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Abstract

Coffea arabica is a highly traded commodity worldwide, and its plantations are habitat to a

wide range of organisms. Coffee farmers are shifting away from traditional shade coffee

farms in favor of sun-intensive, higher yield farms, which can impact local biodiversity. Using

plant-associated microorganisms in biofertilizers, particularly fungi collected from local for-

ests, to increase crop yields has gained traction among coffee producers. However, the tax-

onomic and spatial distribution of many fungi in coffee soil, nearby forests and biofertilizers

is unknown. We collected soil samples from a sun coffee system, shade coffee system, and

nearby forest from Izalco, Sonsonate, El Salvador. At each coffee system, we collected soil

from the surface (upper) and 10 cm below the surface (lower), and from the coffee plant drip

line (drip line) and the walkway between two plants (walkway). Forest soils were collected

from the surface only. We used ITS metabarcoding to characterize fungal communities in

soil and in the biofertilizer (applied in both coffee systems), and assigned fungal taxa to func-

tional guilds using FUNGuild. In the sun and shade coffee systems, we found that drip line

soil had higher richness in pathotrophs, symbiotrophs, and saprotrophs than walkway soil,

suggesting that fungi select for microhabitats closer to coffee plants. Upper and lower soil

depths did not differ in fungal richness or composition, which may reflect the shallow root

system of Coffea arabica. Soil from shade, sun, and forest had similar numbers of fungal

taxa, but differed dramatically in community composition, indicating that local habitat differ-

ences drive fungal species sorting among systems. Yet, some fungal taxa were shared

among systems, including seven fungal taxa present in the biofertilizer. Understanding the

distribution of coffee soil mycobiomes can be used to inform sustainable, ecologically

friendly farming practices and identify candidate plant-growth promoting fungi for future

studies.
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Introduction

Cultivation of Coffea arabica has gained notoriety for its important role in impacting local and

global biodiversity [1]. Coffee plantations with shaded tree canopies provide refuge for a wide

variety of plant [2, 3] and animal species, including herbivorous insect species [4–6], temper-

ate-tropical migratory birds [7–10], amphibians [11] and mammals [12–14]. Within just one

gram of soil, there exists a staggering number of up to 38,000 different bacterial taxa [15]. Cof-

fee soil also contains a high diversity of fungi, particularly arbuscular mycorrhizal (AM) fungi,

which are highly valued because of their beneficial effects on plant growth and their ability to

reduce water and nutrient losses [16]. Quantifying overall fungal diversity, including AM

fungi as well as other symbiotic fungal taxa, in coffee systems provides insight into plant-

microbial relationships, which can inform sustainable agriculture practices [17].

Coffee is one of the most highly traded and valued commodities that originates from the

developing world [18], with global consumption increasing nearly twenty-fold since 1952 [15].

To meet the demands, coffee cultivation practices have shifted from a traditional shade system

to a sun-intensive system starting in the 1970s [2]. Traditional shade coffee farms (‘agrofor-

estry’ systems) are characterized by their inclusion of tall tree species that provide forest-like

shade [19]. In contrast, modern sun systems remove nearby trees and rely heavily on chemical

inputs, pruning, and high coffee plant density to increase yields [2, 20].

The implementation of modern systems increases coffee yield in comparison to traditional

systems [2], but results in a loss of the valuable canopy cover found in traditional coffee farms.

Differences in canopy coverage between sun and shade systems affects local temperatures and

humidity, which in turn affects environmental suitability for local flora and fauna. For

instance, the monthly average maximum temperatures of a full sun coffee system in the Brazil-

ian Atlantic Rainforest was 5.4˚C higher than another coffee agroforestry system practicing a

traditional shade approach [21]. The lack of canopy foliage also causes modern plantations to

become more prone to water and soil runoff, which in turn threatens the sustainability and

biodiversity of the system [22]. Perfecto et al. [2] found that traditional coffee plantations have

a high structural complexity that offers living and nesting sites for a large variety of organisms,

ranging from plants to amphibians to parasites. In contrast, modern sun coffee plantations

lack the protection conferred by canopy foliage and the input of leaf litter, which reduces soil

moisture and removes an additional layer of habitats for organisms across multiple kingdoms

[23].

Microbes play integral roles in agriculture from pathogenic to beneficial partners of agricul-

tural plants. Microbial communities, including bacteria and fungi, affect the structure and eco-

logical roles of plants by altering various functional traits of plants [24]. Beneficial bacteria and

fungi occur widely. Mycorrhizal fungi are known for their symbiotic relationships with over

90% of all plant species [16, 25], and are particularly known for facilitating the efficient uptake

of nutrients such as phosphorus [26]. On the other hand, fungi also have the potential of caus-

ing disease. Coffee leaf rust, Hemileia vastatrix, and coffee berry disease, Fusarium xylarioides,
are just two of the major fungal pathogens that are causing widespread damage to tropical

plants like Coffea arabica [27]. Using local plant-associated microorganisms to increase crop

yields, and to reduce economic and environmental impacts of pesticides and monoculture-

focused farming has gained traction among coffee producers in recent years. Fungal agents

collected from local forests and then used in biofertilizers play a central role in these efforts.

Coffee management practices can impact fungal diversity and crop output [16, 17, 28], which

have implications for best management practices in sustainable agriculture.

