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Variable impact of the 
hemagglutinin polybasic cleavage 
site on virulence and pathogenesis 
of avian influenza H7N7 virus in 
chickens, turkeys and ducks
David Scheibner1, Reiner Ulrich2, Olanrewaju I. Fatola   2, Annika Graaf3, Marcel Gischke1, 
Ahmed H. Salaheldin1, Timm C. Harder3, Jutta Veits1, Thomas C. Mettenleiter1 & 
Elsayed M. Abdelwhab   1

Avian influenza viruses (AIV) are classified into 16 hemagglutinin (HA; H1-H16) and 9 neuraminidase 
(NA; N1-N9) subtypes. All AIV are low pathogenic (LP) in birds, but subtypes H5 and H7 AIV can evolve 
into highly pathogenic (HP) forms. In the last two decades evolution of HPAIV H7 from LPAIV has been 
frequently reported. However, little is known about the pathogenesis and evolution of HP H7 from 
LP ancestors particularly, in non-chicken hosts. In 2015, both LP and HP H7N7 AIV were isolated from 
chickens in two neighbouring farms in Germany. Here, the virulence of these isogenic H7N7 LP, HP 
and LP virus carrying a polybasic HA cleavage site (HACS) from HP (designated LP-Poly) was studied in 
chickens, turkeys and different duck breeds. The LP precursor was avirulent in all birds. In contrast, all 
inoculated and contact chickens and turkeys died after infection with HP. HP infected Pekin and Mallard 
ducks remained clinically healthy, while Muscovy ducks exhibited moderate depression and excreted 
viruses at significantly higher amounts. The polybasic HACS increased virulence in a species-specific 
manner with intravenous pathogenicity indices of 3.0, 1.9 and 0.2 in chickens, turkeys and Muscovy 
ducks, respectively. Infection of endothelial cells was only observed in chickens. In summary, Pekin and 
Mallard were more resistant to HPAIV H7N7 than chickens, turkeys and Muscovy ducks. The polybasic 
HACS was the main determinant for virulence and endotheliotropism of HPAIV H7N7 in chickens, 
whereas other viral and/or host factors play an essential role in virulence and pathogenesis in turkeys 
and ducks.

Avian influenza A viruses (AIV) are members of the family Orthomyxoviridae. They are differentiated according 
to the antigenicity of the hemagglutinin (HA) and neuraminidase (NA) proteins into 16 HA (H1 to H16) and 9 
NA (N1 to N9) subtypes1. HA is a surface glycoprotein which mediates virus attachment and fusion with the host 
cell endosomal membrane. It plays essential roles in virulence, immunogenicity and interspecies transmission 
(e.g. from birds to mammals)2. The HA is synthesized in a fusion-inactive form (HA0), which is activated through 
cleavage by host proteases into HA1 and HA2 subunits. The HA monobasic cleavage site (CS) of low pathogenic 
(LP) AIV is recognized by trypsin-like proteases in the respiratory and digestive tracts. LPAIV cause mild, if any, 
clinical signs, while highly pathogenic (HP) AIV carry a multibasic CS, which is cleaved by ubiquitous furin-like 
proteases resulting in systemic infections and high mortality3–6. In nature, only H5 and H7 subtypes can evolve 
from LP precursors to HPAIV by acquisition of mutations particularly in CS of the HA protein4. This transition 
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mostly occurs in terrestrial poultry but can spill to wild birds7. Evolution of HPAIV from LPAIV is usually accom-
panied by mutations in other gene segments in addition to HA. These mutations are unique to each HPAIV and 
can modulate virulence and bird-to-bird transmission8–12. Therefore, it is important to study the virulence deter-
minants of each HPAIV separately.

Recently, the prevalence of H7 viruses and the evolution of HPAIV H7 from low pathogenic precursors 
increased remarkably13–17. Turkeys are more susceptible than chickens to AIV, enabling adaptation of wild 
bird-origin viruses to other domestic birds and play an important role in interspecies transmission (e.g. from 
birds to pigs and humans and vice versa)18–20. Nevertheless, data on the virulence determinants of HPAIV in 
turkeys are scarce. Likewise, few studies have been conducted in domestic ducks to evaluate the pathogenicity of 
HPAIV H7Nx. Several HPAIV H7N3 from Chile, Canada and Mexico, H7N4 from Australia and H7N7 from the 
Netherlands did not cause any mortality in two-week-old Pekin ducks21. Similarly, Pekin and Mallard ducklings 
were clinically resistant to the Italian HPAIV H7N121,22. Commercial young or adult Pekin ducks did not succumb 
to mortality with different Dutch and Australian HPAIV H7N723–26. Virulence of HPAIV H7 in Muscovy ducks 
has not been studied before, although under natural conditions neurological disorders and high mortality during 
the 1999–2000 outbreaks in Italy were linked to infection by HPAIV H7N127. Muscovy ducks were more sensitive 
to HPAIV H5N1 than Pekin ducks28–30, probably due to differences in immune responses29,30 which may vary 
according to the virus strain, age of ducks and route of virus inoculation28,31,32. Importantly, virulence determi-
nants of HPAIV H5Nx in chickens differ from those in ducks33–36.

In 2015, an HPAIV H7N7 was isolated from a commercial chicken layer flock in Germany. The virus evolved 
from LP H7N7, which was simultaneously isolated from the same farm. The HA of the low pathogenic virus 
carried a monobasic HACS (PEIPKGR/G), while the HP specified a polybasic CS (PEIPKRKRR/G)37. Here, the 
impact of the polybasic HACS on virus replication, virulence, bird-to-bird transmission and tropism was investi-
gated in chickens, turkeys and different duck breeds.

