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Abstract. Autoimmune diseases (AIDs) are characterized 
by dysfunction and tissue destruction, and recent studies 
have shown that interleukin (IL)‑37 expression is dysregu‑
lated in AIDs. Among cytokines of the IL‑1 family, most 
are pro‑inflammatory agents, and as an anti‑inflammatory 
cytokine, IL‑37 may have the potential to alleviate excessive 
inflammation and can be used as a ligand or transcription 
factor that is involved in regulating innate and adaptive 
immunity. IL‑37 plays important roles in the development of 
AIDs. This review summarizes the biological characteristics 
and functions of IL‑37 and discusses the potential of IL‑37 

as a therapeutic target for effective cytokine therapy and as a 
biomarker in AIDs.

Contents

1. Introduction
2. Biological characteristics of IL‑37
3. Biological functions of IL‑37
4. IL‑37 and AIDs
5. Outlook

1. Introduction

The interleukin (IL)‑1 family of cytokines plays a major role in 
regulating the expression of genes related to inflammation in 
autoimmune diseases (AIDs) (1,2). IL‑37 is also known as IL‑1 
family member 7 (IL‑1F7), IL‑1H4, and IL‑1RP1. It is a novel 
anti‑inflammatory cytokine with immunomodulatory effects. 
Specifically, it reduces the production of anti‑inflammatory 
cytokines and thereby inhibits the inflammatory and immune 
responses by reducing the production of anti‑inflammatory 
cytokines. IL‑37 functions in three ways, i.e., by reducing 
the synthesis of pro‑inflammatory cytokines, by lowering 
the expression of transcriptional cytokines, and by inhib‑
iting the activation of kinase signaling (3,4). The aim of the 
present review was to summarize the immunomodulatory 
roles of IL‑37, as well as relevant clinical studies based on the 
protective mechanisms of IL‑37 in AIDs in order to develop 
therapeutic strategies for treatment of AIDs.

2. Biological characteristics of IL‑37

Structure. IL‑37, commonly known as IL‑1F7, is a member 
of the IL‑1 family of cytokines identified ten years ago (5). 
The IL‑37 gene located at 2q12‑q14.1 on chromosome 2, is 
typically composed of seven exons (6). There are five basic 
subtypes of IL‑37, including IL‑37a, IL‑37b, IL‑37c, IL‑37d, 
and IL‑37e. Exons 3, 4, 5, and 6 encode IL‑37a. IL‑37b is 
encoded by exons 1, 2, 4, 5, and 6, while IL‑37c is encoded by 
exons 1, 2, 5, and 6. Exons 1, 4, and 6 encode IL‑37d. IL‑37e 
is encoded by exons 1, 5, and 6 (7). It has been suggested that 
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structural alterations induced in response to caspase‑1‑medi‑
ated cleavage are responsible for the production of a variety 
of IL‑37 subtypes (8‑10). The action of IL‑37 is mediated 
by a β‑barrel structural unit in its secondary structure. The 
12‑β‑strand‑containing proteins may be formed by amino acid 
sequences encoded by exons 4, 5, and 6 of IL‑37a, IL‑37b, and 
IL‑37d (9,11). The 12‑hypothetical β‑strand structural units that 
constitute the primary secondary β‑trefoil structure of IL‑37 
are responsible for the function of the protein. Other members 
of the IL‑1 family have a similar barrel structure, which is 
intimately connected to the binding of the IL‑1 receptor (12). 
This construct has been shown to be intimately involved in 
IL‑1 receptor binding. Despite possessing the same β‑trefoil 
secondary structure, differential regulation of signaling down‑
stream of the receptor dictates differences in the activity of 
other cytokine members of the IL‑1 family (10,13). However, 
further studies are required to reveal the detailed structural 
basis of this phenomenon.

An additional structural feature of IL‑37 is its existence 
as a dimer (homodimer). It has been shown that this struc‑
ture is found mostly in the IL‑37b subtype. A symmetrical 
head‑to‑head IL‑37b homodimer interface is created by the 
β3‑β4 loops and β‑trefoil sheet (β2‑β3‑β11) of each subunit. 
This dimer is a negative regulator of IL‑37 activity, and the 
formation of such dimers weakens the anti‑inflammatory 
effect of extracellular IL‑37 (14). It is possible that the binding 
of the homodimer to the IL‑1 receptor is due to the formation 
of the 12‑β‑trefoil structure (15).

