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Abstract: Metabolic dysfunction-associated fatty liver disease (MAFLD) is the most common liver
disease affecting a quarter of the global population and is often associated with adverse health
outcomes. The increasing prevalence of MAFLD occurs in parallel to that of metabolic syndrome
(MetS), which in fact plays a major role in driving the perturbations of cardiometabolic homeostasis.
However, the mechanisms underpinning the pathogenesis of MAFLD are incompletely understood.
Compelling evidence from animal and human studies suggest that heightened activation of the
sympathetic nervous system is a key contributor to the development of MAFLD. Indeed, common
treatment strategies for metabolic diseases such as diet and exercise to induce weight loss have been
shown to exert their beneficial effects at least in part through the associated sympathetic inhibition.
Furthermore, pharmacological and device-based approaches to reduce sympathetic activation have
been demonstrated to improve the metabolic alterations frequently present in patients with obesity,
MetSand diabetes. Currently available evidence, while still limited, suggests that sympathetic
activation is of specific relevance in the pathogenesis of MAFLD and consequentially may offer an
attractive therapeutic target to attenuate the adverse outcomes associated with MAFLD.

Keywords: sympathetic nervous system; metabolic syndrome; hepatic denervation; multi organ denervation

1. Introduction

Metabolic dysfunction-associated fatty liver disease (MAFLD) has become the most
common chronic liver condition in developed and developing countries due to the burgeon-
ing in the incidence of obesity and metabolic syndrome(MetS) [1]. MAFLD was previously
identified as non-alcoholic fatty liver disease defined as the accumulation of excess fat in
hepatocytes, in the absence of secondary causes of steatosis such as excess alcohol intake
(30 g/day for men and 20 g/day for women) [2,3]. The MAFLD spectrum ranges from
simple steatosis to steatohepatitis and ultimately development of fibrosis and cirrhosis in
the long term with an increased risk of hepatocellular carcinoma [4,5]. Importantly, as many
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as 30% of subjects with fatty liver disease have histologic evidence of liver inflammation,
which in turn is associated with increased risk of progression to cirrhosis [6]. Recently, an
international expert consensus statement coined the new definition of fatty liver disease
associated with metabolic dysfunction, MAFLD [7], to extend the perspective of disease
assessment and severity stratification beyond a simple dichotomous classification of steato-
hepatitis vs. non-steatohepatitis. Moreover, this was based on the evidence of hepatic
steatosis, in addition to one of the following three criteria: overweight/obesity, diabetes
mellitus or evidence of metabolic dysregulation, as summarized in Figure 1 [7].

Figure 1. Flowchart for the proposed “positive” diagnostic criteria for MAFLD (Reprinted from [7]
with permission from Elsevier’).

The pathophysiological mechanisms underlying the MetS are complex and extend
beyond sedentary lifestyle, poor diet and genetic predisposition. It is now becoming clear
from some of our own observations and those of others that the sympathetic nervous
system (SNS) is important in the generation of both obesity and obesity-related illness [8].
Of growing interest is the interaction between the SNS and the liver in the development
and clinical consequences of the MetS. Indeed, the link among glucose tolerance, insulin
sensitivity and liver function is evident, with MAFLD being the hepatic manifestation
of the MetS. The pathogenesis of MAFLD is incompletely understood and currently no
proven therapy exists that addresses both the progression of liver fibrosis and the asso-
ciated metabolic disturbances. There is strong evidence implicating SNS activation in
the pathogenesis of cardio-metabolic illnesses including obesity, MetS, diabetes, hyper-
tension (HTN) and other conditions including MAFLD (Figure 2). A complex interplay
of endocrine mechanisms, immune activation, microbial dysbiosis, etc. can perpetuate
SNS hyperactivity across the metabolic disease continuum [9–12], resulting in unwanted
consequences such as insulin resistance and systemic inflammation [13–15].
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Figure 2. Sympathetic overdrive is the central pathogenesis of metabolic disorders.

