. 

We also noted any missing data handling techniques used in model 
building. The majority of the articles (220, 84.4%) either did not report 
any missing data or did not explicitly mention how missing data were 
handled in their work. For the 18 (7.6%) articles that did discuss this 
topic, the techniques applied included replacement with mean/median 
or zeros [a56, a64, a72, a185, a187], moving average [a136, a96, a128], 
regression [a103, a108, a185], correlation [a220], k-nearest neighbours 
[a103], multivariate imputation [a111, a136, a139], exclusion [a24], 

Table 3 
Citations categorized by infectious disease and study host.  

Disease Study host No. of 
articles 

COVID-19 Humana1-a88 88 
Influenza and influenza- 

like illnesses 
Humana89-a110 22 

Dengue Humana111-a130, vectora131 21 
Malaria Humana132-a142, vectora143 12 
Tuberculosis Humana138, a144-a153 11 
Other mosquito-borne 

diseases* 
Humana113, a155, a156, a158, a159, wild 
birdsa154, a157, horsea157, vectora157 

8 

Avian influenza Poultrya160, a165-a167, humana162-a164, 
wild birds a160-a161 

8 

Tick-borne diseases Humana168–173, vectorsa172-a175 8 
Non-specific diseases** Humansa182–188, livestock a184, 

wildlifea184 
7 

Brucellosis Humana176-a181 6 
Hand foot and mouth 

disease (HFMD) 
Humansa189–193 5 

Hepatitis A, B, or E Humansa176, a194-a197 5 
Leishmaniasis Humansa200-a202, dogsa198, vectorsa199 5 
Hemorrhagic fever with 

renal syndrome (HFRS) 
Humansa176, a203-a205 4 

Plague Wild animalsa207–209, humansa206, 
domestic animals a209, vectorsa208 

4 

Typhoid Humans a120, a138, a176, a210 4 
Anthrax Humansa211-a213, livestocka211-a213, wild 

animalsa212-a213 
3 

Zika Humansa218-a220 3 
Ebola and Marburg Humansa214-a215, wild animalsa214 2 
Hantavirus Humansa216-a217 2 
Others*** Humansa105, a135, a138, a176, a221-a231, 

domestic animalsa232–236, wild 
animalsa237 

21  

* Other mosquito-borne diseases included West Nile fever, lymphatic filari-
asis, yellow fever, onchocerciasis, chikungunya. 

** Non-specific diseases included antibiotic resistance, infectious diarrhea, 
emerging zoonotic diseases, foodborne disease, acute respiratory infectious 
disease. 

*** Others included scarlet fever, chickenpox, bacillary dysentery, cholera, 
cryptosporidiosis, schistosomiasis, whooping cough, porcine reproductive and 
respiratory syndrome, salmonella infection, E. coli infection, leptospirosis, 
porcine epidemic diarrhea, African swine fever, rabies, peste des petits rumi-
nants. Note: if an article included models for multiple diseases and primary study 
hosts, it was placed in each respective category. 

Fig. 2. Venn diagram of articles grouped by host species included in infectious 
disease modeling using machine learning and deep learning techniques. 
Domesticated animals include livestock and companion animals; wildlife in-
cludes wild animals and birds. 
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Fig. 3. Distribution of articles with infectious disease models built for each geographical region. If an article included infectious disease models for more than four regions, they were placed in “multiple regions” 
category. Similarly, if an article included models for multiple diseases, they were placed in each respective disease category. 
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Fig. 4. Trend and extent of ID prediction models published (January 2001–May 2021): Number of citations placed by a) model types (i.e., ML or DL) b) DL model subtypes c) ML model subtypes d) Tree-based ML model 
subtypes. Note: if an article contained models from different types or subtypes, it was placed in each respective group. 
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Fig. 5. Model prediction categories. The distribution of disease prediction models grouped by model categories and diseases. If an article contained models that performed multiple prediction tasks and for multiple 
diseases, it was placed in each respective group. 
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and pixel gap filling [a157]. 