Distribution, expression, and release. IL‑37 is widely 
expressed in multiple human tissues and organs, including the 
skin, heart, kidney, gut, lymph node, thymus, bone marrow, 
lung, testis, placenta, and uterus (16). However, the expression 
of distinct subtypes differs according to the specific tissues 
and organs involved. Under physiological conditions, IL‑37a 
is mostly found in the lymph nodes, thymus, bone marrow, 
placenta, colon, lung, testicles, and brain, whereas IL‑37b is 
mainly found in the peripheral blood, lymph nodes, placenta, 
colon, lung, testicles, and kidney. IL‑37c is mostly expressed 
in the lymph nodes, placenta, colon, lung, testis, and heart, 
whereas IL‑37d is predominantly expressed in the testis, bone 
marrow, blood system, umbilical cord tissue, and adipose 
tissue mesenchymal stem cells. The testicles and bone marrow 
are the primary sites of IL‑37e expression. Cells from the 
aforementioned tissues may express IL‑37 in a number of 
ways; for instance, monocytes, macrophages, B cells, plasma 
cells, endothelial cells, and skin keratinocytes are all capable 
of producing IL‑37 (17,18).

IL‑37 is expressed at low levels under physiological 
conditions, but can be upregulated in response to inflamma‑
tory stimuli and pro‑cytokines. For example, IL‑37 is mainly 
produced by macrophages in response to Toll‑like receptor 
(TLR) activation (19), and lipopolysaccharide (LPS) can induce 
the expression of IL‑37 in RAW264.7 mouse macrophage 
cells (20). Triptolide has been found to facilitate the expres‑
sion of IL‑37 in THP‑1 cells through activation of the p38 and 
extracellular regulated protein kinase (ERK)1/2 pathways (21).

In different cells, such as peripheral blood mononuclear 
cells (PBMCs), RAW‑IL‑37 cells, dendritic cells (DCs), 
epithelial cells, endothelial cells, and T cells, IL‑37 can be 

upregulated by various pro‑inflammatory cytokines, such as 
tumor necrosis factor‑α (TNF‑α), interferon‑γ (IFN‑γ), IL‑1β, 
transforming growth factor‑β1 (TGF‑β1; low concentrations), 
IL‑4, and IL‑6 (22). IL‑12, IL‑32, and granulocyte‑macrophage 
colony‑stimulating factor (GM‑CSF) are known to limit IL‑37 
production (5). In vivo evidence has shown that IL‑37 can block 
the activity of Th1/Th2/Th17 cells via PBMCs, M1 macrophages, 
and DCs (23,24), while activating the function of Tregs (25,26). 
However, specific signaling pathways remain poorly understood.

3. Biological functions of IL‑37

IL‑37 primarily reduces innate and acquired immune responses 
through intracellular and extracellular inhibition by reducing 
the secretion of pro‑inflammatory chemokines (11,27). IL‑37 
is a transcription factor that can be used to regulate gene 
expression in cells. Caspase‑1 cooperates with the signal 
transduction protein Smad3 to regulate its transcription (17).

The IL‑37a mRNA splicing site is positioned at the 
N‑terminus of the amino acid sequence encoded by exon 3, 
which is located at the end of the exon. IL‑37d also encodes 
the 12‑β‑strand‑containing protein structure as it comprises 
exons 1, 4, 5, and 6, while IL‑37b encodes a transcript 
variant containing exons 1 and 2, and includes an N‑terminal 
pro‑domain that comprises a potential caspase‑1 cleavage 
site (28). Caspase‑1 is primarily responsible for IL‑37 splicing. 
Following translation, IL‑37 exists in the form of an immature 
precursor peptide, which is subsequently cleaved by caspase‑1 
between amino acid residues D20 to E21 encoded by exon 1 
of IL‑37. This cleavage leads to the formation of active IL‑37. 
Only mature IL‑37 can perform biological tasks both extracel‑
lularly and intracellularly (8).

IL‑37 binds to Smad3, dimers of which eventually enter 
the nucleus. Complexes formed in the cytoplasm by mature 
IL‑37 and phosphorylated activated Smad3 translocate into 
the nucleus, where they are involved in regulating transcrip‑
tional activity (8,29). In response to the interaction between 
IL‑37 and Smad3, the production of protein tyrosine phospha‑
tases (PTPNs), which can prevent the activation of tyrosine 
phosphorylation‑dependent signaling pathways, may be 
increased. PTPNs have been shown to inhibit a number of 
inflammation‑ and immune‑related pathways, including ERK, 
mitogen‑activated protein kinase (MAPK), c‑Jun N‑terminal 
kinase (JNK), phosphatidylinositol‑3‑kinase (PI3K), nuclear 
factor‑κB (NF‑κB), and signal transduction and activator 
of transcription (STAT)3 (17). IL‑37/Smad3 complexes can 
compete with Smad2/3/4 complexes to reduce the phos‑
phorylation of Smad2 and Smad4, allowing them to perform 
additional biological functions in the nucleus. However, the 
specific regulation remains to be elucidated (12).