Results
Three recombinant H7N7 viruses were successfully generated using reverse genetics.  All gene 
segments of LPAIV A/chicken/Germany/AR915/2015(H7N7) (designated hereafter LP) and HPAIV A/chicken/
Germany/AR1385/2015(H7N7) (designated hereafter HP) were successfully amplified and cloned. Moreover, to 
generate an LP with a polybasic CS (designated hereafter LP-Poly), the HA segment of LP was used to change 
the monobasic (PEIPKGR/G), to the polybasic PEIPKRKRR/G, exactly resembling the HP H7N7 CS. LP, HP 
and LP-Poly were successfully rescued and showed comparable titres from 106.7 to 107.0 plaque forming unit per 
ml (PFU/ml) in the allantoic fluids after propagation in specific pathogen free (SPF) embryonated chicken eggs 
(ECE).

The impact of a polybasic HACS on virus replication, spread and HA cleavability in cell cul-
ture.  All three viruses replicated in avian and mammalian cell lines. No significant differences were observed 
in chicken embryo kidney (CEK) cells (Fig. 1 panel b). In Madin-Darby canine kidney cells type II (MDCKII), 
LP-Poly replicated to higher titres than the LP and HP viruses (Fig. 1 panel b), which, however, was not statisti-
cally significant (P > 0.05). The HP virus induced significantly (P < 0.0001) larger plaques in MDCKII than LP 
and LP-Poly (Fig. 1 panel c). The HA of LP was only efficiently activated in the presence of trypsin, while insertion 
of a polybasic cleavage site allowed cleavage of the LP HA in the absence of trypsin (Fig. 1 panel d).

Insertion of the polybasic CS increased virulence and tropism of LP H7N7 comparable to HP 
H7N7 after oculonasal (ON) or intravenous (IV) infection of chickens.  After oculonasal (ON) 
inoculation with LP, chickens showed mild clinical signs (i.e. ruffled feathers and diarrhoea) for a few days and 
recovered quickly. All contact birds in this group survived without showing clinical signs. Conversely, 5/6 and 6/6 
inoculated chickens, and 3/4 and 4/4 contact chickens died after infection with LP-Poly and HP viruses with path-
ogenicity indices (PI) of 1.8 and 2.2, and a mean death time (MDT) of 5 and 4.3 days, respectively (Table 1, Fig. 2 
panel a). Birds showed clinical signs typical of HPAIV infection, e.g. cyanosis of comb and wattle, haemorrhages 
on the shanks and unfeathered parts of the body and moderate to severe depression. After intravenous (IV) injec-
tion, LP infected-birds showed transient mild clinical signs with an intravenous PI (IVPI) of 0.1 (Table 1; Fig. 2 
panel b). All chickens injected with LP-Poly and HP died and the calculated IVPI was 3.0 (Table 1; Fig. 2 panel b). 
Using ELISA, anti-NP antibodies were detected in all surviving chickens inoculated IV and ON with LP or ON 
with LP-Poly (data not shown).

Virus excretion was quantified using RT-qPCR of swab samples collected at 4 days post inoculation (dpi). All 
chickens excreted viruses in oropharyngeal (OP) and cloacal (CL) swabs (Fig. 2 panels c–f). LP virus was detected 
in the oropharyngeal swabs of inoculated chickens and their cagemates at lower titres than in cloacal swabs (Fig. 2 
panels c–f). The insertion of a polybasic HACS significantly (P < 0.05) increased LP excretion in oropharyngeal 
swabs to a level comparable to HP (Fig. 2 panel c).

On day 4 after ON inoculation, viral NP antigen was detected by immunohistochemistry (IHC) and histology 
in organs of two chickens per group (Figs 3 and 4). In parenchymal tissues, LP was detected in the intestinal tract 
(duodenum, jejunum and cecum) and spleen (Fig. 3 panel a). Insertion of the polybasic CS resulted in the distri-
bution of the LP-Poly in all analysed organs at a level comparable to HP. Only LP-Poly was detected in the gizzard. 
The highest amount of HP and LP-Poly was detected in the brain and lungs (Fig. 3 panel a). LP was not detected 
in any endothelial tissue, whereas LP-Poly was present in the endothelium of all tissues resembling HP infection 
(Fig. 3 panel b and Fig. 4). Moreover, histopathological examination of birds inoculated with LP revealed mild 
inflammation in the lungs only (Fig. 3 panel d). Conversely, HP and LP-Poly induced mild to severe necrosis or 
necrotic inflammation in the Bursa of Fabricius, thymus, cecum, spleen (Fig. 3 panel d), pancreas and heart (Fig. 3 
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panel c). Moreover, only HP caused lesions in the jejunum, proventriculus, duodenum, liver, brain and trachea 
(Fig. 3 panels c and d).