3.8. Common error metrics used in ID prediction modeling 

Among classification models that predicted discreet values (e.g., 
presence or absence of a disease), Area Under the Curve - Receiver 
Operating Characteristic (AUC-ROC) curve (46, 19.4%), accuracy (29, 
12.2%), and sensitivity (16, 6.8%) were the top three error metrics 
(Fig. 8a). Alternatively, among regression models that predicted 
continuous values (eg., monthly number of disease cases), Root Mean 
Square Error (RMSE) (98, 41.4%) followed by Mean Absolute Error 
(MAE) (67, 28.3%) and Mean Absolute Percentage Error (MAPE) (57, 
24.1%) were the most common (Fig. 8b). 

4. Discussion 

The ID threat is constantly changing across space and time, hence, an 
accurate and timely estimation of their occurrence is critical to planning 
and implementing successful disease preparedness and response strate-
gies [34,35]. To counter these challenges, the landscape of ID prediction 
is shifting dramatically with the introduction of new disease modeling 

approaches, especially ML and DL techniques. These techniques are now 
being extensively applied across a wide range of ID prediction tasks with 
diverse ecology, transmission pathways, various geographic extents, and 
temporal scales. This uptick is accompanied by an array of new 
modeling techniques that cover multiple regression and classification 
problems. To better characterize these rapidly evolving changes, this 
systematic review was conducted to understand the current state, 
trends, and extent of the application of ML and DL algorithms in ID 
prediction. Our review showed that overall, there was a constant in-
crease in the number of studies that utilized ML and DL to build ID 
prediction models between 2005 and 2019. Unsurprisingly, we saw an 
exponential rise in this trend after the COVID-19 pandemic outbreak. 
The overall global responses to the COVID-19 pandemic by the scientific 
community, governments, and non-government agencies have been 
unprecedented. This collective effort has resulted in increased collabo-
ration among health sectors, large-scale disease surveillance, accessible 
data, and artificial intelligence technology sharing initiatives [36]. The 
availability of the crucial epidemiological knowledge through these 
initiatives along with the need for an accurate assessment of the disease 
dynamics has led to a dramatic increase in the utilization of ML and DL 
prediction modeling. 

Fig. 6. Spatial and temporal scale of ID prediction models. a) Proportion of the spatial scale (geographic extent) of the models grouped by model categories b) 
Proportion of temporal scale (duration) of the models grouped by model categories c) Among temporal prediction models, proportion of forecasting distance grouped 
by temporal scale. An article was placed in its respective groups if it utilized ID models with multiple model categories, spatial and/or temporal scales. 
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Fig. 7. Characteristics of input feature groups utilized for disease prediction. Articles (n = 237) categorized by a) input feature groups used by disease type b) number of input feature groups utilized by ID prediction 
model categories. If an article utilized multiple input features, modeled multiple diseases and/or belonged to multiple model categories, the article was counted within each respective grouping. 
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Most of the IDs that were modeled were either zoonotic in nature or 
diseases solely affecting the human population. Apart from COVID-19, 
influenza and influenza-like illnesses, dengue, malaria, and tubercu-
losis received major attention. These diseases have an ability to spread 
easily among the human community either directly through aero-
solization or contact (influenza and influenza-like illnesses, tubercu-
losis) or propagated by vectors (dengue, malaria). This potential to 
spread easily and the ability to cause wide-scale mortalities and mor-
bidities most likely led to increased attention from global health com-
munities. Furthermore, almost all recent pandemics and a large 
proportion of emerging IDs originated from wildlife spillover and 
involve complex dynamic interactions within human and domesticated 
animal populations [37]. Our review found the majority of zoonotic 
diseases modeled had humans as their primary host. More efforts are 
required to integrate other host species that might significantly affect 
the transmission and persistence of an ID across time and space. We 
identified only a very small number of publications on non-zoonotic 
livestock diseases, which could be due to inadequate livestock disease 
surveillance and the unavailability of reliable epidemiological data for 
modeling purposes. More efforts should be made to better predict these 
economic significance veterinary diseases since many of them, such as 
African swine fever, are highly contagious transboundary diseases with 
significant global food security and safety impacts. 