The primary function of IL‑37, an anti‑inflammatory 
cytokine, is the secretion of proteins to the exterior of cells, 
which act as ligands for a functional receptor structure on the 
target cell membrane. The β‑barrel structure of IL‑37b binds 
to the α chain of the IL‑18 receptor (IL‑18R) and reduces the 
production of inflammatory mediators (30). Similar to IL‑18, 
IL‑37 is capable of non‑competitively binding to the receptors 
IL‑18Ra and IL‑18BP to create trimeric complexes, which may 
then activate downstream transduction signals, such as the 
NF‑κB, the mammalian target protein of rapamycin (mTOR), 
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MAPK, ERK, AMP‑dependent protein kinase (AMPK), and 
STAT3/6 signaling pathways (11,31,32). IL‑37 also promotes 
the activation of M2 macrophages and tolerogenic DCs by 
downregulating MHC Class II, CD40, and CD86 (33). These 
aforementioned studies indicated that IL‑37 may regulate 
immunosuppressive responses by downregulating the expres‑
sion of DC costimulatory molecules.

Formation of triplex complexes is critical for the 
anti‑inflammatory effects of IL‑37 and can coordinate innate 
immune responses by inducing the activation of myeloid 
differentiation factor 88 (MyD88) (34). IL‑37 is not expressed 
in mice. Transgenic human IL‑37 (hIL‑37tg) and wild‑type 
(WT) mice are widely used as animal models to investigate 
IL‑37 pathology (10).

IL‑37 forms a complex with IL‑18Rα and IL‑1R8 (previ‑
ously TIR8 or SIGIRR), which can markedly reduce the 
anti‑inflammatory activity of IL‑37, indicating that the 
formation of the IL‑37 receptor complex is required for IL‑37 
to fulfill its biological activities (35,36). Furthermore, IL‑37 
negatively regulates inflammatory responses in the innate 
immune system by downregulating IL‑1 receptor‑associated 
kinase 1 (IRAK), phosphatase and tensin homolog (PTEN), 

TNF receptor‑associated factor 6 (TRAF6), NOD‑like 
receptor family pyrin domain containing 3 (NLRP3), mTOR, 
and thymic stromal lymphopoietin (TSLP), and decreasing the 
levels of reactive oxygen species (ROS) (37,38).

Currently, there is no evidence linking IL‑37 to autophagy. 
However, the potential role of IL‑37 in autophagy is currently 
unknown, although certain studies have revealed a potential 
link between them. IL‑37 enhances autophagy and induces 
metabolic reprogramming by reducing mTOR expression and 
increasing the AMPK levels, resulting in changes in the cellular 
redox state, or by increasing oxidative phosphorylation (39,40). 
IL‑37 may be involved in the progression of lung fibrosis by 
inhibiting TGF‑β1 signaling and enhancing autophagy (41). 
IL‑37/IL‑1R8 exerts a pseudo‑starvation effect on mTOR (36). 
The molecular mechanisms of IL‑37‑mediated autophagy also 
require investigation, and may provide new insights into the 
development of IL‑37‑mediated immunotherapy (Fig. 1).

4. IL‑37 and AIDs

Accumulating evidence shows that the expression of IL‑37 
is closely related to various AIDs such as rheumatoid 