We characterized fungal diversity in soils from a sun-intensive coffee plantation, traditional

shade coffee plantation and nearby forest as well as from a biofertilizer applied in both coffee
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plantations. We collected samples from organic coffee plantations found in Sonsonate, El Sal-

vador. El Salvador is the world’s eighth largest coffee producer, and coffee, along with sugar

and cotton, contribute to 75% of the country’s export earnings [29]. As farmers in El Salvador

turn toward sun-intensive coffee systems to increase output and efficiency, there is a need for

analysis of the environmental and ecological implications these agricultural decisions entail.

Microbes can be used as biocontrol agents as they have the capacity to mitigate and decrease

pathogenic colonization of harmful microbes [30], likely by decreasing the competitive ability

of pathogens [31]. We had three main objectives. First, quantify the impacts of microhabitat

(upper vs. lower soil depth, walkway vs. drip line of plant) and habitat (sun vs. shade coffee

farms) on fungal diversity. Second, identify function of the fungi and determine how func-

tional guilds vary across these microhabitats and habitats. Third, quantify differences in fungal

diversity and functional guilds across sun coffee soil, shade coffee soil, and soil from a nearby

forest with no coffee plantation. Our study offers insight into the taxonomic and ecological dif-

ferences in fungal species of the coffee plant soil between sun intensive and traditional shade

coffee cultivation practices in organic farming. As Juan José Paniagua, a pioneer in organic

farming in Costa Rica, said “El suelo es un mundo do los seres más pequeños, ellos lo cuidan

para nuestra esperanza” or “the soil is a world of the smallest beings, they care for it for our

hope.”

Materials and methods

Field sampling

We collected samples of shade and sun-intensive coffee (Coffea arabica) soil from the ACO-

PRA Las Lajas Coffee Cooperative in Izalco, Sonsonate, El Salvador and from a nearby forest.

The land is privately owned by the ACOPRA Las Lajas Coffee Cooperative and we received

permission from them to collect the soil samples. We received Both the sun and shade systems

are certified organic farms and are treated with the same biofertilizer and compost. They

receive applications of a fungus-based liquid biofertilizer (Biofertilizante Engruese, NCBA

CLUSA) that is used as a foliar spray and injected into the soil of the coffee plant at least two to

three times per year, as well as a compost generated with the Japanese ‘Bocashi’ process that

consists of coffee pulp, animal manure, and vegetation. The base of the fertilizer is an unknown

fungus (referred to as ‘mountain fungus’, S1 Fig) that is collected in the forest from the leaf lit-

ter layer and mixed with molasses, whey, rock phosphate and other ingredients to create the

final product. The sun coffee system site was located at a latitude of 13º 48’ 27.3” N, a longitude

of 89º 35’ 57.3” W, and at an elevation of 1227 meters. The shade coffee system site was located

at a latitude of 13º 49’ 7” N, a longitude of 89º 34’ 54” W, and at an elevation of 1050 meters.

The forest site was located at a latitude of 13º 49’ 41.5” N, a longitude of 89º 34’ 10.3” W, and

an elevation of 907 meters. All sites were within 1 kilometer of one another, which mitigates

some of the issues associated with one replicate site per system. We randomly selected seven

coffee bushes in each system (sun and shade) to sample. We took one soil sample within the

drip line of each coffee bush (drip line samples), and another soil sample from outside the drip

line between the coffee bush and the adjoining row of coffee bushes (walkway samples). Each

drip line and walkway spot had a surface sample of the mineral soil (upper) and a sample

taken at 10 cm depth (lower). We collected 14 surface soil samples from the nearby forest. In

total, we had one sample of the biofertilizer and 70 soil samples (Fig 1; 28 samples from seven

sun coffee bushes, 28 samples from seven shade coffee bushes, 14 samples from a nearby

forest).

For each soil surface sample, we collected approximately three grams of soil with a spoon

that was wiped cleaned and alcohol sterilized between each sample collection. To collect the 10
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cm depth samples, we used a soil probe using sterile plastic tubes with one tube per sample. All

soil samples were placed into a sterile Whirl-Pak bag labelled with a unique ID. Soil samples

were stored in a conventional freezer until transferred on dry ice to the Center for Conserva-

tion Genomics (National Zoological Park, Washington, DC). Samples were then stored in a

-80º C freezer until we performed DNA extractions. We had permission from the US Depart-

ment of Agriculture Animal and Plant Health Inspection Service (permit # P330-17-00090) to

import the soil samples.

Molecular methods

We extracted DNA from the biofertilizer and soil samples using the Qiagen DNeasy PowerSoil

Kit by following the manufacturer’s protocol. A negative extraction control was included with

each set of extractions. We used the universal gene primer ITS86F and ITS4 [32] to amplify

the large subunit ITS2 region and 5.8S gene of fungal taxa. We performed duplicate PCR reac-

tions for each soil sample, and included negative extraction controls and negative PCR con-

trols. The 20 μl individual PCR assays consisted of 10 μl of 2x Phusion Hot Start II HF Master

Mix, 400 nM reverse primer, 400 nM forward primer, and 2 μl DNA template. PCR conditions

were 98˚C for 30 s, followed by 25 cycles of 98˚C for 10 seconds, 58˚C for 20 seconds, 72˚C for

30 seconds and a final extension (72˚C for 5 m). We performed index PCR, adding nextera-

style i5 and i7 adaptors to the PCR amplicons to uniquely identify each sample. We performed

post-PCR clean-ups between each PCR reaction using [33] Speed-beads (in a PEG/NaCl

buffer). We quantified the molarity of each final library-prepped sample, and then pooled sam-

ples in equimolar amounts [34]. We used Illumina MiSeq High-Throughput sequencing (2 x

300 bp kit) to characterize the soil fungal communities of each sample.