Areas of high population and tropical regions of Asia, the Americas, 
and Africa are known to be the global hotspots for emerging IDs [38]. 
Our study showed that there is a disparity in the number of studies that 
used ML and DL techniques in regions of Africa compared to other dis-
ease hotspots present in East and South Asia and North America. 
Although many African nations have put in substantial effort to build 
strong public health and veterinary infrastructures to tackle major 
health threats, the ability to harness large quantities of ID-related data 
and generate new knowledge using cutting-edge disease prediction 
techniques is lagging [39–41]. Building more robust artificial intelli-
gence and data science capacities along with improved disease surveil-
lance and reporting systems in developing regions of the world like these 
could help capitalize on the potential of ML and DL techniques in ID 
prediction for biopreparedness and response. 

The articles identified were almost evenly split between ML and DL 
techniques for ID prediction tasks. Within ML techniques, tree-based 
methods were popular among all prediction categories. Tree-based 
methods are often among the best performing types of prediction 

models [19,42,43]. For instance, XGB and, RF outperformed other 
traditional modeling approaches in predicting diseases such as brucel-
losis, avian influenza, and influenza-like illnesses across different re-
gions of the world [a107, a167, a180]. These models are also easy to 
implement, fast to compute, highly performant, and provide a form of 
interpretability through input feature importance, which could be the 
main reason for their popularity in ID modeling [44,45]. Alternatively, 
FFNs, and RNNs were the most frequently used DL techniques and were 
mostly used for temporal prediction. The FFNs are artificial neural 
networks that can learn complex and non-linear patterns without mak-
ing any prior assumptions concerning data distributions [46,47]. The 
RNNs are the derivatives of FFNs (e.g., Long Short-Term Memory and 
Gated Recurrent Unit) and are known to produce strong predictions with 
time series or other types of sequential data because of their ability to 
utilize historic information to predict future values [48]. Given that the 
ID outbreaks generally follow a non-linear and complex pattern, these 
neural networks are often shown to produce superior predictions 
compared to other approaches and are hence commonly used in disease 
forecasting tasks. For example, LSTM models produced better results 
when compared to conventional statistical techniques in predicting 
influenza and COVID-19 cases in the United States and Indonesia, 
respectively [a55, a90]. It is also worthwhile to note that ML and DL 
hybrids/ensembles have attracted great attention from the ID commu-
nities in the past few years, evident by their increased use in publica-
tions. Hybrid and ensemble models are information fusion concepts that 
combine statistical, mechanistic, ML, and/or DL approaches working 
together (hybrid) or independently (ensemble) to minimize prediction 
noise and increase accuracy over the individual models, which could be 
one of the possible explanations for their increased popularity in recent 
years [18,49]. For instance, combining conventional autoregressive 
methods with neural networks produced better temporal predictions of 
tuberculosis, brucellosis, and pertussis in China highlighting the supe-
riority of hybrid and ensemble techniques over the individual models 
[a144, a179, a227]. 

A wide variety of input features were used for training ID models. 
Conventional variables (e.g., previous case counts, climate/weather, 
demographics/socioeconomics, and landscape/geographic data) were 
routinely utilized to make disease predictions. However, one of the 
biggest constraints for building a reliable ID prediction model to accu-
rately estimate the progression of the disease is the timeliness of avail-
able, essential outbreak-related data. These constraints are aggravated 