In turkeys, the LP with polybasic HACS exhibited lower virulence than in chickens and was not 
detected in the endothelium of any organ.  After ON inoculation of turkeys with LP transient mild 
clinical signs (i.e. ruffled feather and slight depression) were observed in inoculated and contact animals which 
quickly recovered. None of the turkeys died. All turkeys inoculated ON with HP showed severe depression and 
central nervous signs (i.e. opisthotonus, torticollis, paralysis) at 4 dpi. They were humanely killed and scored as 
dead at 5 dpi resulting in a pathogenicity index (PI) of 2.2. All contact turkeys died within 7 days. Interestingly, 
only 3/10 inoculated and 2/5 contact turkeys died after ON inoculation with LP-Poly. The PI value for this virus 
was 1.1 which was significantly less than in chickens (P < 0.05) (Fig. 2 panel a). As was observed in chickens, the 

Figure 1.  In vitro characterisation of recombinant H7N7 viruses in this study. The replication efficiency in 
MDCKII (a) and CEK (b) cells at an MOI of 0.001 for 1, 8, 24, 48 and 72 hours post infection is illustrated. 
Results are shown as the mean and standard deviations of all values of triplicates of two independent runs. 
Cell-to-cell spread was determined by measuring the diameter of plaques induced by the indicated viruses 
in MDCKII cells. The size of plaques induced by HP was set as 100%. The results are expressed as mean and 
standard deviation. (c) The cleavability of HA0 into HA1 and HA2 subunits was studied using Western Blot after 
the infection of MDCKII cells at an MOI of 1 PFU per cell of indicated viruses in the presence (+) or absence 
(−) of trypsin. The viral proteins were detected by polyclonal chicken serum against H7N1 at a ratio 1:500 after 
separation in a 10% polyacrylamide gel. NC refers to the mock control (non-infected cells). (d) The original 
Western Blot figure is available as a Supplementary Fig. S1.

Virus

Chickens Turkeys Muscovy Ducks

ON IV ON IV ON IV

Dead/
Inoculated*

Dead/
Contact*

PI (MDT; 
range) IVPI

Dead/
Inoculated

Dead/
Contact

PI (MDT; 
range) IVPI

Dead/
Inoculated

Dead/
Contact PI IVPI

LP 0/6 0/4 0.0 0.1 0/10 0/5 0.2 0.1 0/10 0/5 0.0 0.0

LP-Poly 5/6 3/4 1.8 (5; 
3–9) 3.0 3/10 2/5 1.1 (5; 5) 1.9 0/10 0/5 0.0 0.2

HP 6/6 4/4 2.2 (4.3; 
3–5) 3.0 10/10 5/5 2.2 (5; 5) 2.8 0/10 0/5 0.1 0.5

Table 1.  Clinical scoring after oculonasal (ON) or intravenous (IV) infection of chickens, turkeys and 
Muscovy ducks *Number of dead birds to the total number of inoculated or contact birds. ON = oculonasal, 
IV = intravenous, PI = pathogenicity index, IVPI = intravenous pathogenicity index, MDT = mean death time 
for primarily inoculated birds, “range” refers to the first and last day when birds died. Birds were observed daily 
and the severity of clinical signs were given scores from 0 (no signs) to 3 (dead). PI and IVPI values range from 
0 (avirulent) to 3 (high virulent) and were calculated by dividing the sum of the arithmetic mean values of daily 
scores of inoculated birds by 10 (the number of observation days) according to the OIE protocol56.
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IVPI of LP and HP were 0.1 and 2.8, respectively, whereas LP-Poly killed only 5 out of 9 birds with an IVPI of 1.9 
which was remarkably less than in chickens (Table 1; Fig. 2 panels a and b). All surviving turkeys seroconverted 
as demonstrated by the detection of anti-NP antibodies by ELISA (data not shown).

Viruses were detected at similar levels in oropharyngeal swabs from inoculated and contact animals (Fig. 2 
panels c and d). Like HP inoculated turkeys, LP-Poly inoculated birds excreted higher amounts of viruses via the 
cloacal route than LP inoculated birds, whereas in-contact turkeys excreted LP-Poly at higher levels than either 
LP or HP. Compared to chickens, inoculated turkeys oropharyngeal excretion of LP-Poly and HP was about 10- to 
100- times decreased, whereas LP and HP were found at about 10 times decreased amounts in the cloacal swabs. 
LP-Poly and HP were detected at comparable amounts in both cloacal and oropharyngeal swabs, but contact 
turkeys excreted LP-Poly in cloacal swabs at higher levels than LP and HP (Fig. 2 panels c–f). LP was detected in 
the cloacal swabs of 4/10 and 2/5 inoculated and contact turkeys, respectively, and in oropharyngeal swabs of all 
turkeys. All turkeys excreted LP-Poly and HP in cloacal and oropharyngeal swabs.

Figure 2.  Clinical scoring and virus excretion in experimentally infected chickens, turkeys and Muscovy 
ducks. Clinical scoring after oculonasal (a) or intravenous (b) infection was calculated by dividing the sum of 
the arithmetic mean values of daily scores by 10 (the number of observation days). The PI and IVPI values for 
each virus ranged from 0 (avirulent) to 3 (highly virulent) and the results are expressed as mean and standard 
deviation. Virus excretion at 4 days post inoculation in oropharyngeal (c,d) and cloacal (e,f) swabs of inoculated 
(c and e) and contact (d and f) birds was determined by RT-qPCR against standard curves using ten-fold 
dilutions of HPAIV H7N7 and the mean and standard deviations were expressed as equivalent plaque forming 
unit pro ml (eq. PFU/mL). Asterisks indicate significant differences at p ≤ 0.05 (*) or 0.01 (**) or 0.0001 (****).
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Using IHC, a focal to oligofocal distribution of the NP antigen of LP was observed only in the cecal epithelium 
and parenchyma of pancreas. The distribution of LP-Poly in the parenchyma of different organs was similar to HP, 
although at slightly lower levels (Figs 5 and 6). The highest amount of LP-Poly was detected in the brain, cecum 
and pancreas, while HP was concentrated in the brain, cecum, kidneys and heart. Interestingly, like in chickens, 
only LP-Poly was detected in the gizzard parenchyma in addition to the jejunum (Fig. 5 panel a). Remarkably, 
and in stark contrast to chickens, none of the viruses were detected in the endothelium of any organ of examined 
turkeys (Fig. 6). No pathological changes were observed in turkeys inoculated with LP at 4dpi. LP-Poly and HP 
caused comparable lymphatic necrosis, apoptosis and/or depletion in the bursa, cecum and thymus and compa-
rable mild to severe necrotic encephalitis, pancreatitis and myocarditis (Fig. 5 panels b and c). Nevertheless, only 
HP caused low to severe necrosis in the spleen and lungs (Fig. 5 panel c).