Sequence analysis and diversity calculations

We used QIIME 2.0 [35] to process the reads and R version 3.5.2 to calculate diversity indexes.

In QIIME, we assigned reads to samples based on unique i5s and i7s barcodes and filtered out

low quality reads using dada2 [36] with the following criteria:—p-trunc-len-f 260—p-trunc-

len-r 200—p-trim-left-f 21—p-trim-left-r 20. Sequences were then categorized into amplicon

Fig 1. System and bush sampling schematic. I & II. We randomly sampled soil from seven bushes from each of the

coffee plantation systems (shade and sun) with four sampling sites per bush. III. We randomly collected 14 soil samples

from a nearby forest. IV. Zoomed in view of II: we collected an upper drip line sample, 10 cm depth drip line sample,

upper walkway sample, and 10 cm depth walkway sample for each sun and shade coffee bush.

https://doi.org/10.1371/journal.pone.0231875.g001
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sequence variants (ASVs) via the dada2 pipeline and taxonomy was assigned by aligning ASVs

with the UNITE database (version 7) [37]. A phylogenetic tree was built using the fasttree algo-

rithm [38]. Files created in QIIME were exported and then imported into R, where all subse-

quent analyses were conducted. We examined extraction and PCR negative controls for

contamination, and found that the ASVs detected in the negative controls were unique to the

controls; those ASVs and negative extraction controls were removed from subsequent analy-

ses. We removed all ASVs that were not assigned to fungi at the kingdom level.

We first conducted a general descriptive analysis of the fungal ASVs identified from the

three systems and the biofertilizer by using the package ‘phyloseq’ to enumerate the relative

abundances of dominant fungal classes. Then, we examined mycobiome structure in two sub-

sets of the data: a sun vs. shade dataset and a sun vs. shade vs. forest dataset (Fig 1). In the sun

vs. shade dataset, the sun and shade samples were taken from multiple locations (walkway and

drip line) and multiple depths (upper and lower). In the sun vs. shade vs. forest dataset, the for-

est samples were taken only from the upper surface; in this dataset, sun and shade samples

were subset to contain only the upper surface samples, including upper walkway and drip line

samples.

We quantified alpha diversity using fungal ASV richness and Faith’s Phylogenetic Diversity

(Faith’s PD) [39]. Faith’s PD is the phylogenetic analogue of taxon richness and is expressed as

the number of tree units which are found in a sample. We quantified fungal community com-

position (beta diversity) using Jaccard and Bray-Curtis distances. We used FUNGuild [40] to

assign fungal ASVs to specific functions, which may include aiding in nutrient uptake and pro-

tecting against pathogens [41]. We uploaded an ‘OTU file’, which included taxonomic assign-

ments for each ASV to the online classifier for FUNguild. ASVs were assigned to trophic

modes (pathotrophs, symbiotrophs, and saprotrophs) if there was sufficient taxonomic infor-

mation for the ASV. We included only “probable” and “highly probable” matches (discarding

“possible” matches), and filtered for ASVs that exclusively were assigned as symbiotrophs,

pathotrophs, and saprotrophs [42].

Statistical analyses

All statistical analyses were conducted using R 3.5.2. Alpha diversity and beta diversity were

used to examine the mycobiome structure of the coffee and forest systems. Alpha diversity

consisted of overall species richness estimates and overall Faith’s PD metric as well as ASV

richness estimates for FUNGuild assigned pathotrophs, symbiotrophs, and saprotrophs. We

analyzed the sun vs. shade dataset to determine effects of system, sampling depth, and sam-

pling location on alpha and beta diversity. For alpha diversity, we used analysis of variance

(ANOVA) to determine the effects of system, sampling depth, sampling location and their

interactions on the total number of observed ASVs, Faith’s PD, and pathotroph, symbiotroph,

and saprotroph richness (in separate models). We conducted post hoc analyses for significant

terms using the Tukey’s ‘Honest Significant Difference’ (HSD) method. For beta diversity, we

used a PERMANOVA to determine the effects of system, sampling depth, sampling location

and their interactions on Jaccard and Bray-Curtis distance metrics. Prior to conducting Bray-

Curtis analyses, we performed proportion normalization on the raw sequence counts to cor-

rect for biases associated with unequal sequencing depth on this abundance-weighted metric

[43, 44]. Variation was minimal (3.7x difference in sequencing depth), so all other alpha and

beta diversity metrics should be minimally impacted by sequence coverage [43, 44]. To visual-

ize changes in ASVs and community composition (PCoA) between systems and locations, we

used the packages ‘phyloseq’ and ‘ggplot2’ [45, 46]. We then analyzed the sun vs. shade vs. for-

est dataset to determine the effect of system on alpha and beta diversity as above with system
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as the sole explanatory variable. We used the program Venny 2.1 [47] to make Venn diagrams

of shared and unique ASVs among systems. Indicator species analysis was conducted to find

the most characteristic ASVs from both the sun and shade. To do so we used the package

‘indicspecies’ with the multipatt function to identify ASVs that were almost exclusively found

in sun and shade coffee soil samples, and generally absent from the forest soil samples [48].