Investigators have reported clear evidence that liver fibrogenesis and MAFLD are
associated with heightened sympathetic activation [16]. Sympathoexcitation—as indi-
cated by an increase in circulating neurotransmitters such as norepinephrine (NE) and
neuropeptide Y (NPY)—has been identified to induce hepatic stress and fibrogenesis in
hepatic stellate cells (HSC) at physiological concentrations, in both animal models and
humans [16–18]. Furthermore, inhibition of the SNS increased hepatic progenitors and
reduced liver injury [19]. Additionally, noradrenergic antagonism inhibited fibrogenesis in
rat livers [19,20]. Moreover, weight loss mediated attenuation of sympathetic overdrive
promoted improvement in metabolic parameters and liver enzymes in obese-hypertensive
patients [21,22]. Sympatholytic agents such as α2-receptor agonists and I1 Imidazoline
receptor agonists, rilmenidine or moxonidine demonstrated similar effects [23–25]. How-
ever, whether these effects are definite in improving aspects of MAFLD remains to be seen.
This article reviews the current literature from PubMed on the association of sympathetic
activation with MAFLD and discusses the potential treatments targeting the sympathetic
overdrive that may benefit the patients with MAFLD.

2. Metabolic Dysfunction Associated Fatty Liver Disease (MAFLD)

The onset of MAFLD begins with benign steatosis with the accumulation of triglyc-
erides (TG) in the hepatocytes, which, if not reversed, progresses to non-alcoholic steato-
hepatitis [26]. Previous studies have shown that, in patients with MAFLD, 60% of hepatic
TG accumulation is derived from circulating free fatty acids (FFA), 25% from de novo lipo-
genesis and 15% from diet [27]. Steatohepatitis is characterized by lobular inflammation,
hepatocyte ballooning, fibrosis and cirrhosis [26,28]. Approximately one third of patients
with MAFLD progress to steatohepatitis and a smaller percentage of that group progresses
to cirrhosis, which may transform to hepatocellular carcinoma [29].

With only a proportion of patients progressing towards steatohepatitis, fibrosis and cir-
rhosis, the factors responsible for the development of MAFLD are yet to be determined [5].
The traditional theory of MAFLD progression is the “two-hit theory” put forward by Day
and colleagues [30]. The first step is the accumulation of hepatic triglycerides, which
occurs when the rate of lipid disposal is exceeded by the influx of the free fatty acids
(FFA) [31]. Additional mechanisms such as insulin resistance (IR), increased dietary influx
and increased hepatic lipogenesis (via de novo lipogenesis) on top of genetic predispo-
sition to metabolic abnormalities enhance hepatic FFA trafficking [32]. Furthermore, in
insulin resistant states, the inability of insulin to suppress adipolysis results in increased
hepatic triglyceride synthesis by de novo lipogenesis along with hyperinsulinemia [33].
This results in elevated FFA, free cholesterol, oxidized cholesterol metabolites and other
toxic metabolites that can act as reactive oxygen species [26,34], thereby creating a lipotoxic
atmosphere for the hepatocytes. The second step is characterized by lipotoxic oxidative
stress in the hepatocytes [26] resulting in hepatocellular mitochondrial dysfunction and en-
doplasmic reticulum (ER) stress that further potentiate the oxidative stress cascade [26,34].
This cascade of events results in chronic hepatocellular inflammation, apoptosis and even-
tually hepatic fibrosis [34] that eventually progress to complications such as hepatocellular
carcinoma (HCC) and portal hypertension [35].
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However, the “two-hit” hypothesis is now obsolete due its inability to explain the
multitude of molecular and metabolic changes that take place in MAFLD. Hence, the
“multiple hit” hypothesis was proposed, which states that, when genetically predisposed
subjects are exposed to multiple epigenetic insults, their liver injury may proceed to
develop MAFLD. This hypothesis emphasizes that the pathogenesis and progression of
MAFLD is very complex and involves coherent interplay of multiple factors such as insulin
resistance, abnormal hormonal secretion, obesity, diet, genetic factors, immune activation
and, as shown more recently, gut dysbiosis that work in parallel to cause the progression of
MAFLD [34,36,37].