Muscovy ducks were more susceptible than Pekin and Mallard ducks and excreted virus at sig-
nificantly higher levels.  Virulence of HP was assessed in Pekin, Mallard and Muscovy ducks after ON and/
or IV infection. After ON inoculation of Muscovy ducks with LP, LP-Poly and HP, five sentinel Muscovy ducks 
were added to assess bird-to-bird transmission. Ducks that were oculonasally inoculated with LP and LP-Poly did 
not show any clinical signs or mortality. After ON challenge with HP, only Muscovy ducks exhibited a transient 
mild depression with a PI 0.1, while Pekin and Mallard ducks remained clinically healthy. None of the contact 
Muscovy ducks showed clinical signs. After IV injection, only Muscovy ducks exhibited mild to moderate depres-
sion, reluctance to move and steady gait after infection with HP, and to a lesser extent with LP-Poly with IVPI 
values of 0.5 and 0.2, respectively (Table 1).

HP was detected in cloacal swabs at higher levels than in the oropharyngeal swabs in all duck breeds (Fig. 7 
Panel a). Pekin ducks excreted the lowest amount of virus and presented the lowest number of shedders. Eight 
Mallard ducks were positive in cloacal swabs but only one duck was positive in oropharyngeal swabs. Mallard 
ducks presented higher amounts of virus in cloacal than Pekin ducks. All Muscovy ducks excreted significantly 
higher amounts of HP oropharynx compared to Mallards and Pekin ducks (Fig. 7 Panel a). Moreover, significantly 
higher virus titres were found in cloacal swab samples of the Muscovy ducks compared to Pekin ducks. After the 
ON inoculation with HP, LP, and LP-Poly, viral RNA was detected in oropharyngeal and cloacal swabs from all 
inoculated Muscovy ducks except one LP-Poly inoculated duck (Fig. 7 Panel b). The average amount in the cloacal 
swabs was higher than in the oropharyngeal swabs of all viruses (Fig. 7 Panel b). All contact Muscovy ducks were 
positive in oropharyngeal and cloacal swabs but HP and LP viruses were present in higher amounts in oropharyn-
geal and cloacal swabs of contact birds compared to LP-Poly (Fig. 7 Panel c). At the termination of the experiment 
all ON and IV inoculated Pekin and Mallard ducks had anti-NP antibodies as detected by ELISA. Likewise, all 
Muscovy ducks infected with LP, LP-Poly and HP as well as contact animals seroconverted (Fig. 7 Panel d).

Figure 3.  Distribution of influenza A antigen in different organs of inoculated chickens. Distribution of NP 
antigen in the parenchyma (a) and endothelium (b) of different organs of two inoculated chickens at 4 days post 
inoculation was detected by immunohistochemistry. The intensity and distribution of NP signals are scaled 0 
(no signal), 1 (focal to oligofocal), 2 (multifocal) or 3 (confluent to diffuse). The severity of lymphatic necrosis, 
apoptosis and/or depletion (c) and necrotizing inflammation (d) was assessed by histopathological examination 
on a scale 0 (negative), 1 (low), 2 (moderate) or 3 (high). Values are shown as median and standard deviation 
scores of two chickens.
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NP detection by IHC was done only for Muscovy ducks. Antigen was not detected in endothelial cells 
in any Muscovy duck and neither microscopic lesions nor antigen were found in the gizzard or brain. After 
inoculation with LP, a focal distribution of NP was detected in the epithelium of cecum and trachea (score 1). 
Histopathological changes were observed in at least one bird including lymphohistiocytic infiltration in the tra-
chea and proventriculus with mild lymphoid depletion in the bursa of Fabricius and thymus. Inoculation of 
Muscovy ducks with LP-Poly resulted in focal distribution of NP antigens in the parenchyma of thymus, lung, 
jejunum, cecum and/or bursa of Fabricius of at least one bird. Furthermore, trachea had moderate multifocal 
degeneration of the epithelium with loss of cilia with lymphocytic infiltration of the lamina propria. In the lungs, 
hyperplasia of bronchial associated lymphocytes (BALT) and bronchitis with epithelial degeneration and neutro-
phils infiltration were seen. The pancreas, liver and kidneys contained a mild focal lymphohistiocytic infiltrate 
and the duodenum had focal lymphocytic aggregation in the gut-associated lymphocytes (GALT). Ducks inoc-
ulated with HP had antigen prominently in the thymus and trachea. The trachea exhibited moderate multifocal 
epithelial degeneration with loss of cilia and lymphocytic infiltration. In the lungs, mild interstitial oedema and 
congestion with mild lymphatic depletion of BALT was observed. Moreover, mild, acute, oligofocal lymphohistio-
cytic infiltration in the pancreas and mild lymphoid depletion in the proventriculus were found (data not shown).