We identified ASVs that had scores > 0.7 for both A (specificity) and B (fidelity) indicator val-

ues [48]. We report the ASVs that could be assigned to taxonomy below the phylum level from

the QIIME2 taxonomy assignments (as reported above).

For fungal taxa with limited taxonomic information (e.g., only order level classification),

we blasted individual sequences in NCBI using BLASTN 2.9.0+. to present greater taxonomic

information. When all top matches (e-value < e-50) matched a fungus with high query cover-

age (> 99%) we recorded that fungal species as the taxonomic assignment.

Results

We generated 3,061,400 high quality sequences from 70 samples representing 6,697 fungal

ASVs and 9 fungal phyla. Average sequencing depth per biological sample was 43,734

sequences (min = 19,747, max = 73,593). The taxonomic composition of ASVs consisted pre-

dominantly of fungi in two phyla, Ascomycota and Basidiomycota. Ascomycota was repre-

sented by 4,696 ASVs and had an average relative abundance of 88.7% (SD ± 9.3) per sample.

Basidiomycota was represented by 1,135 ASVs and had an average relative abundance of 8.7%

(SD ± 8.2) per sample. The other phyla, which in total comprised less than 3% of average rela-

tive abundance per sample, included: Chytridiomycota, Entomophthoromycota, Entorrhizo-

mycota, Glomeromycota, Mortierellomycota, Mucoromycota and Rozellomycota. Within

Ascomycota and Basidiomycota, there were 8 dominant classes that were represented by> 1%

of the total sequences (Fig 2). Sordariomycetes and Dothideomycetes accounted for a large

portion of the classes found. Sordariomycetes had an average relative abundance of 45.1%

(SD ± 15.6) per sample while Dothideomycetes had an average relative abundance of 19.5%

(SD ± 11.7) per sample.

Fig 2. Class abundance of soil fungi across systems, sampling depths, and sampling locations. Eight dominant

classes were found within the Ascomycota and Basidiomycota phyla which accounted for 97.2% relative abundance of

the total sequences generated.

https://doi.org/10.1371/journal.pone.0231875.g002

PLOS ONE Shaded and sun-intensive coffee plantation fungal communities

PLOS ONE | https://doi.org/10.1371/journal.pone.0231875 April 24, 2020 6 / 19

https://doi.org/10.1371/journal.pone.0231875.g002
https://doi.org/10.1371/journal.pone.0231875


We identified 13 fungal ASVs in the biofertilizer from two fungal phyla (Table 1). For two

fungal ASVs we were unable to resolve their taxonomic assignment beyond class level. Of the

13 fungal ASVs present in the biofertilizer, seven fungal ASVs were also found in coffee soil

samples (Table 2) and only three were commonly detected in soil samples (Fig 3). We observed

one dominant fungal taxa in the biofertilizer, a Cylindrocladiella sp., only occurring in the

shade coffee system (Fig 3). The other two dominant fungal taxa present in the biofertilizer, a

Cladosporium sp. and a Dothideomycetes sp., showed little sorting among systems and were

present in most coffee soil samples (Fig 3).

Sun vs. shade dataset

We quantified the effect of system (sun and shade), sampling depth (upper and lower), sampling

location (drip line and walkway) and their interactions on alpha diversity and beta diversity.

For alpha diversity, the only significant effect on fungal ASV richness and phylogenetic diversity

was sampling location (ASV richness ANOVA, F(1,48) = 4.8, p = 0.032; Faith’s PD ANOVA, F

(1,48) = 4.2, p = 0.046). Specifically, we found higher fungal ASV richness (Fig 4A) and Faith’s

phylogenetic diversity (S1 Fig) in soil samples taken from the coffee bush drip line compared to

those taken from the walkway. Sun and shade systems had similar fungal ASV richness and

Faith’s phylogenetic diversity as did upper and lower sampling depths (ANOVAs, p> 0.05).

Average soil fungal ASV richness was 306 ASVs (Fig 4A, SD ± 88) and average Faith’s phyloge-

netic diversity was 66 tree units (S2 Fig, SD ± 15). For beta diversity, the only significant effect

on community composition was system with sun and shade coffee systems having distinct fun-

gal communities (Fig 5: Jaccard: PERMANOVA, Pseudo F = 4.6, df = 1, R2 = 7.8%, p = 0.001;

Bray-Curtis PERMANOVA, Pseudo F = 5.4, df = 1, R2 = 9.1%, p = 0.001). Sampling depth and

location did not affect community composition (PERMANOVA, p> 0.05).

We tested the effects of system, sampling depth, and sampling location on the richness of

pathotrophs, symbiotrophs, and saprotrophs (Fig 4B–4D). For pathotrophs and symbiotrophs,

the only significant effect on their richness was sampling location (drip line and walkway).