3. Sympathetic Nervous System (SNS) Activation, Metabolic Dysregulation and MAFLD

The sympathetically mediated metabolic effects (Figure 3) enable the human organism
to cope with stressful situations of short duration when there is a need for increased
energy requirements. However, sustained sympathetic overdrive often results in adverse
cardiovascular and metabolic consequences, potentially including MAFLD. Sympathetic
stimulation of the hepatic nerves [38] induces a rapid and marked glucose output from
the liver, whereas stimulation of pancreatic sympathetic nerves is associated with reduced
insulin and increased glucagon secretion into the portal circulation [9]. Furthermore,
enhanced sympathetic activation results in neurally mediated peripheral vasoconstriction
in skeletal muscle [8], associated with impaired glucose uptake and insulin resistance
and enhanced lipolysis in adipocytes. This lipolytic state induced by the sympathetic
overactivity results in increased levels of free fatty acids and triglycerides in the circulation
and visceral deposition, exacerbating MAFLD in patients with metabolic diseases [39–41].

Figure 3. Overview of the effect of sympathetic activation on metabolic pathways and the sustenance of sympathetic tone
through the hepato-renal reflex and the adverse impacts on cardiometabolic regulation.

MetS is a sympathetic disease [9] and has been found to be a strong predictor of
MAFLD [42]. The endocrine and biochemical disturbances that characterizes MAFLD are
associated with increased sympathetic activity [41,42]. SNS mediated insulin resistance,
influenced by hypothalamic neuropeptide Y and other factors in turn results in compen-
satory hyperinsulinemia and hyperglycemia in metabolic disease states, thereby resulting
in the progression of MAFLD [43–45]. Heightened sympathetic activation has been demon-
strated using gold standard techniques such as microneurography and nor-adrenaline
spillover from whole body and from individual organs in patients with liver cirrhosis [46]
and metabolic diseases [13,47]. Patients with perturbed glucose metabolism and obesity
have accompanying liver cirrhosis, the progression of which results in progressive sym-
pathetic activation mediated by disturbed cardiovascular and metabolic homeostasis and
vice versa [46,47] In addition, various adipokines such as leptin and adiponectin are also
known to affect the progression of MAFLD. Leptin has been shown to cause fibrogenesis in



Int. J. Mol. Sci. 2021, 22, 4241 5 of 16

animal models [48,49] and it is known to prevent lipid accumulation, perhaps contributing
to the compensatory hyperleptinemic status seen in obese patients [50]. Adiponectin has
anti-inflammatory effects, improves insulin resistance and prevents hepatic damage by
blocking the IKK-NF-κB inflammatory pathways, often downregulated in obesity [50]. Fur-
thermore, enhanced fibrogenesis has been demonstrated in adiponectin deficient animal
models [51]. Combined hypoadiponectinemia and hyperleptinemia in obesity facilitate the
exacerbated progression of MAFLD [52]. Besides, hyperleptinemia is sympathoexcitatory
due to its ability to cross the blood–brain barrier and modulate the sympathetic brain cen-
ters via the leptin receptors and is causally linked to hypertension in obesity and metabolic
syndrome [53].