Discussion
In the last few years evidence for direct evolution of HP H7 from LP precursors has been reported14–16,38. H7N7 
viruses have been very prominent (excluding the current panzootic H5Nx Goose/Guangdong outbreak) during 
the last decades in Europe causing diseases in poultry and humans39. However, little is known about the mecha-
nism underlying the shift of virulence of H7 viruses particularly in turkeys and ducks. In 2015, both HP and LP 
H7N7 viruses were isolated simultaneously from two neighbouring chicken layer flocks in Germany representing 
a rare natural isogenic precursor-progeny LPAIV/HPAIV pair. Compared to the LP precursor, the resulting HP 
had acquired a polybasic HACS but specified, in addition, 10 amino acids alterations namely E123K, I147V, 
K355R in PB2, F254C in PB1, K185R in PA, I13S in HA, S478F in NP, V439A in NA, V68L in M2 and N92D in 
NS1 37. In this study, the virulence of the pair of LP and HP viruses, and the impact of the polybasic HACS on 
virulence and transmission in chickens, turkeys and ducks were investigated.

In previous studies, we have shown that three German LP H7N7 viruses from 2003, 2011 and 2013 required 
only a specific polybasic HACS to exhibit full virulence equivalent to a genuine HPAIV12. Conversely, the inser-
tion of different polybasic HACS motifs in an LP H7N7 isolated in 2001 from a small backyard turkey flock in 
Germany12 and in an Italian LP H7N1 virus of 19998 did not result in full virulence of these viruses. Similarly, 
several H5N1 and H5N2 viruses with authentic or synthetic polybasic HACS were avirulent in chickens9,40. Other 

Figure 4.  Distribution of influenza A NP antigen in different organs in chickens. Distribution of influenza 
A NP antigen in different organs in chickens at 4 days post inoculation with LP (a–c), LP-Poly (d–f) or HP 
(g–i) displaying variable level of organ tropism ranging from a minimum of none to a maximum of coalescing 
nucleoprotein within brain (a,d,g), lung (b,e,h) and heart (c,f,i). Arrows point to parenchymal cells with 
influenza A virus nucleoprotein-positive nuclei (neuroglia cells, pneumocytes or cardiomyocytes). Arrowheads 
point to endothelial cells with influenza A virus nucleoprotein-positive nuclei. Immunohistochemistry; avidin-
biotin-peroxidase complex method; polyclonal rabbit anti-influenza A FPV/Rostock/34-virus-nucleoprotein 
antiserum61; 3-amino-9-ethyl-carbazol (red-brown); hematoxylin counterstain (blue); Nomarski contrast; 
Bars = 50 µm.
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mutations in the HA1, HA2, NA or other viral genes were required for expression of high virulence in inoculated 
and/or sentinel chickens9,41,42. We show here that the insertion of the polybasic HACS increased virulence of the 
LP in chickens to a level comparable with the HP as indicated by IVPI and PI values. While LP was limited to the 
respiratory and intestinal tracts, insertion of the polybasic HACS resulted in efficient proteolytic activation in 
vitro and systemic distribution resembling the HP infection particularly in the lungs, brains and endothelial cells. 
These results indicate that the polybasic HACS is the main virulence determinant of this HP H7N7 in chickens, 
and that other mutations play at most a minimal role in virulence and tropism.

In turkeys, the virulence of LP and HP was comparable to or slightly higher than in chickens. Turkeys are 
more vulnerable to LP and HP AIV43,44 but it is largely unknown whether virulence markers in both “galliform” 
species are different. Although it is widely accepted that chickens and turkeys are similar in their high suscepti-
bility to AIV, these hosts are not identical. For example, chickens exhibit high susceptibility to Newcastle disease 

Figure 5.  Distribution of influenza A antigen in different organs of inoculated turkeys. Distribution of NP 
antigen in the parenchyma (a) of different organs of three inoculated turkeys at 4 days post inoculation was 
detected by immunohistochemistry. NP was not detected in the endothelium of any organ of any of the three 
examined turkeys. The intensity and distribution of NP signals are scaled 0 (no signal), 1 (focal to oligofocal), 
2 (multifocal) or 3 (confluent to diffuse). The severity of necrotizing inflammation (b) and lymphatic necrosis, 
apoptosis and/or depletion (c) was assessed by histopathological examination on a scale 0 (negative), 1 (low), 2 
(moderate) or 3 (high). Values are shown as median and standard deviation scores of three turkeys.