Pathotrophs and symbiotrophs richness was higher in the drip line compared to the walkway

(pathotrophs ANOVA, F(1,48) = 3.9, p = 0.055; symbiotrophs ANOVA, F(1,48) = 8.6,

p = 0.005). We found no effect of system or sampling depth on the richness of pathotrophs or

symbiotrophs (ANOVAs, p> 0.05). For saprotrophs, we found significantly higher saprotroph

Table 1. Fungal ASVs present in biofertilizer. Fungal ASVs that were detected in coffee soils are in bold. Five ASVs could be categorized into a trophic mode using FUN-

guild and our criterion for assignment: three were ‘probable’ pathotrophs (ASV ID underlined) and two were ‘probable’ saprotrophs (ASV ID italicized).

ASV ID Phylum Class Family Genus Species

76cc59efdcfe8789befb19e5544762e3 Ascomycota Dothideomycetes Cladosporiaceae Cladosporium –
ff75a588c4e4c84a13302714c9c099ef Ascomycota Dothideomycetes Cladosporiaceae Cladosporium –
07ef2bd363cbb30aa9dd6502ce5031ab Ascomycota Dothideomycetes – – –
163d9f9e5b068db5293a81186d8e8a36 Ascomycota Eurotiomycetes Aspergillaceae Aspergillus janus
dea354e5843dfbb801ab02cf52a47f6a Ascomycota Eurotiomycetes Aspergillaceae Aspergillus –
af8383f50d3fc377355ad0ae19b84da7 Ascomycota Saccharomycetes Saccharomycetales Candida parapsilosis
29bbc6dc5503c0663d8757c624d5116f Ascomycota Sordariomycetes Plectosphaerellaceae Plectosphaerella cucumerina

36446a3379af55b9a5f64437440064c3 Ascomycota Sordariomycetes Nectriaceae Cylindrocladiella –

78e8da310517f94e3b29daec7df59558 Basidiomycota Agaricomycetes Hymenochaetaceae Hymenochaete –
26a27a0b3a6843da2d387e6faa52529c Basidiomycota Agaricomycetes Meruliaceae Phlebiopsis flavidoalba
5bfcfab69aa1f8e785a7f485dcac3f33 Basidiomycota Agaricomycetes Steccherinaceae Nigroporus vinosus
5489dcd887784454bf8c527dad7c95ec Basidiomycota Malasseziomycetes – – –
b9e7c6a8da7f304821968e590e203eda Basidiomycota Malasseziomycetes Malasseziaceae Malassezia restricta

https://doi.org/10.1371/journal.pone.0231875.t001
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richness in the sun system when compared to the shade system (system effect: ANOVA, F

(1,48) = 7.8, p = 0.007), which was primarily driven by the drip line samples (system x sam-

pling location effect: ANOVA, F(1,48) = 5.9, p = 0.019). We found no effect of sampling depth

on the richness of saprotrophs (ANOVA, p> 0.05).

Sun vs. shade vs. forest dataset

We quantified the effect of system on alpha diversity and beta diversity for samples that were

collected from the upper soil surface in sun and shade coffee systems and from a nearby forest.

Table 2. Fungal ASVs from biofertilizer detected in forest and coffee soils. If the fungal ASV was detected in any sample (e.g., drip line, upper) from a coffee bush then

the fungal taxa was considered associated with that coffee bush. Two ASVs could be categorized into a trophic mode using FUNguild and our criterion for assignment: one

was a ‘probable’ pathotroph (ASV ID underlined) and one was a ‘probable’ saprotroph (ASV ID italicized).

ASV ID Taxa No. forest replicates

(n = 10)

No. shade coffee bushes associated

(n = 7)

No. sun coffee bushes associated

(n = 7)

76cc59efdcfe8789befb19e5544762e3 Cladosporium sp. 3 7 7

ff75a588c4e4c84a13302714c9c099ef Cladosporium sp. 0 0 1

07ef2bd363cbb30aa9dd6502ce5031ab Dothideomycetes sp. 3 6 6

dea354e5843dfbb801ab02cf52a47f6a Aspergillus sp. 0 1 1

36446a3379af55b9a5f64437440064c3 Cylindrocladiella sp. 10 3 0

78e8da310517f94e3b29daec7df59558 Hymenochaete sp. 0 0 1

5489dcd887784454bf8c527dad7c95ec Malasseziomycetes

sp.

0 0 1

https://doi.org/10.1371/journal.pone.0231875.t002

Fig 3. Heatmap of biofertilizer fungal taxa found in forest and coffee soils.

https://doi.org/10.1371/journal.pone.0231875.g003
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Fig 4. Boxplots of overall fungal richness and trophic mode richness by system and sampling depth. Each

subfigure is plotted with system by sample location, but the interaction was only significant for subfigure d. Coffee soil

collected in the drip line had higher a. overall fungal ASV richness, b. pathotroph richness, and c. symbiotroph

richness than coffee soil collected in the walkway, regardless of system. d. Saprotroph richness was higher in the sun

system when compared to the shade system, primarily driven by the drip line samples (interaction effect).

https://doi.org/10.1371/journal.pone.0231875.g004

Fig 5. PCoA visualizing Jaccard beta diversity patterns of sun and shade coffee systems. Coffee soil collected from

the sun-intensive system had distinct fungal communities from coffee soil collected in the traditional shade system.