Moreover, nutrient excess in MetS and obesity warrants exaggerated mesenteric oxy-
gen demand, reducing portal vein oxygen and hepatic oxygen delivery. The hepatic arterial
buffer response, mediated by an adenosine induced arterial vasodilatory response, sustains
a stable hepatic vein outflow despite the increase in post-prandial portal inflow. Eventu-
ally, adenosine is washed out by the increased postprandial portal flow restoring arterial
resistance [54]. Chronic portal oxygen depletion limits adenosine triphosphate (ATP) pro-
duction and induces adenosine release that further increases the hepatic sympathetic tone,
triggering the “hepato-renal reflex”. Increased sympathetic activation in the liver results
in the reduction of blood flow and increase in hepatic arteriolar resistance, which causes
reflex renal sympathetic activation, with consequent renal arteriolar vasoconstriction and
renin-angiotensin-aldosterone system (RAAS) activation [55]. The hepato-renal reflex
mediated RAAS activation further decreases the renal blood flow, glomerular filtration
and increases systemic sodium retention. The increase in afferent hepatic sympathetic
activity is mediated by the low-pressure hepatic baroreceptors and which upon activation
subsequently increases the cardiopulmonary and renal efferent sympathetic discharge,
albeit without a change in heart rate [56].

The peri-venous hepatocellular lipid accumulation in MAFLD, compromises the
oxygen delivery to the hepatocytes [55]. In addition, the low ATP status in MetS also
contributes to metabolic inflexibility and impaired β-oxidation and further accentuates the
hepatic lipid accumulation in MAFLD. Likewise, the onset of steatohepatitis in MAFLD fur-
ther impedes the hepatic microcirculation sustaining hepatic hypoxia, inducing ATP/AMP
depohosphorylation mechanisms that trigger the hepato-renal reflex [54,57]. A similar
observation was made in high fructose induced MetS animals, where ATP depletion en-
riched adenosine production. Hepatocellular fructose metabolism is exclusively mediated
by fructokinase that consumes the inorganic phosphate from the ATP and forms fructose-1-
phosphate, adenine nucleotide and uric acid, which is a very sensitive indicator of hepatic
ATP depletion [58]. In a clinical scenario, diabetic patients do not tolerate intravenous
fructose challenge in large doses due to impaired ATP recovery [59]. Additionally, the
metabolic surgeries performed in morbid obesity either bypasses or minimize nutrient
contact, lowering splanchnic oxygen demand and enhances portal oxygen availability. This
resulted in increased ATP and reduced uric acid production which blunts the hepato-renal
reflex and the sympathetic activation following bariatric surgery [55,60].

4. Sympathetic Activation and MAFLD Progression

The exact mechanism that links sympathetic activation with the development of
MAFLD remains to be determined. Besides the external factors linked with sympathetic
activation, it has also been shown that SNS activity may directly influence the hepatic stel-
late cells (HSCs) in the pathogenesis of MAFLD [59]. Liver fibrosis results from repeating
cycles of hepatocellular damage and repair, which transdifferentiates quiescent HSCs into
a myrofibroblast phenotype characterized by increased secretion of the extracellular matrix
protein such as collagen [61,62]. HSCs are the main source of collagen production and are lo-
cated in close proximity with the sympathetic nerve fibers in the human liver [18,19]. HSCs
are hepatic neuroglia that have been shown to express SNS receptors, namely α1A, α2B, β1,
β2 and β3 adrenergic and NPY receptors [18,19], and the key enzymes for norepinephrine
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(NE) synthesis and release, namely dopamine-β-hydroxylase and tyrosine hydroxylase,
all of which were upregulated in cirrhotic NAFLD human livers [16,19]. Additionally, the
α- and β-adrenoceptor antagonists exerted an inhibitory effect on the growth of HSCs in
various animal experiments [19]. These results are suggestive of sympathetic modulation
of the HSCs through autocrine and paracrine mechanisms. Similarly, the NE deficient
mice models demonstrated reduced proliferation of HSCs, compared to the controls and
exogenous NE administration induced a dose-dependent (1 nM to 1 mM), biphasic, exac-
erbation of HSC proliferation [16]. In the same study, both exogenous and endogenous
NE exerted an anti-apoptotic and proliferative effect on the human HSCs, whereas the
other neurotransmitters such as the epinephrine and NPY exerted only proliferative effects
on human HSCs [16]. Besides proliferation, adrenergic agonists (NE and isoprenaline)
induced hepatic expression of transforming growth factor beta-1 (TGF-β1) and collagen
genes in murine and human HSCs indicative of stellate cell activation [16].