Figure 1. Role of IL‑37 regulation of immunity. IL‑37 has significant anti‑inflammatory, anticancer, immuno‑suppressive, and metabolic regulatory effects. 
IL‑37 binds to IL‑18Ra or IL‑18BP, which can enhance inhibition of IL‑18 and reduce inflammation. The homodimer of IL‑37 is a negative regulator of 
extracellular anti‑inflammatory activity. IL‑37 is translocated to the nucleus after being processed by caspase‑1, and precursor IL‑37 is processed into mature 
IL‑37. Complexes formed by mature IL‑37 and phosphorylated activated Smad3 in the cytoplasm undergo nuclear translocation into the nucleus, where they 
play a role in regulating transcriptional activity. PTPNs are activated and numerous related inflammatory and immune pathways are inhibited, including ERK, 
MAPK, JNK, PI3K, NF‑κB, and STAT3. IL‑37 binds to its receptor IL‑18Rα, recruiting the co‑receptor IL‑1R8 to form the IL‑37/IL‑18Rα/IL‑1R8 complex 
at the plasma membrane induced by inhibiting MyD88‑dependent signaling. IL‑37 negatively regulates inflammatory responses in the innate and acquired 
immune system by downregulating IRAK, PTEN, ROS, TRAF6, NLRP3, mTOR, TSLP, MHC‑II, and CD86. IL‑37 acts as an anti‑inflammatory cytokine by 
decreasing the production of pro‑inflammatory cytokines and chemokines. IL‑37 enhances autophagy and induces metabolic reprogramming by reducing the 
expression of mTOR and increasing the AMPK levels. However, molecular mechanisms of IL‑37‑mediated autophagy remain unknown. IL‑18Ra, α‑subunit of 
IL‑18 receptor; IL‑18BP, IL‑18 binding protein; PTPNs, protein tyrosine phosphatases; ERK, extracellular signal‑regulated kinase; MAPK, mitogen‑activated 
protein kinase; JNK, c‑Jun N‑terminal kinase; PI3K, phosphatidylinositol‑3‑kinase; NF‑κB, nuclear factor‑κB; STAT, signal transduction and activator of 
transcription; MyD88, myeloid differentiation factor 88; IRAK, interleukin‑1 receptor‑associated kinase 1; PTEN, phosphatase and tensin homolog; ROS, 
reactive oxygen species; TRAF6, TNF receptor‑associated factor 6; NLRP3, NOD‑like receptor family pyrin domain containing 3; mTOR, mammalian target 
of rapamycin; TSLP, thymic stromal lymphopoietin; AMPK, AMP‑dependent protein kinase. 
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arthritis (RA), systemic lupus erythematosus (SLE), 
Sjögren's syndrome (pSS), ankylosing spondylitis/spon‑
dyloarthritis (AS/SpA), vasculitis, gout, and osteoarthritis 
(OA) (Table I).

IL‑37 and inflammatory joint disease. Inflammatory arthritis 
(IA) is a prevalent joint inflammatory illness, in addition to 
RA, OA and spondyloarthritis (42).

RA. RA is a chronic inflammatory disease that can cause irre‑
versible joint damage and physical disability. It can involve the 
skin, eyes, lungs, heart, and blood vessels (43).

As previously reported, the amount of IL‑37 in normal 
human plasma and bodily fluids is exceedingly low, but is 
markedly increased in the synovial fluid, serum, and PBMCs 
of patients with RA (24,44‑55). Increased IL‑37 levels in the 
serum are positively associated with inflammatory markers 

Table I. IL‑37 in autoimmune disease.

Disease Role of IL‑37 (Refs.)

RA Associated with proinflammatory factors, TLR4 (44,45,47,49‑51)
 Associated with disease activity (44‑46,49,51‑53)
 Associated with activated T cell function (46)
 Associated with bone loss (49)
 Inhibits RAFLS proliferation and migration; induces RAFLS apoptosis by inhibiting the (54)
 STAT3 pathway 
AS/SPA Associated with bone density (63)
 Associated with disease activity (63,64)
GOUT Associated with proinflammatory factors (67,70)
 Associated with disease activity (67,69)
 Associated with tophi forming, kidney deterioration (67)
 rhIL‑37 suppressed MSU‑induced innate immune responses by enhancing expression of (68)
 Smad3 and IL‑1R8 to trigger multiple intracellular switches to inhibit NLRP3 and the
 activation of SOCS3 
 Reduces the transcription of pyrophosphate‑related proteins and release of inflammatory (70)
 cytokines by enhancing phagocytosis of MSU, protects mitochondrial function, and
 mediates metabolic reprogramming in THP‑1 cells treated by MSU, which depended on
 the mediation of GSK‑3 β
OA Associated with VAS (75,76)
 Affects M1/M2‑like macrophage polarization (75)
 Associated with proinflammatory factors (76,78)
 rhIL‑37 may regulate the key downstream target MMP‑3 (78)
SLE Associated with disease activity (SLEDAI) (80,82,83)
 Associated with kidney damage and skin lesion. (80,83)
 Associated with Asian race (81)
 Associated with proinflammatory factors (82)
 Negatively correlated with C3/C4, and antibodies (83,84)
 Associated with C3 (84)
PSS Associated with RF, antibodies, proinflammatory factors (87)
BD Negatively correlated with inflammatory response (89‑91)
 rhIL‑37 may reduce the levels of TSLP in vitro (92)
ITP Positive correlate with the platelet count (95)
 Positive correlate with proinflammatory factors (96,97)
MS Act as a part of a feed‑back loop to control underlying inflammation (99)
 Positive correlate with disease activity (99,100)
 Regulate autophagy, apoptosis (101)