https://doi.org/10.1371/journal.pone.0231875.g005
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We found that ASV richness did not differ among systems (Fig 6A: ANOVA, F(2,39) = 2.2,

p = 0.12). We found that Faith’s phylogenetic diversity differed by system (S3 Fig: ANOVA, F

(2,39) = 3.3, p = 0.048), with a trend of the forest system having higher phylogenetic diversity

than the shade system (Tukey HSD: p adj = 0.069). Average soil fungal ASV richness was 335

ASVs (Fig 6A, SD ± 90) and average Faith’s phylogenetic diversity was 72 tree units (S2 Fig,

SD ± 16). Sun, shade and forest soil samples all showed distinct fungal community composi-

tions (Fig 7: Jaccard: PERMANOVA, Pseudo F = 4.4, df = 2, R2 = 18.5%, p = 0.001; Bray-Curtis

PERMANOVA, Pseudo F = 5.8, df = 2, R2 = 23.0%, p = 0.001). Pathotroph and symbiotroph

richness was similar among sun, shade, and forest soils (Fig 6B and 6C: ANOVA, p> 0.05).

Saprotroph richness differed among the three systems (Fig 6D: ANOVA, F(2,39) = 6.4,

p = 0.004) with higher saprotroph richness in the forest than in the shade (Tukey HSD: p

adj = 0.003).

We identified fungi that were unique and shared among the sun, shade, and forest systems,

including 356 fungi found in all three (Fig 8). Sun and shade coffee soil had the most shared

ASVs (641 ASVs, 22%, Fig 8). We used indicator species analysis to identify which of those

fungi had the strongest specificity and fidelity to coffee soil indicating a likely symbiotic rela-

tionship with coffee plants. We found 20 fungal ASVs that were strongly associated with coffee

plants (Table 3). These ASVs all belonged to the Ascomycota phyla and were predominantly in

the classes Dothideomycetes and Sordariomycetes.

Discussion

Shade coffee systems provide refuge for a larger variety of macro- and micro-organisms [49,

50]. Traditional shaded coffee systems often have higher species richness in macro-organisms

Fig 6. Boxplots of overall fungal richness and trophic mode richness across sun, shade and forest systems. Similar

numbers of a. fungal taxa, b. pathotrophs and c. symbiotrophs were found in soil across systems. d. Saprotrophs

richness was higher in the forest soil than in the traditional shade coffee system, and almost higher than the sun-

intensive coffee system.

https://doi.org/10.1371/journal.pone.0231875.g006
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such as pollinators [5], amphibians [11], and birds [9, 10] than sun-intensive coffee planta-

tions. Yet, we did not detect any large differences in fungal richness between sun and shade

coffee systems nor with the coffee systems compared to the forest soil. Macro-organisms may

respond to different environmental cues than microorganisms. Cameron et al., [51] compared

aboveground biodiversity with soil biodiversity including data on macrofauna, fungi, and bac-

teria from across the globe. Areas of mismatch between aboveground and soil biodiversity cov-

ered 27% of the world’s terrestrial surface [51], and factors such as soil pH and climatic effects

likely contributed to this deviation [52]. Biodiversity patterns of soil microorganisms may not

follow the same diversity patterns as macrofauna.

Fungal community composition differed dramatically among sun coffee soil, shade coffee

soil and forest soil, and this divergence may be attributed to differences in temperature, foliage

and leaf litter and human impact. Because of their higher sun exposure, sun systems can be

approximately 6˚C higher than shade systems and forests [21]. Temperature and soil moisture

often follow an inverse relationship, with soil moisture decreasing as temperature increases

[53], and fungi tend to have optimal growth rates at around 25–30˚C [54]. However, Bárcenas-

Moreno et al., [55] found that over time, fungi could increase their temperature tolerance and

shift their optimum temperatures above the standard 30˚C. This response is likely due to a spe-

cies sorting mechanism, where genetically advantaged fungal species adapted to higher tem-

peratures outcompete less well-adapted species. This species sorting may influence the

community composition, with different fungal taxa that are better adapted for higher tempera-

tures living in sun systems, and other fungal taxa better adapted for lower temperatures living

in the shade systems. Shade systems grow coffee under a large canopy of shade trees, which

provides a layer of leaf litter [2]. Losses in aboveground biodiversity are known to directly

impact litter decomposition through the loss of specific plant-soil interactions belowground

[56]. Basidiomycota and Ascomycota, the two most predominant phyla of fungi found in our

Fig 7. PCoA visualizing Jaccard beta diversity patterns of sun, shade, and forest systems. Fungal community

composition in sun, shade, and forest systems were significantly different from one another.

https://doi.org/10.1371/journal.pone.0231875.g007
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study, include genera like Mycena and Xylaria, which are frequently studied for their ability to

decompose lignin in leaves [57]. In the forest, there is little human impact, including no fertil-

izer or other inputs, compared to coffee systems, which may explain the unique fungal com-

munity found in forest soils. Differences in temperature, leaf litter and human impact likely

contribute to fungal species sorting among systems.