5. Insights from Experimental Studies: Hepatic Fibrosis Is Sympathetically Driven

Further insights into the role of SNS in hepatic fibrosis was achieved by studying the
role of NE in leptin deficient ob/ob mice, which display reduced NE levels, decreased SNS
activity and was resistant to hepatic fibrosis [63–65]. The ob/ob mouse model has been
shown to have reduced HSC levels and NE treatment induced HSC proliferation, upregula-
tion of hepatic TGF-β1 and collagen augmenting liver fibrosis. [63]. Leptin was identified
to play a key role in hepatic fibrogenesis due to its mitogenic impact on the HSCs via sym-
pathoexcitation mediated by endogenous sympathetic neurotransmitters [66,67], affirming
the notion that sympathetic activation drives leptin mediated hepatic fibrogenesis [66–69].
Moreover, dopamine β-hydroxylase deficient (Dbh−/−) mice displayed inhibited fibro-
genic response to liver injury, as evidenced by decreased proliferation and activation of the
HSCs [18]. In humans HSCs, NE stimulated the key intracellular pro-inflammatory path-
ways NF-κB, JNK/AP-1 and ERK, enhancing the secretion of inflammatory cytokines and
chemokines such as IL-8 and RANTES, in a NF-κB dependent fashion [70,71]. Furthermore,
this study also showed that NE stimulated the calcium release in human HSCs suggesting
that NE could potentially influence HSC contractility, thus connecting the SNS to portal
hypertension in cirrhotic livers [70].

Conversely, in vitro studies have proposed a regenerative role of catecholamines in the
heterologous regulation of epidermal growth factor (EGF) receptors to aid hepatic regener-
ation [71]. Additionally, splanchnicectomy stimulated DNA synthesis and proliferation
of hepatocytes following partial hepatectomy [72]. The facilitation of liver regeneration
following partial hepatectomy was identified as parasympathetic vagal response, achieved
by sympathetic inhibition through ventromedial hypothalamic lesions (sympathetic re-
gion) [73]. Moreover, hepatic branch sympathectomy [74] and bilateral subdiaphragmatic
splanchnicectomy [72] produced no effect on liver regeneration.

6. Potential Therapeutic Implications
6.1. The Sympathetic Nervous System as a Target for Therapy

At present, the main treatment goal in patients with MAFLD is to manage individual
risk factors such as obesity, high blood pressure and impairment in glucose and lipid
metabolism. We summarize the available options for MAFLD and then explore the potential
of direct sympathetic modulation as a therapeutic strategy.

6.2. Weight Loss and Exercise

With the increasing prevalence of MAFLD and related metabolic diseases, develop-
ment of effective treatments is of utmost priority. Current approaches include lifestyle
modification; specifically, weight loss via consistent exercise regimens or dietary restrictions
and cognitive behavior therapy have been recommended as the preferred form of treatment
for MAFLD [75,76]. Numerous studies exploring lifestyle interventions involving either
exercise or calorie restriction or both that has resulted in a net weight loss, reduced abdom-
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inal and liver fat and improved insulin sensitivity have been associated with improvement
of MAFLD [77–81]. Conversely, lower physical fitness has been associated with increased
severity of MAFLD [82]. Both aerobic and resistance training have been shown to be effec-
tive but may depend on patients’ preferences to ensure commitment to the exercise regime
to render it effective [79]. Multidisciplinary approaches addressing “psychosocial needs
and behavioral support” may be effective [83] but were often influenced by personality
factors and mental health issues such as depression, low consciousness and neuroticism
in patients with MAFLD [84]. The reality is that adhering to lifestyle interventions is a
strategy more easily advocated than practiced and patients do struggle with committing to
such a drastic changes in lifestyles [85].