Fig. 8. Error metrics utilized in ID prediction models: Citations grouped by a) Classification error metrics and b) Regression error metrics. If an article used error 
metrics from different classes, it was placed in each respective group. Abbreviations: AUC-ROC (Area Under the Curve - Receiver Operating Characteristic curve), 
AIC/BIC (Akaike’s/Bayesiasn Information Criteria, corr coeff. (Correlation coefficient), MAE (Mean Absolute Error), MAPE (Mean Absolute Percentage Error), MSE 
(Mean squared error), RMSE (Root Mean Square Error). 
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in cases involving a novel disease outbreak or neglected endemic disease 
where the spatial and temporal patterns of the pathogen emergence are 
largely unknown. Furthermore, a major outbreak could lead to a sig-
nificant shift in population social behavior and movement due to public 
health efforts and government policies resulting in prediction inaccur-
acies. Hence, the incorporation of novel data sources that account for 
these dynamic behaviors is vital for accurate and timely decision mak-
ing. In our review, we identified studies that utilize news articles [a34, 
a37], social media or internet search queries [a29, a34, a37, a68, a86, 
a94, a95, a99, a107, a108, a112, a119, a135, a186, a187], health in-
formation collected using phone/wearable devices [a24], and human 
mobility data [a56, a64, a64, a123, a125]. The ML and DL models used 
in these studies exploited a large quantity of structured and unstructured 
data with the goal to produce better ID predictions. 

Although methods used in ID prediction are becoming more so-
phisticated, we also identified consistent concerns in the structure of the 
analyses that could limit their practical use. First, we found that the data 
collection duration for a large majority of the studies was less than or 
equal to one year regardless of the prediction category. Secondly, most 
articles do not include uncertainty quantification or account for missing 
data. This was apparent, especially during the early stages of the COVID- 
19 pandemic where the availability of data was limited and there was a 
widespread underreporting of the cases. Since each ID is known to show 
specific occurrence patterns that change over time and space, such short- 
term predictions could be subject to biases and estimation inaccuracies, 
which should be carefully accounted for while deploying the algorithms 
to an operational environment. Though a short turnaround time could 
be vital for a real-world ID event, we recommend updating the models 
regularly with new data and retraining them for better and long-term 
practical usage. 

Another serious limitation common to the literature reviewed is a 
lack of discussion regarding data quality and the functional deployment 
of an algorithm. While one algorithm may perform the best in terms of 
overall tested accuracy, it may overstate its confidence, may be unre-
alistic to implement due to computational efficiency, or may simply fail 
when in the presence of missing data. Since disease prediction models 
are meant to provide situational awareness, reliable and near-real-time 
results are necessary [50]. The fact that so few publications consider the 
critical aspects of automated algorithm implementation suggests that a 
greater emphasis should be placed on the operational aspects of epide-
miology for biopreparedness and response. 

While our systematic review was comprehensive, it still has some 
limitations. First, we only included peer-reviewed studies that were 
published in a scientific journal. This could have resulted in a selection 
bias by excluding important studies disseminated as preprints, confer-
ence abstracts, books, dissertations, or theses. Second, we did not 
include studies that primarily utilized traditional statistics-based 
regression or classification methods. Considering the amount of litera-
ture available about these techniques, they will require a separate 
literature review of their own. 

5. Conclusion 

To counter the threats of the ever-increasing risk of ID events, the 
landscape of disease prediction is also shifting dramatically. Due to the 
factors such as their high prediction accuracy and effective date 
handling, ML and DL techniques are increasingly being used in ID pre-
diction tasks. The main purpose of our study was to systematically 
profile the current state of ID prediction capabilities that utilized ML and 
DL techniques. We specifically looked for IDs that were modeled, type of 
the ML and DL techniques utilized, the geographical distribution of the 
modeling studies, prediction tasks performed, input features utilized, 
spatial and temporal scale of the studies, error metrics used, the 
computational efficiency of the models, uncertainty quantification and 
missing data handling methods adopted. Despite an increase in interest 
in the field indicated by a diverse number of IDs modeled and a 