We found fungal taxa that have the potential to be screened for use in biofertilizers and for

properties of plant-growth promoting fungi [58]. Specifically, we found (i) 356 fungal taxa that

occurred in both coffee systems and in the nearby forest and (i) 7 fungal taxa that occurred in

the currently used biofertilizer and in coffee soil. In the farms we sampled, farmers are already

applying an organic biofertilizer derived from forest soil to increase yields in both sun and

shade systems. We found that three of the thirteen fungal taxa in the biofertilizer were com-

monly detected in the coffee soil, suggesting that only certain fungi in the biofertilizer are effec-

tive at colonizing the soil associated with coffee plants. Alternatively, these fungi may already

occur in the soil associated with coffee plants and their presence may not be a direct result of

the biofertilizer being applied. Two of the dominant fungal taxa present in the biofertilizer, a

Cladosporium sp. and a Dothideomycetes sp., showed greater relative abundance in the coffee

soil when compared to the nearby forest where the biofertilizer is not applied, suggesting that

the biofertilizer is increasing their abundance. Some Cladosporium sp. produce gibberellins,

which play a vital role in plant growth and development, and can be considered plant-growth

Fig 8. Venn diagram of shared and unique fungal ASVs among the three systems.

https://doi.org/10.1371/journal.pone.0231875.g008
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promoting fungi (PGPF) [59]. Future work to isolate cultures of candidate PGPF and conduct

experiments on their functional capacity are warranted so that farmers looking to increase lon-

gevity of coffee in sun systems or increase coffee yields in shaded systems could inoculate soil

at the coffee drip line with PGPF to more efficiently produce coffee.

We found twenty fungal taxa that we considered coffee plant-associated fungi (found in

multiple samples in sun and shade coffee samples and almost exclusively in those samples).

Coffee plants may influence properties of the soil and nutrient pool that selects for particular

fungal taxa that are unique from those found in the forest habitat [60]. Microbial groups most

directly associated with plant roots, like mycorrhizal fungi, have been found to exhibit a higher

degree of specificity than previously supposed [61]. We also found evidence for more fungal

taxa selecting for microhabitats in the drip line of the coffee as opposed to the walkway

between two plants, supporting a fungal-coffee symbiotic relationship for many of the fungal

taxa we detected. The majority of the coffee plant-associated fungal taxa did not have matches

in sequence databases or could not be assigned to trophic mode. While some of the fungi

detected as coffee-associated and also in the biofertilizer were placed into the trophic mode of

pathotroph, these fungi are likely not active in this regard as no signs of disease were apparent

on the plants. These findings underscore that the vast fungal diversity and their function in

coffee soils is unknown.

Fungi from the ascomycete class Sordariomycetes were notably shared between the two cof-

fee systems and included orders such as Hypocreales. One of the richest sources of biocontrol

fungi have been from the order Hypocreales [62], with several strains commercially produced

such as Metarhizium (Met52, Novozymes Biologicals) used as a bioinsecticide and Tricho-
derma harzianum (T-22 HC, BioWorks) used to control soil-borne diseases. We found a

Table 3. Fungal ASVs strongly associated with the coffee bushes in both sun and shade systems and rarely found in the forest samples. All fungi belong to the Asco-

mycota phylum. We used NCBI BLASTN 2.9.0+ to present greater taxonomic information, beyond what was assigned using QIIME2 (denoted by �), if greater taxonomic

information was available. Four ASVs could be categorized into a trophic mode using FUNguild and our criterion for assignment, two were ‘probable’ pathotrophs (ASV

ID underlined) and two were ‘probable’ saprotrophs (ASV ID italicized).

ASV ID Class Order Family Genus Species

76cc59efdcfe8789befb19e5544762e3 Dothideomycetes Capnodiales Cladosporiaceae Cladosporium –
ff9300e30824b54415be132c8c6b7945 Dothideomycetes Pleosporales Cucurbitariaceae Pyrenochaetopsis leptospora
bf1ad896233b41b4951f910cbe244bc0 Dothideomycetes Pleosporales Didymellaceae Ascochyta medicaginicola

a3128a218760aeffa35ac57bce74239d Dothideomycetes Pleosporales Thyridariaceae� – –
eaef3faefb7628590db24e9b717349f5 Dothideomycetes Pleosporales� Phaeosphaeriaceae Setophoma terrestris
de5fab791fe87470ac96b582b6f9bfb1 Eurotiomycetes Chaetothyriales Herpotrichiellaceae Phialophora –
9a780fddbe0f2142527dcbe6838d9541 Eurotiomycetes Eurotiales Aspergillaceae Aspergillus� keveii
be84a77a3b0890f2b2ad468f010b3141 Eurotiomycetes� – – – –
5c789cda30cf89599923ff5170bcee74 Sordariomycetes Glomerellales Plectosphaerellaceae Plectosphaerella cucumerina