For severely obese patients, bariatric surgery might be an alternative option to achieve
significant weight loss, which has also been associated with significant improvement and
resolution of hepatic steatosis and fibrosis in a majority of the patients with body weight
changes [86,87]. The evaluation of the beneficial hepatic changes in fibrosis with bariatric
surgery are based on observational studies and the effect varies according to the type
of surgery performed with a greater effect with bypass procedures compared to gastric
banding [86]. Moreover, some cases were associated with progressive fibrosis and rarely
fulminant steatohepatitis in the first postoperative year, presumably due to exaggerated
weight loss following bypass surgery [86,87]. In MAFLD patients with cirrhosis, bariatric
surgery may be contraindicated, in otherwise eligible morbidly obese subjects [88]. There-
fore, pharmacological therapies may therefore represent the most accessible type of therapy
for those that fail adherence to a strict regimen of exercise and, or dietary requirements [82].

7. Pharmacotherapy

Although there is an increasing demand for pharmacological therapies for patients
with MAFLD, there is no specific form of treatment currently, which can meet adequate
safety and efficacy standards [77]. Most treatments that have been studied target the various
metabolic abnormalities that are associated with MAFLD [75]. Some examples include the
Peroxisome Proliferator-Activated Receptors (PPAR) agonists known as thiazolidinediones,
insulin sensitizing agents such as metformin, antioxidants such as vitamin E, a lipophilic
antioxidant and the use of omega-3 polyunsaturated fatty acids, lipid lowering medications
such as fibrates and statins [75,76], as summarized in Table 1.

Table 1. Dietary and pharmacotherapy considerations in MAFLD.

Intervention Strategy Mechanism of Action Outcomes

Pharmacotherapeutic Strategies

Vitamin E
(α-tocopherol)

Free radical
scavenger—inhibits oxidative

stress

Reductions in serum
aminotransferases levels and

improvement in hepatic
inflammation resolution of

steatohepatitis [89,90].
However, vitamin E supplement (400

IU/day) was associated with all
cause mortality [91] and prostate

cancer [92]

Metformin Insulin sensitizer

Varied outcomes with improvement
in hepatocellular inflammation,
steatosis and fibrosis, however

inconclusive [2,93–95]
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Table 1. Cont.

Intervention Strategy Mechanism of Action Outcomes

Thiazolidinediones
(TZDs), e.g.,
pioglitazone

Enhanced insulin sensitivity
by acting on peroxisome

proliferator-activated receptor
gamma and increasing
circulating adiponectin

prevent the activation of
adipocyte c-jun kinase, a

kinase that when activated
impairs adipocyte

responsiveness to insulin and
adipocyte storage of TG

[96–98]

Significantly improved
aminotransferase levels, hepatic

inflammation and steatosis but did
not alter the stage of fibrosis

[57,65,96,97]
The long-term use of TZDs is

associated with side effects such as
weight gain (average 4 Kg),congestive

heart failure (CHF), other
cardiovascular morbidity, bone loss
(fracture risk) and urinary bladder

cancers [99]

Statins Inhibitors of cholesterol
synthesis

Lack of evidence and increased risk
of drug induced liver injury [75]

Weight loss
medication

Weight loss mediated
beneficial effect on MAFLD

No medication for weight loss has yet
been identified, to have long-term

safety, efficacy and tolerability [100]

Dietary interventions

n − 3/n − 6
polyunsaturated fatty
acids (PUFA) dietary

ratio
low n − 3/n − 6 PUFA ratio

in MAFLD

Supplementation of omega-3 [101]
and other PUFAs in diet [102] have

shown a beneficial effect on both
hepatic lipogenesis and steatosis

[101–103]

Trans-fat enriched
foods

High fructose foods,
e.g., corn syrup

Insulin resistance
Hepatic steatosis

hepatic fructose metabolism favors
ATP depletion, lipotoxicity, insulin
resistance and enhances enhanced

TNF expression [104]

Coffee (caffeine)

Caffeine alters TGFβ signaling
pathways to reduce the

transcription of connective
tissue growth factor (CTGF), a

major stimulator of fibrosis
[105–107].