RA, rheumatoid Arthritis; TLR, Toll‑like receptor; RAFLS, fibroblast like synoviocytes; AS, ankylosing spondylitis; SPA, spondyloarthropathy; 
MSU, monosodium urate; NLRP3, NOD‑like receptor family pyrin domain containing 3; SOCS3, suppressor of cytokine signaling 3; OA, 
osteoarthritis; VAS, visual analogue scale; MMP3, matrix metalloproteinase‑3; SLEDAI, systemic Lupus Erythematosus Disease Activity 
Index; C, complement; PSS, primary Sjögren's syndrome; BD, Behcet's disease; RF, rheumatoid factor; TSLP, thymic stromal lymphopoietin; 
ITP, immune thrombocytopenic purpura; MS, multiple sclerosis.
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[erythrocyte sedimentation rate (ESR) and C‑reactive 
protein (CRP)], rheumatoid factor (RF), anti‑cyclic citrul‑
linated peptide antibody (anti‑CCP), disease activity score‑28 
(DAS28), bone loss, and pro‑inflammatory cytokine expres‑
sion (IL‑6, IL‑18, IL‑4, IFN‑γ, IL‑17A).

The proportion of CD3+ CD26+ T cells is associated with 
disease activity, implying that IL‑37 levels are positively 
correlated with activated T lymphocytes (46). It has been 
shown that IL‑37 affects the activity and phenotype of DCs 
and suppresses the inflammatory responses mediated by 
Th17 and IL‑17 in RA, while failing to inhibit Th‑17 cell 
differentiation (24). In a study involving 70 patients with 
juvenile idiopathic arthritis (JIA), serum/synovial IL‑37 
levels and IL‑37 mRNA expression in PBMCs were positively 
associated with disease activity and angiogenesis indicators 
[including vascular endothelial growth factor (VEGF) and 
VEGF receptors] (56).

A previous study indicated that angiogenesis is a crucial 
mechanism for the proliferation of synovial tissue and the 
formation of invasive pannus in the early onset of RA (57), 
and is associated with the regulation of VEGF and angio‑
genesis inhibitors. The inflammatory response of the RA 
synovial tissue is triggered by stimuli. Local macrophages 
and fibroblasts also respond to produce pro‑inflammatory 
cytokines, which can modulate the expression of adhesion 
molecules, matrix metalloproteinases (MMPs), chemokines, 
TLRs, and growth factors that are important at different 
stages of angiogenesis (58). VEGF is a cytokine that acts on 
the vascular endothelium of the synovium, promotes angio‑
genesis, and binds to cognate receptors on endothelial cells 
(ECs), thereby activating these cells to produce greater levels 
of proteolytic enzymes. VEGF expression in the synovial 
tissue is regulated by angiogenesis (59). Redox signaling 
is closely associated with angiogenesis and can alter the 
angiogenic response of synovial cells. Downregulation of 
hypoxia‑inducible factor‑1α (HIF‑1α) significantly reduces 
angiogenesis in VEGF‑induced rheumatoid arthritis 
fibroblast‑like synoviocytes (RAFLS) in macrophages of 
the synovial lining (60). Multiple studies have shown that 
blocking angiogenic pathways may reduce inflammatory cell 
infiltration and damage to joints (61,62). In animal models 
of RA, prophylactic treatment with anti‑VEGF antibodies 
delays the onset, joint swelling, and vascularization in 
collagen‑induced arthritis (CIA) (63). Inhibition of angiogen‑
esis has emerged as a new option for the treatment of RA in 
recent years, and numerous drugs targeting RA angiogenesis 
have been developed (64).

In an in vitro study, recombinant IL‑37 (rhIL‑37) was used 
to stimulate PBMCs in RA patients. It was discovered that 
rhIL‑37 considerably decreased the levels of TNF‑α, IL‑17, 
and IL‑6 in RA patients (48).

The role of IL‑37 single nucleotide polymorphisms 
(SNPs) in RA is debatable. A Chinese RA population study 
revealed that IL‑37 rs3811047 is positively associated with 
disease activity, indicating that the prognosis of RA patients 
with various IL‑37 genotypes varies (65). Two other studies 
involving a Han RA population revealed that no genotypes 
were associated with RA susceptibility (66,67). In future, it 
is important to expand sample sizes and ethnic diversity to 
identify distinct IL‑37 phenotypes in patients with RA.

Collectively, IL‑37 may be presented as a novel biomarker 
for predicting and monitoring disease severity/therapeutic 
targets in RA by reducing inflammation.