d972665f779bc48748e2beb0a9f98e4d Sordariomycetes Hypocreales Nectriaceae Bisifusarium dimerum
69cb98450ee65d6674647caf26727a27 Sordariomycetes Hypocreales Nectriaceae Fusarium� oxysporum
2da753b0cbebd0db14b45d483b41d79c Sordariomycetes Hypocreales Nectriaceae� Fusarium buharicum
bcc10feefbe0ce69b352d447ee068c67 Sordariomycetes Hypocreales Nectriaceae� Fusarium brachygibbosum
debfecf0b2bbc97869b36022741bee50 Sordariomycetes Hypocreales Nectriaceae� Fusicolla –
14c6270556c788dfe5b20516e1966e16 Sordariomycetes Hypocreales Stachybotryaceae� Albifimbria verrucaria
7a911cf0806a4d8a89c1d667d2547d28 Sordariomycetes Microascales Microascaceae� Lophotrichus fimeti
566c1c04832f880a8fb506e797b724e2 Sordariomycetes Microascales� Microascaceae – –
3a10ab3e5b3d451189268a313e7b0230 Sordariomycetes Sordariales Chaetomiaceae� Humicola fuscoatra
9c62398b8b06f42a2a2a3403a96956a8 Sordariomycetes Sordariales Sordariaceae� Sordaria conoidea
ab556a914eb0284b5c3beb81d0904c96 Sordariomycetes Sordariales� – – –

https://doi.org/10.1371/journal.pone.0231875.t003
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Cladosporium sp. (ASV ID: 76cc59efdcfe8789befb19e5544762e3) to be present in the biofertili-

zer and strongly associated with coffee plants in both shaded and sun systems elevating this

fungal taxa as a candidate for future study.

Ascomycota was the dominant phyla detected across all sample types. Either Ascomycota

ASVs were more dominant in the mixed DNA sample or this result may be an artefact of

amplification biases during PCR. However, previous research demonstrated that the primer

pair we chose outperforms other primer pairs (targeting regions in the 18S and 28S genes and

ITS1 and ITS2) in terms of efficiency and taxonomic coverage [32, 63], and that primers tar-

geting the ITS1 and ITS2 detected roughly similar proportions of Ascomycota and Basidiomy-

cota [64]. This provides support for Ascomycota being biologically dominant in the samples.

Surprisingly, we did not find a difference in fungal richness or community composition

between soil depths (surface and 10 cm depth samples). The rhizosphere, the zone that sur-

rounds the plant’s roots, is dominated by fungi that are linked to plant health and growth [65].

AM fungal communities in deep soil layers are diverse and differ from those in the topsoil

[66], and vertical stratification of soil should be taken into consideration when analyzing soil

biodiversity [67]. However, the lack of variation in richness and community composition may

be attributed to the coffee bush’s root system. Coffea arabica roots are superficial, shallow, and

extend more horizontally in comparison to other crop species [68]. Additionally, fine roots

can be found in the litter layer of coffee plantations. The coffee plants in this study were rela-

tively young at three to four years, so their roots did not extend very far vertically or horizon-

tally. Future studies could look at coffee plantations with older plants and more established

root structures to test for differences between surface and lower depth samples.

One of the most devastating issues crop farmers across the world face today is yield losses

due to diseases caused by fungal pathogens. To combat pathogens in other crops and plant spe-

cies, researchers have successfully identified antagonistic microbes as biological controls to tar-

get the disease-causing pathogens [69]. For instance, Xue et al., [30] found that the application

of the bacteria Bacillus (dominant in disease-suppressive soil) altered the rhizo-bacterial com-

munity and helped to decrease pathogen colonization by Panama disease (Fusarium oxy-
sporum f. sp. cubense) in the banana rhizosphere. Coffee leaf rust and coffee wilt disease

(tracheomycosis) are the two primary fungal pathogens affecting coffee plants across Africa

and Central and South America. While there is currently no known cure for these diseases,

researchers tested various strains of rhizobacteria isolates and found the first evidence of cof-

fee-associated rhizobacteria having antagonistic effects on fungal coffee pathogens [70]. Using

symbiotic fungi to promote plant growth and fight infection has the potential to shift current

coffee practices from using harmful chemical pesticides to more ecologically friendly microbial

inoculates. Our study offers insight into the diversity and distribution of fungi in coffee soil

laying the groundwork for more directed studies on fungi (such as Cladosporium sp. [ASV ID:

76cc59efdcfe8789befb19e5544762e3]) that can contribute to plant growth promotion and dis-

ease resistance.

Over the past 20 years, researchers at the Smithsonian Migratory Bird Center (SMBC) have

assessed the biological impact of shade cover in coffee versus sun-intensive plantations. These

efforts have highlighted that traditional shade coffee systems provide viable habitat for taxa

like birds, insects and mammals, including the early studies by Greenberg, which was the basis

for the SMBC’s creation of a shade certification for coffee—the Bird Friendly program (si.edu/

smbc). This research has also focused on the socio-economic benefits of coffee agroforestry

systems—in particular the non-coffee products like fruits and wood that farmers can use or

sell [71–73]. More recently, the ability of a shaded system to combat a number of the chal-

lenges that coffee farmers face due to climate disruption/change has also been discussed [72].

A multi-country effort to determine which shade trees used by producers yield the most food
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resources in the form of fruits and/or insects has begun to identify those trees species that

could help enhance the ecological health of coffee agroforestry systems [74]. The findings of

the present study reveal that fungal communities also differ between sun and shade coffee

plantations, with many symbiotrophs living in coffee soil, which have the potential to be used

as probiotic inoculants to increase crop yields in the agroforestry system. Together, these stud-

ies—whether focusing on the soil mycobiome or the habitat dimensions of the shade coffee

site—add to our general knowledge of how these agroforestry systems can potentially aid cof-

fee farmers with interest in enhancing the sustainable aspects of their holdings.
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