Reduction of hepatic inflammation
and fibrosis in morbidly obese

MAFLD patients [105–107]

In addition to weight reduction and exercise, pharmacological inhibition of the sym-
pathetic nervous system might be a rational therapeutic approach for MAFLD and the
associated metabolic perturbations [9]. Targeting sympathetic overdrive via weight loss
has been shown to improve cardiometabolic abnormalities and markers of liver damage in
hypertensive patients [21,22]. Lowering sympathetic activity with α-adrenergic blockers
improved glucose and lipid profile along with blood pressure reduction [108,109]. How-
ever, the use of β-blocker drugs in obese people may be problematic. Investigations done
from 1986 to 1998 clearly demonstrated the association of β blockers such as metoprolol,
atenolol and propranolol with weight gain, worsening of insulin resistance and lipid profile,
thereby enabling the progression of Mets patients to develop diabetes [110]. By contrast, the
GEMINI trial showed that the use of carvedilol did not lead to substantial weight gain [111]
and in fact was associated with beneficial effects such as improved insulin resistance [112],
lipid profile [113] and a large reduction in microalbuminuria [114]. Moreover, the highly
cardioselective, third-generation β blocker nevibolol demonstrated significant reduction in
inflammation, improvement in lipid profile and blood glucose compared to conventional
beta blockers [115].
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Imidazoline I1 receptor agonists are antihypertensives that act centrally, at the level of
the rostral ventrolateral medulla, to inhibit sympathetic activation. Besides lowering blood
pressure, which is comparable to the antihypertensives of other classes, drugs such as
moxonidine has demonstrated improvement in insulin sensitivity, glucose metabolism and
dyslipidemia [116,117] and were associated with regression of target organ damage as evi-
denced by improved endothelial function [118], reduced left ventricular hypertrophy [119],
renal function and reduction in microalbuminuria [120]. The combination of moxonidine
with a weight loss program was shown to exert beneficial effects on aspects of the metabolic
profile and end organ damage in young overweight males [121]. In a real-world primary
care setting of patients with overweight/obesity-related BP elevation and metabolic distur-
bances (MERSY study), adding moxonidine to the treatment regimen resulted not only in
the reduction of BP but also improved weight and metabolic profile [120]. Additionally, in
a small, randomized, open parallel study in obese hypertensive subjects comparing the
effects of moxonidine (0.2–0.4 mg/day, n = 19) and amlodipine (5–10 mg/day, n = 21) as a
stand-alone therapy, moxonidine significantly reduced supine and orthostatic arterial and
venous plasma noradrenaline levels and as well as reduced the leptin and insulin levels
following 120 min after a glucose load [122]. Another highly relevant link in the current
context is the sodium glucose co-tranporters-2 (SGLT-2) mediated sympathoinhibition
and reduction in circulating noradrenaline, which has not only been shown to improve
glucose control but, perhaps more importantly, also to reduce CV events in patients with
type 2 diabetes [123,124]. Nevertheless, whether these drugs should be used preferentially
over other drug classes in patients with MAFLD, MetS and obesity-related hypertension
remains to be shown.

8. Device-Based Approaches

In addition to from lifestyle interventions and pharmacotherapy, device-based ap-
proaches are used to achieve sympathetic inhibition not only in the management of hyper-
tension and its cardiovascular complications but also in metabolic conditions associated
with sympathetic overdrive such as type 2 diabetes and MetS [125]. Catheter-based renal
and more recently hepatic denervation were proven to be safe and demonstrated signif-
icant improvements in the cardiometabolic profile in line with the pathophysiological
considerations described earlier such as the hepato-renal reflex and the close interaction
between the SNS and glucose metabolism [125,126]. Increased sympathetic tone in the
vasculature of the skeletal muscle plays a significant role in glucose metabolism, mainly
through reduction in blood flow to the skeletal musculature, thereby diminishing glucose
uptake, a hallmark of insulin resistance [9]. Renal sympathetic denervation substantially
reduced sympathetic activity [127–129] and improved glucose metabolism along with BP
lowering in patients with resistant hypertension [130]. Renal denervation performed in
woman with polycystic ovary syndrome, commonly characterized by overweight/obesity,
insulin resistance, sympathetic overdrive and BP elevation, improved insulin sensitivity by
17.5% in the absence of any weight changes at three months accompanied by regression of
renal damage [131,132].