AS/SPA. AS/SPA is a chronic inflammatory illness that affects 
the sacroiliac joints, spine bony processes, paraspinal soft 
tissues, and peripheral joints, with extra‑articular symptoms 
occurring in certain cases (68).

The level of IL‑37 in the serum and PBMCs of patients 
with AS was revealed to be higher than that in healthy 
controls (HCs), and was was associated with ESR, CRP, Bath 
Ankylosing Spondylitis Disease Activity Index (BASDAI), 
Ankylosing Spondylitis Disease Activity Score (ASDAS), and 
bone density. It was found that IL‑37 can inhibit the expres‑
sion of pro‑inflammatory cytokines (TNF‑α, IL‑6, IL‑17, and 
IL‑23) in PBMCs of patients with AS, indicating a potential 
anti‑inflammatory role of IL‑37 in AS (69,70). RhIL‑37 can 
significantly reduce LPS‑stimulated PBMC proliferation and 
IL‑6, IL‑17, IL‑23, and TNF‑α production (70).

The A/G frequency of IL‑37 rs3811047 in AS patients 
is significantly different from that observed in the general 
population, and there is a link between this and alcohol 
consumption (71). As it is related to the susceptibility to AS in 
the Han population, IL‑37 A/G rs3811047 could be regarded as 
an independent risk factor.

In conclusion, the aforementioned studies suggested that 
IL‑37 plays significant roles in the development of AS/SPA. 
IL‑37 may be used as a predictive biomarker for AS, as well as 
to assess the degree of inflammation and bone loss.

Gout. Gout is caused by the precipitation of monosodium urate 
(MSU) crystals within joints and soft tissues that can progress 
to acute or chronic arthritis (72). Consequently, a negative 
feedback mechanism for MSU‑induced inflammation may be 
present. IL‑37 has been identified as a potential anti‑inflam‑
matory agent in response to MSU. However, the association 
between IL‑37 and clinical markers and pro‑inflammatory 
mediators in individuals with gout is not fully understood.

Several studies have shown that IL‑37 expression is 
increased in PBMCs of patients with gout (73‑75), and is posi‑
tively correlated with ESR, CRP, tophi formation, and platelet 
counts.

Different doses of MSU have been shown to elicit 
dose‑dependent overexpression of IL‑37 protein and mRNA 
in PMBCs in vitro (75).

The mRNA level of pro‑IL‑37 in PBMCs from patients with 
acute gout (AG) was significantly higher than that in non‑AG 
(NAG) PBMCs, indicating that IL‑37 may act as a suppressor 
of MSU‑induced inflammation. Additionally, this study 
demonstrated that rhIL‑37 inhibited MSU‑induced innate 
immune responses by increasing the expression of Smad3 and 
IL‑1R8, both in vitro and in vivo. IL‑37 controls MSU‑induced 
inflammation, in part through a MERTK‑dependent signaling 
pathway (74). IL‑37 inhibits gout inflammation and exerts its 
effects in vitro by altering macrophage function (76).

Therefore, rhIL‑37 has both preventive and therapeutic 
effects on gout, and the suppressive effect of IL‑37‑mediated 
inflammation may partially depend on the activation of 
MERTK (74,77). Recombinant human PDZ domain 1 protein 
(PDZK1) is a cytoskeletal protein expressed in renal tubular 
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epithelial cells that interacts with a variety of uric acid trans‑
porters to control uric acid. A previous study revealed that the 
transcription of PDZK1 expression stimulated with various 
concentrations of IL‑37 may regulate uric acid metabolism 
through the NF‑κB signaling pathway in HK‑2 cells (78).

Using a molecular inversion probe sequencing technique, 
four unusual IL‑37 variations were detected in 675 individuals 
with gout. It is possible that carriers of p.(N182S) (rs752113534) 
are at a higher risk of developing gout and undergo early onset 
of disease (79).

These studies revealed that IL‑37 may be a potentially 
valuable treatment option for patients with chronic gout, espe‑
cially those with tophi and kidney damage.