Figure 6.  Distribution of influenza A NP antigen in different organs in turkeys. Distribution of influenza 
A NP antigen in different organs in turkeys at 4 days post inoculation with LP (a–c), LP-Poly (d–f) or 
HP (g–i) displaying variable level of organ tropism ranging from a minimum of none to a maximum of 
coalescing nucleoprotein within brain (a,d,g), lung (b,e,h) and heart (c,f,i). Arrows point to parenchymal 
cells with influenza A virus nucleoprotein-positive nuclei (neuroglia cells, macrophages/pneumocytes or 
cardiomyocytes). Immunohistochemistry; avidin-biotin-peroxidase complex method; polyclonal rabbit anti-
influenza A FPV/Rostock/34-virus-nucleoprotein antiserum 61; 3-amino-9-ethyl-carbazol (red-brown); 
hematoxylin counterstain (blue); Nomarski contrast; Bars = 50 µm.
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virus, infectious bursal disease virus and infectious laryngeotracheitis virus with severe morbidity and mortality. 
Nevertheless, these viruses are apathogenic or significantly less virulent in turkeys45–47. In the current study, we 
demonstrate that insertion of a polybasic HACS increased virulence, excretion, tropism and transmission of the 
LP virus in turkeys. However, this LP-Poly was significantly less virulent than in chickens as demonstrated by 
lower IVPI and PI values. Intriguingly, only HP-and LP-Poly-inoculated turkeys exhibited neurological signs 
and no viruses were detected in the endothelial cells of any organ in turkeys suggesting a different pathogenesis 
of HPAIV in turkeys compared to chickens. This could be the result of virus spread to the brain via the nerv-
ous system in turkeys and via the blood stream in chickens. These results are congruent with recent findings of 
Pantin-Jackwood, et al.43 who reported neurological signs in turkeys but not in chickens or Mallards after the 
inoculation with HPAIV H7N8 from the 2016-outbreak in the USA. Therefore, the contribution of host factors to 
the pathogenesis of H7 viruses in turkeys merits further investigations.

Here, we demonstrated that Mallard and Pekin ducks excreted considerable amounts of HP without showing 
clinical signs supporting the role of anatid ducks as reservoir for HPAIV21,28. It is important to mention that all 
gene segments of the precursor LP H7N7 were closely related to AIV of wild duck origin indicating a high level 
of adaptation to ducks37 (unpublished data). Interestingly, LP also replicated in and was excreted from Muscovy 
ducks at the same high level as HP. A higher susceptibility of Muscovy ducks compared to Pekin or Mallard ducks 
to the 2013 Asian LPAIV H7N9 has been described48. Generally, independent of the duck species, excretion 

Figure 7.  Virus excretion and seroconversion in inoculated and/or contact Pekin, Mallard and Muscovy ducks. 
Shown are the results of virus excretion at 4 days post inoculation in oropharyngeal (OP) and cloacal (CL) 
swabs using RT-qPCR expressed by equivalent Log10 PFU/mL in oculonasal (ON) inoculated Pekin, Mallard 
and Muscovy ducks with HPAIV H7N7. (a) Excretion of LP, LP-Poly or HP in inoculated (b) and contact (c) 
Muscovy ducks were also determined by RT-qPCR. All values are shown as mean and standard deviation 
of positive samples. Antibody titres at the end of the experiment in ducks inoculated ON or intravenously 
(IV) were measured by an NP antibody inhibition ELISA at the end of the experiments. Results are shown 
as 100- optical density (OD) reading. Lower and upper dashed lines indicate the 45–55% cut-off ratio where 
samples lower than 45% are negative, from 45 to 55% are questionable and over 55% are positive. (d) Statistical 
significance shown in asterisk indicate P values ≤ 0.05 (*), ≤ 0.01 (**), ≤ 0.001 (***) or ≤ 0.0001 (****).
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through the cloaca was higher than via the oral cavity, which is in accordance with the preferential replication of 
some AIV in the digestive tract of ducks49,50. The IVPI of HP H7N7 in Muscovy ducks was 0.5 indicating moder-
ate virulence. LP-Poly exhibited a slight increase in virulence but was still slightly less virulent than field isolated 
HPAIV H7N7. This demonstrates that acquisition of the polybasic HACS is the crucial mutation in the transition 
of LP to HP AIV. However, it also shows that other mutations play a role in determining, in a species-specific 
manner, high pathogenicity. Contribution of mutations in PA or PB1, in addition to HA, to the high virulence 
and/or efficient transmission of HPAIV H5N1 in ducks was reported33–36,51,52. Resistance of ducks, particularly 
Mallards, to HPAIV H5N1 was linked to several host immune factors including interferon-induced transmem-
brane proteins (IFITM) and retinoic acid-inducible gene I (RIG-I) which are absent in chickens53,54. Therefore, it 
is interesting to study the variation of these host factors in different duck species, particularly in Muscovy ducks.

In summary, the recent German HP H7N7 exhibited comparably high virulence in chickens and turkeys, 
while Pekin and Mallard ducks did not show overt clinical signs. Infected Muscovy ducks developed moderate 
illness. Tropism of H7N7 viruses to the endothelium was observed in chickens but not in turkeys or ducks. 
Insertion of a polybasic cleavage site into the HA of the precursor LPAIV H7N7 resulted in increased virulence 
to different levels in a species-specific manner. In chickens, virulence of LP carrying a polybasic HACS was com-
parable to the field isolated HPAIV H7N7 supporting the relevance of acquisition of a polybasic cleavage in the 
transition from LP to HP AIV in chickens. However, in turkeys (and to lesser extent in Muscovy ducks) the viru-
lence increased but significantly less than in chickens suggesting the contribution of other viral or host factors in 
virulence and pathogenesis of H7N7 in these two species.

Materials and Methods
Viruses and cells.  LP and HP H7N7 isolated from two commercial layer flocks in Emsland, Germany37 
were obtained from the National Reference Laboratory for Avian Influenza, Friedrich-Loeffler-Institut (FLI), 
Greifswald Insel-Riems, Germany. MDCKII used for virus titration and in combination with HEK293T cells 
for virus rescue were obtained from the Cell Culture Collection in Veterinary Medicine of the FLI. Primary 
CEK cells were prepared from 18-day-old embryonated chicken eggs as previously done55 with few modification. 
Briefly, embryos were decapitated and the kidneys were obtained using sterile scissors and forceps. After two 
times incubation with warm trypsin at 37 °C for 20 to 25 minutes, the cells were isolated through a sterile gauze. 
After centrifugation at 1200 rpm for 5 minutes, the cell pellet was resuspended in minimum essential medium 
(MEM) containing 10% foetal calf serum (FCS), antibiotics (penicillin and streptomycin) and anti-mycotics 
(amphotericin).