Additionally, attenuation of sympathetic tone in the liver, pancreas and duodenum
through hepatic denervation modulates the cardiac and renal sympathetic activity and may
offer far-reaching cardiovascular and metabolic benefits [133–136]. Hepatic denervation
attenuates the central sympathetic outflow through afferent pathways from liver to brain,
which may influence other autonomic nervous control and therefore contribute to improve-
ments in blood pressure and metabolism [125]. The COMPLEMENT trial (NCT02278068)
trial, a first in human (FIH) feasibility study, conducted in New Zealand, demonstrated
that hepatic sympathetic denervation was safe and effective, resulting in >0.5% HbA1c
reduction in uncontrolled diabetes mellitus (n = 46) along with blood pressure lowering
(unpublished data). Other interventional sympatholytic techniques include the barore-
flex activation therapy that showed modest metabolic benefits in patients with resistant
hypertension [137,138].
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Despite multiple available approaches to target the various aspects of the cardio
metabolic disease spectrum, the prevalence of MAFLD continues to remain high, the
control rates remain unacceptably low and alternative definitive therapeutic approaches
are warranted. Whether the interventional sympatholytic strategies can provide a solution
for MAFLD is yet to be tested in future clinical trials. However, across the metabolic disease
continuum, where the central pathogenesis is identified to be “sympathetic overdrive”
in disease states such as MAFLD, obesity, MetS and hypertension, it seems relevant to
target the underlying pathology rather than the cluster of abnormalities resulting from
heightened sympathetic activation individually.

9. Conclusions

Accumulating evidence from animal and clinical studies substantiates an important
role of the sympathetic nervous system in the perturbation of the cardiovascular and
metabolic homeostasis. With use of state-of-the-art methods, enhanced sympathetic acti-
vation has been clearly demonstrated both in animals and in humans with obesity, MetS
and MAFLD. Furthermore, the cardiovascular and metabolic derangements commonly
associated with the metabolic disease spectrum, such as elevated blood pressure, diastolic
dysfunction and renal impairment, are also modulated by the sympathetic nervous system.
Mechanistically, sympathetic activation affects relevant aspects of the metabolic pertur-
bations that underlie MAFLD and metabolic effects, occurring in response to increased
hepatic sympathetic tone (Figure 4). Although the exact nature of the association between
sympathetic activation and MAFLD remains to be determined, there is evidence to suggest
an important role of the sympathetic nervous system in the onset and progression of
MAFLD. Common management strategies for MetS such as weight loss and exercise have
been associated with significant reduction in sympathetic activation. Targeting the sympa-
thetic nervous system directly—either with pharmacotherapy or with novel device-based
strategies—seems to be a rational and attractive next step, particularly with the escalating
prevalence of obesity and MetS since many of these patients find dietary and exercise
regimens unsustainable. Further studies are needed to validate the role of the sympathetic
nervous system as a useful therapeutic target in MAFLD and other metabolic diseases.

Figure 4. MAFLD, a consequence of enhanced hepatic sympathetic tone: Sympathetic activation
reduces hepatic artery flow, induces hepatic hypoxia, impairs hepatic artery compliance and in-
creases hepatic resistance from hepatocyte. The resulting decrease in the hepatic ATP leads to the
accumulation of adenine nucleotides and stimulates the hepato-renal reflex sustaining feed forward
sympathetic activation between the liver and kidney. MAFLD is both a cause and effect of the
increased hepatic sympathetic tone, a hepatic manifestation of metabolic syndrome.
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