OA. OA is one of the most frequent degenerative joint disor‑
ders that affects people globally (80). A link between the 
expression and function of IL‑37 and OA remains unclear. 
IL‑37 levels are elevated in the blood, synovial fluid, synovial 
cells from lesions, and chondrocytes of patients with OA. 
In addition, in patients with OA, IL‑37 levels are favorably 
linked with ESR, CRP, visual analog scale (VAS) pain score, 
as well as other variables (81,82). Luo et al determined that 
IL‑37a and IL‑37b receptors are overexpressed in chondro‑
cytes from patients with temporomandibular joint (TMJ) 
OA. IL‑1R8 is required for IL‑37b to exert anti‑inflamma‑
tory effects on the TMJ. The therapeutic potential of IL‑37b 
in the treatment of TMJ inflammation was also elucidated, 
suggesting that targeting the IL‑37 pathway may provide a 
novel therapeutic strategy for treating inflammation in OA 
patients. RhIL‑37b has also been shown to decrease the 
expression of inflammatory cytokines in the TMJ, which is 
associated with reduced inflammation and subchondral bone 
loss (81).

Ding et al revealed that IL‑37 was significantly upregulated 
in erosive osteoarthritis (EIOA) [compared to primary gener‑
alized osteoarthritis (PGOA) and HCs], and that the release 
of pro‑inflammatory cytokines in synovial cells treated with 
IL‑37 was significantly inhibited in vitro (82).

Another study, using immunohistochemical assays 
revealed that the IL‑37 protein was dysregulated in human OA 
chondrocytes, which could inhibit osteoclast differentiation 
directly (83). Overexpression of IL‑37 in a model of adeno‑
virus construct (ad‑IL‑37)‑induced OA resulted in reduced 
levels of IL‑1, IL‑6, IL‑8, and MMP3 (84). MMP3 may be a 
critical downstream target of rhIL‑37 when interfering with 
cartilage breakdown.

These studies indicated that IL‑37 may prevent cartilage 
deterioration in individuals with OA. The presence of IL‑37 
may be a useful marker to distinguish EIOA from PGOA. It is 
anticipated that rhIL‑37 will serve as a new therapeutic option 
for individuals with specific types of OA.

IL‑37 and SLE. SLE is an autoimmune disease involving 
the activation of autoreactive B cells and the dysregulation 
of numerous other types of immune cells, including CD4+ 
T cells, DCs, macrophages, and neutrophils. SLE is highly 
heterogeneous in its various presentations and is characterized 
by multiple organ damage (85). The level of IL‑37 in the serum, 
plasma, and PBMCs of SLE patients is elevated, and has been 
shown to be positively correlated with SLE disease activity 

index (SLEDAI) scores (especially renal disease activity), 
the degree of kidney and skin damage, and the levels of 
pro‑inflammatory cytokines (IL‑6, IL‑18, and IFN‑γ) (86‑90). 
The opposite was observed in other studies, which found that 
the amount of IL‑37 was negatively correlated with the level 
of complement proteins (89) and the levels of anti‑Sm and 
anti‑RNP antibodies (90). This may be attributed to the differ‑
ence in sample sizes and cohorts.

Treatment with prednisone (1 mg/kg/day for 14 days) 
substantially decreased plasma IL‑37 expression in SLE 
patients (88). RhIL‑37 may play an essential role in SLE patho‑
genesis by modulating pro‑inflammatory pathways in PBSCs 
from patients with SLE in vitro (89). Therefore, the level 
of IL‑37 in Asian patients with SLE may serve as a marker 
of disease activity. Three IL‑37 SNP variants (rs2723186, 
rs2723176, and rs4364030) may also be associated with SLE 
susceptibility (91).

IL‑37 may play an important role in the inhibition of SLE 
pathogenesis. Thus, it is expected to serve as a diagnostic and 
prognostic tool. Further studies are required to identify the 
mechanisms underlying IL‑37 regulation during the mediation 
of immune reactions in SLE.

IL‑37 and pSS and Behçet's disease (BD). pSS is an autoim‑
mune disease characterized by focal lymphocytic infiltration 
of exocrine glands such as the salivary and lacrimal glands. 
Inflammatory response immune aberrations underlying pSS 
are mediated by B and mast cells (MCs) (92). Liuqing et al 
revealed that patients with pSS have increased IL‑37 expression 
compared to HCs; IL‑37 expression was positively correlated 
with disease activity and RF, IL‑4, and IL‑12 levels (93). 
Treatment with IL‑37 may reduce glandular inflammation and 
decrease systemic inflammatory responses.

BD is a multisystem disorder characterized by primary 
vasculitis of unknown etiology. Vasculitis and thrombotic 
events are the most common causes of death (94). Currently, 
only a few studies have examined the association between 
IL‑37 levels and BD. According to a previous study, the level 
of IL‑37 in the cerebral fluid of patients with neuro‑BD (NBD) 
was increased and positively linked with the level of TGF‑β, 
indicating that IL‑37 may be a significant NBD biomarker (95).