consistent increase in the number of studies that apply ML and DL 
techniques in ID prediction tasks over the past two decades, there were 
some major limitations to the literature reviewed. Even with the unique 
ability of ML and DL models to handle diverse, large amounts of data and 
uncover connections in the data on their own, studies still include a very 
limited amount of data related to the full disease ecology. Especially for 
zoonotic and veterinary diseases, ID prediction models should include 
important One Health input features to capitalize on the in-
terconnections between human, animal, vector, and environmental 
factors driving disease presence. Incorporating the assessment of un-
certainty in the predictions and computational requirements of the 
models would enable deployment in an operational environment and 
the ability for better preparedness and response during an ID emergency 
by decision makers. Finally, building more robust artificial intelligence 
and data science capacities in resource-scare settings across regions and 
diseases could help capitalize on the potential of ML and DL techniques 
in ID prediction in the future. 
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Modeling Reviewing Hybrid and Ensemble Methods, Lecture Notes in Networks 
and Systems 101, 2020, pp. 215–227, https://doi.org/10.1007/978-3-030-36841- 
8_21. 

[50] K.M. Broadway, K.T. Schwartz-Watjen, A.L. Swiatecka, S.J. Hadeed, A.N. Owens, S. 
R. Batni, A. Wu, Operational considerations in global health modeling, Pathogens 
10 (2021) 1348, https://doi.org/10.3390/PATHOGENS10101348. 