Virus propagation.  All viruses were propagated in the allantoic sac of SPF ECE purchased from VALO 
BioMedia GmbH (Osterholz-Scharmbeck, Germany) according to the standard protocol56. The allantoic fluid 
was collected and the hemagglutination activity was measured using 1% chicken erythrocytes56. Aliquots of virus 
stocks were kept at −70 °C until use. Viruses with polybasic HACS were propagated and handled in biosafety level 
3 (BSL3) laboratory at the FLI.

SPF ECE were inoculated with the supernatant of transfected cells and candled daily. Dead embryos were kept 
in the refrigerator for at least one day. Subsequently the allantoic fluids were harvested and checked for bacterial 
contamination by culturing on Columbia sheep blood agar plates (VWR International, Germany).

Generation of recombinant viruses.  Recombinant viruses were generated by reverse genetics as pre-
viously described57,58. Briefly, RNA was extracted from LP and HP AIV using the Qiagen RNeasy Kit (Qiagen, 
Germany) and transcribed to cDNA using the Omniscript Reverse Transcription Kit (Qiagen). All gene segments 
were amplified, cloned into the plasmid pHWSccdB57 and transformed into E. coli TOP10™ (Invitrogen, USA), 
XL1-Blue™ or SURE2™ (Stratagene, Netherlands). Plasmids containing LP or HP gene segments were extracted 
using Plasmid Mini or Maxi kits (Qiagen). Moreover, the insertion of polybasic CS resembling the HP was intro-
duced in the HA gene of LP by QuikChange II XL Site-Directed Mutagenesis Kit (Invitrogen). Primers used 
for mutagenesis are available upon request. All recombinant viruses were rescued in HEK293T and MDCKII 
co-culture using Lipofectamine® 2000 and OptiMEM (Fischer Scientific, Germany)57. Three viruses were suc-
cessfully generated: LP, HP and LP containing the polybasic CS (designated LP-Poly). Absence of undesired for-
tuitous mutations in all gene segments of stock viruses was confirmed by Sanger sequencing and comparison to 
the wild-type viruses using Geneious software (Biomatters, New Zealand).

Virus titration.  Viruses were titrated by plaque assay. Confluent MDCKII cells in 12-well plates were infected 
with ten-fold serial dilutions of specified viruses for an hour at 37 °C/5% CO2. Cells were overlaid with semisolid 
BactoTM Agar (BD, France) containing minimal essential medium (MEM), NaHCO3, non-essential amino acids, 
NA-pyruvate and 4% bovine serum albumin (BSA) (MP Biomedicals, USA). For propagation of LPAIV, 2 μg/
mL of N-tosyl-L-phenylalanine chloromethyl ketone (TPCK)-treated trypsin (Sigma, Germany) was added. All 
plates were incubated for three days at 37 °C. Cells were fixed by 10% formaldehyde containing 0.1% crystal violet. 
Plaques were counted and viral titres were expressed as plaque forming units per ml (PFU/ml). For measurement 
of plaque size Nikon NIS-Elements software was used. Up to 100 plaques were measured for each recombinant 
virus and the results are shown as the mean and standard deviation relative to HP virus.

Replication kinetics.  MDCKII and primary CEK cells were infected at a multiplicity of infection (MOI) of 
0.001 for one hour at 37 °C/5% CO2. The inoculum was removed and the cells were incubated for two minutes 
with citric acid buffer pH = 3.0 to inactivate the extracellular virions. Cells were washed twice with PBS, covered 
by MEM containing 0.2% BSA (Sigma) and incubated at 37 °C/5% CO2 for 1, 8, 24, 48 and 72 hours post infec-
tion (hpi). The cells and supernatant were harvested and stored at −70 °C. The assay was run in triplicates in two 
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independent rounds for each virus in each type of cells. Virus titres were determined using plaque assay and 
expressed as mean titres with standard deviation.

Western blot.  The HA cleavage-activation of the three viruses was assessed after infection of MDCKII cells 
with an MOI of 1 using Western Blot59. Briefly, cells were harvested after 24 hpi. After washing with PBS and two 
centrifugation rounds at 6000 rpm/10 minutes, the cell pellet was suspended in Laemmli buffer (Serva, Germany) 
and PBS (1:1) and incubated at 95 °C for 10 minutes. Finally the cells were centrifuged at 14000 rpm for 5 min-
utes. The viral proteins were separated from cell lysate by sodium dodecyl sulphate 10% polyacrylamide gels 
and then electrotransferred to nitrocellulose membranes using a TransBlot cell (BioRad, USA). The H7 AIV 
proteins were detected using a polyclonal chicken anti-H7N1 serum at a concentration of 1:500 and peroxidase 
conjugated rabbit anti-chicken IGY++ antibodies (Dianova, Germany) at a concentration of 1:20000 in TBS-T. 
Immunodetection was achieved by chemiluminescence using ClarityTM Western ECL Substrate (BioRad, USA) 
and images were captured using a Bio-Rad VersaDoc Imaging System and Quantity One software.