Ye et al revealed that the amount of IL‑37 in the PBMCs 
of patients with active BD was considerably lower than that 
in patients from the HC group. When DCs were stimulated 
with rIL‑37, the production of IL‑6, IL‑1, TNF‑α, and ROS 
was reduced. These stimulated DCs prevented the activation 
of ERK1/2, JNK, and P38 MAPK (96). Treatment of patients 
with corticosteroids is associated with increased IL‑37 expres‑
sion (97).

TSLP is upregulated during the acute phase of BD, and is 
associated with skin lesions. It has been shown that rhIL‑37 
may reduce the levels of TSLP in vitro (98). Patients with BD 
tend to develop ophthalmia. An IL‑37 SNP (rs3811047) and 
IL‑18RAP SNP (rs2058660) have been shown to be associ‑
ated with susceptibility to BD onset (1,063 cases) instead 
of Vogt‑Koyanagi‑Hrada (VKH) uveitis (419 cases) in a 
case‑control study involving the Chinese Han population (99).

IL‑37 alters immune dysregulation in pSS and BD. It can 
be considered as a new biomarker with potential therapeutic 
application.
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IL‑37 and immune thrombocytopenia (ITP). ITP is an autoim‑
mune disorder characterized by isolated thrombocytopenia 
(platelet count <100x109/l), in the absence of other causes and 
disorders that may be associated with thrombocytopenia (100).

Thus, IL‑37 may be involved in ITP pathogenesis. Current 
studies suggest that IL‑37 levels are elevated in the PBMCs 
or serum of patients with ITP (101‑103). Serum IL‑37 levels 
and IL‑18Rα+/CD4+ T‑cell ratios are negatively correlated 
with PLT counts (102). IL‑37 expression is significantly higher 
in patients with active ITP, and can regulate the expression 
of several cytokines to exert anti‑inflammatory effects (103). 
In terms of the possible mechanisms involving IL‑37 in the 
pathogenesis of ITP, it is speculated that IL‑37 may promote 
Th2 cell function by influencing cytokine expression and 
inhibiting the immune response effects of Th1 and Th17, 
thereby alleviating the inflammatory responses. This may 
account for elevated IL‑37 expression in patients with active 
ITP. Thus, IL‑37 may represent an important factor for ITP 
diagnosis and treatment. Furthermore, rhIL‑37 may exert 
therapeutic effects with respect to refractory ITP.

IL‑37 and multiple sclerosis (MS). MS is one of the most 
prevalent neurological dysfunctions and is an autoimmune 
disease that affects the central nervous system (CNS), often 
leading to severe physical or cognitive loss and neurological 
problems in patients (104).

Studies have shown that IL‑37 is aberrantly expressed 
in MS patients (105,106). There is a significant correlation 
between serum IL‑37 levels and MS disease severity, and 
IL‑37 may be involved in a feedback loop that controls the 
underlying inflammation in MS pathogenesis (105).

The serum levels of IL‑37 and sVEGFR2 and the circu‑
latory number of VEGFR2‑expressing cells were higher in 
patients with MS than in HCs (106). Serum levels of IL‑37 and 
sVEGFR2 may represent important prognostic biomarkers for 
MS. IL‑37 plays a key role in the regulation of oxidative stress, 
autophagy, and apoptosis markers in periodontal ligament 
cells from patients after hypoxic preconditioning (107). Thus, 
IL‑37 may serve as a nucleator in a panel of new biomarkers 
associated with MS.

5. Outlook

AIDs refer to the set of ailments that arise when the immune 
system of the body launches an assault on self‑tissues. This 
involves the production of aberrant antibodies. IL‑37, a member 
of the IL‑1 family, can decrease both congenital inflammation 
and acquired immunological responses. Although the mecha‑
nism underlying IL‑37 function is not entirely understood, it is 
known to be associated with the development of AIDs. IL‑37 
plays a crucial role in protecting tissues from damage in AIDs 
by suppressing excessive inflammatory responses. A transgenic 
IL‑37tg mouse model showed that IL‑37 exerts considerable 
anti‑inflammatory effects (108). Therefore, further elucidation 
of the mechanism by which IL‑37 is involved in other AIDs 
is critical for the therapeutic use of this cytokine. Currently, 
clinical studies involving IL‑18 inhibitors [glycogen synthase 
kinase 1070806 (109), ABT‑325 (110), and rIL‑18 binding 
protein (111)] are underway, and a clinical study involving an 
IL‑33 inhibitor (CNTO‑7160) has commenced (112). IL‑37 is 

considered to be an AID biomarker, a predictive factor, and a 
possible AID treatment.
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