R. Keshavamurthy et al.                                                                                                                                                                                                                       

https://doi.org/10.1098/RSTB.2010.0387
https://doi.org/10.1098/RSTB.2010.0387
https://doi.org/10.1126/SCIENCE.AAA4339/ASSET/8FA31E42-DA90-4C84-BF84-FBB2DA09DB83/ASSETS/GRAPHIC/347_AAA4339_F2.JPEG
https://doi.org/10.1126/SCIENCE.AAA4339/ASSET/8FA31E42-DA90-4C84-BF84-FBB2DA09DB83/ASSETS/GRAPHIC/347_AAA4339_F2.JPEG
https://doi.org/10.1126/SCIENCE.AAA4339/ASSET/8FA31E42-DA90-4C84-BF84-FBB2DA09DB83/ASSETS/GRAPHIC/347_AAA4339_F2.JPEG
https://doi.org/10.1371/JOURNAL.PONE.0139701
https://doi.org/10.1371/JOURNAL.PONE.0139701
https://doi.org/10.3390/PATHOGENS10070783
https://doi.org/10.3390/PATHOGENS10070783
https://doi.org/10.1016/S2589-7500(20)30268-5
https://doi.org/10.1016/S2589-7500(20)30268-5
https://doi.org/10.1007/978-1-4613-8716-9_15
https://doi.org/10.1007/978-1-4613-8716-9_15
https://doi.org/10.1038/nature14539
https://doi.org/10.1126/SCIENCE.AAA8415/ASSET/AB2EF18A-576D-464D-B1B6-1301159EE29A/ASSETS/GRAPHIC/349_255_F5.JPEG
https://doi.org/10.1126/SCIENCE.AAA8415/ASSET/AB2EF18A-576D-464D-B1B6-1301159EE29A/ASSETS/GRAPHIC/349_255_F5.JPEG
https://doi.org/10.1126/SCIENCE.AAA8415/ASSET/AB2EF18A-576D-464D-B1B6-1301159EE29A/ASSETS/GRAPHIC/349_255_F5.JPEG
https://doi.org/10.1093/AJE/KWZ189
https://doi.org/10.1093/AJE/KWZ189
https://doi.org/10.1038/nrmicro1845
https://doi.org/10.1098/RSTB.2010.0387
https://doi.org/10.1098/RSTB.2010.0387
https://doi.org/10.1136/BMJOPEN-2020-037860
https://doi.org/10.1038/NMETH.4642
https://doi.org/10.1038/NMETH.4642
https://doi.org/10.3390/IJERPH15081596
https://doi.org/10.3390/IJERPH15081596
https://doi.org/10.1016/J.CHAOS.2020.109864
https://doi.org/10.1016/J.IDH.2018.10.002
https://doi.org/10.1016/J.IDH.2018.10.002
https://doi.org/10.1016/J.HELIYON.2021.E07371
https://doi.org/10.1016/J.HELIYON.2021.E07371
https://doi.org/10.3390/PATHOGENS11020185
https://doi.org/10.1186/1471-2105-15-276
https://doi.org/10.1038/s41598-020-66650-1
https://doi.org/10.1186/1297-9716-44-42
https://doi.org/10.1371/JOURNAL.PONE.0088075
https://doi.org/10.3389/FPUBH.2021.641253
https://doi.org/10.1186/S13104-020-4889-5/TABLES/1
https://www.mdpi.com/1660-4601/17/12/4204
https://www.mdpi.com/1660-4601/17/12/4204
https://doi.org/10.1371/journal.pntd.0008924
https://doi.org/10.1098/rsif.2020.0691
https://www.sciencedirect.com/science/article/pii/S0010482520302183
https://www.sciencedirect.com/science/article/pii/S0010482520302183
https://doi.org/10.1093/INFDIS/JIW400
https://doi.org/10.1016/S2214-109X(14)70356-0
https://doi.org/10.1136/BMJ.B2535
https://doi.org/10.1371/JOURNAL.PONE.0138237
https://doi.org/10.1089/bsp.2011.0088
https://doi.org/10.1371/journal.pone.0091989
https://doi.org/10.1038/s42256-020-0184-3
https://doi.org/10.1038/s41467-017-00923-8
https://doi.org/10.1038/s41467-017-00923-8
https://doi.org/10.1038/s41467-017-00923-8
https://doi.org/10.1038/s41467-017-00923-8
https://doi.org/10.1016/S2214-109X(17)30025-6
https://doi.org/10.3389/FPUBH.2021.710961/BIBTEX
https://doi.org/10.3389/FPUBH.2021.710961/BIBTEX
https://doi.org/10.3389/FDGTH.2020.00006/BIBTEX
https://doi.org/10.3389/FDGTH.2020.00006/BIBTEX
http://refhub.elsevier.com/S2352-7714(22)00071-4/rf0210
http://refhub.elsevier.com/S2352-7714(22)00071-4/rf0210
https://doi.org/10.1145/2939672
https://doi.org/10.1007/978-1-0716-1418-1_8
https://doi.org/10.1038/nbt0908-1011
https://doi.org/10.1016/S1352-2310(97)00447-0
http://refhub.elsevier.com/S2352-7714(22)00071-4/rf0235
http://refhub.elsevier.com/S2352-7714(22)00071-4/rf0235
https://doi.org/10.1038/s41598-018-24271-9
https://doi.org/10.1038/s41598-018-24271-9
https://doi.org/10.1007/978-3-030-36841-8_21
https://doi.org/10.1007/978-3-030-36841-8_21
https://doi.org/10.3390/PATHOGENS10101348

	Predicting infectious disease for biopreparedness and response: A systematic review of machine learning and deep learning a ...
	1 Introduction
	2 Methodology
	2.1 Eligibility criteria
	2.2 Search strategy
	2.3 Selection strategy
	2.4 Information extraction

	3 Results
	3.1 ML and DL modeling for infectious disease prediction
	3.2 Regional distribution of studies
	3.3 Trend and extent of use of ML and DL in infectious disease prediction models
	3.4 Utilization of ML and DL approaches for different prediction categories
	3.5 Spatial and temporal scales of the dataset used in the studies
	3.6 Input feature groups utilized for disease prediction
	3.7 Uncertainty quantification, computational efficiency, and missing data
	3.8 Common error metrics used in ID prediction modeling

	4 Discussion
	5 Conclusion
	Author contributions
	Funding
	Data availability statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Appendix A Supplementary data
	References