Animal experiments.  Animal experiments were performed after approval by the authorized ethics commit-
tee of the State Office of Agriculture, Food Safety, and Fishery in Mecklenburg – Western Pomerania. The com-
missioner for animal welfare at the FLI representing the Institutional Animal Care and Use Committee (IACUC) 
also approved the animal experiments, which were performed in accordance with the German Regulations for 
Animal Welfare.

Chickens.  SPF ECE from white leghorn chickens were purchased from VALO BioMedia GmbH and incubated 
for 21 days at the hatchery facilities of the FLI. Six week-old chickens were divided in separate groups with ten 
animals each. Food and water were added ad-libitum. For the ON infection 6 chickens were inoculated with 
0.2 ml of a virus dilution in PBS containing 105 PFU/chicken via the oculonasal route. At 1 dpi, four sentinel 
chickens were added to assess virus transmission. The IVPI was measured by IV injection of ten chickens accord-
ing to the OIE recommendations56. All birds were observed daily for ten days and clinical scoring was done on a 
scale of 0, 1, 2 and 38. Briefly, healthy birds were given score (0), sick birds showing one clinical sign (e.g. diarrhea, 
nervous manifestations, respiratory disorders) were given score (1), severely sick birds showed more than one 
clinical sign were given score (2) and dead birds were given score (3). The pathogenicity index (PI) was calculated 
by dividing the sum of the arithmetic mean values of daily scores by 10 (the number of observation days). The PI 
for each virus ranged from 0 (avirulent) to 3 (highly virulent).

Turkeys.  Commercially available one-day-old white-breasted turkeys were purchased and kept at the FLI ani-
mal facilities. Six week-old turkeys were inoculated with the different viruses via ON or IV routes. Ten birds were 
inoculated ON and 1dpi five sentinel turkeys were added to each group. Moreover, eight week-old turkeys were 
injected IV to determine the IVPI after OIE regulations and clinically scored as mentioned above.

Ducks.  One-day old Pekin, Mallard and Muscovy ducks were purchased from a local commercial source. At the 
FLI, faecal samples were collected from all ducks and examined to exclude, among others, infection with AIV and 
Salmonella spp. Each experimental room contained a swimming pool filled daily with fresh water. Two to three 
weeks-old, ten (Pekin and Mallard) or 15 (Muscovy) ducks were allocated to separate groups. At day 0, ten birds 
were inoculated with 0.2 mL containing 105 PFU via the ON route. For assessing transmissibility of LP, LP-Poly 
and HP in Muscovy ducks, on day 1 after inoculation of ten Muscovy ducks, five sentinel Muscovy ducks were 
added. All animals were observed for up to 14 days and clinically scored as mentioned above. To determine the 
IVPI of indicated viruses, ten 4-to-5-week-old ducks from each breed were injected in the wing vein as previously 
described56.

Virus excretion.  Oropharyngeal (OP) and cloacal (CL) swabs were collected from ON inoculated birds and 
their contact peers at 4 dpi and stored at −70 °C until use. The quantity of virus excretion in swab samples was 
determined using generic real-time reverse-transcription polymerase chain reaction (RT-qPCR)60. The RNA was 
extracted from swab media using NucleoSpin® 8/96 Virus PCR Clean-up Core Kit (Macherey & Nagel GmbH, 
Germany) in Tecan Freedom Evo System (Tecan, Switzerland). Standard curves using HPAIV H7N7 were run 
in each RT-qPCR round. The relative amount of excreted virus was quantified by plotting the Ct-values in the 
standard curves and the results are expressed as the average and standard deviation equivalent log10 PFU/ml.

Serological examination.  Blood was collected at the end of the experiments from all surviving birds after euth-
anization using isoflurane® (CP-Pharma, Germany). Sera were tested for anti-AIV nucleoprotein (NP) anti-
bodies using enzyme-linked immunosorbent assay (ELISA) by ID screen Influenza A Antibody Competition 
Multispecies kit (IDvet, France). Plates were read in a Tecan® ELISA reader. The cut-off point according to the 
manufacture guideline was 55%, samples between 45 and 55% were considered questionable and samples lower 
than 45% were considered negative.

Histopathology and immunohistochemistry.  To determine the distribution of the different viruses in 
organs from chickens, turkeys and Muscovy ducks inoculated ON with LP, HP and LP-Poly, samples from tra-
chea, lungs, pancreas, heart, liver, spleen, kidneys, proventriculus, gizzard, duodenum, jejunum, cecum, bursa 
of Fabricius, thymus and brain from primarily infected chickens (n = 2), turkeys (n = 3) and ducks (n = 3) at 4 
dpi were fixed in 10% formalin and embedded in paraffin using standard methods. 5 μm sections were stained 
by hematoxylin and eosin, and screened for histopathological changes, whereas other sections were subjected to 
immunohistochemical examination using primary rabbit anti-NP (1:750) antibodies and secondary biotinylated 
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goat anti-rabbit IgG1 (1:200) (Vector, USA)61. The level of nucleoprotein antigen was estimated on a 0 to 3 scale: 
0 = negative; 1 = focal to oligofocal, 2 = multifocal or 3 = confluent to diffuse and the severity of necrotizing 
inflammation on a scale of 0 to 3: 0 = no obvious change; 1 = mild, 2 = moderate or 3 = severe as done before62.

Statistics.  Statistical differences were analysed using a Kruskal-Wallis with post hoc Tukey tests. Results were 
considered statistically significant at p value ≤ 0.05. All analysis was done by GraphPad Prism software 7.04 (La 
Jolla California USA, www.graphpad.com).
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