
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Computers in Biology and Medicine 134 (2021) 104453

Available online 1 May 2021
0010-4825/© 2021 Elsevier Ltd. All rights reserved.

LBP-based information assisted intelligent system for 
COVID-19 identification 

Shishir Maheshwari a, Rishi Raj Sharma b,*, Mohit Kumar c 

a Discipline of Electrical and Electronics Engineering, Birla Institute of Technology and Science, Pilani, 333031, India 
b Department of Electronics Engineering, Defence Institute of Advanced Technology, Pune, 411025, India 
c NAF Department, Indian Institute of Technology Kanpur, Kanpur, India   

A R T I C L E  I N F O   

Keywords: 
COVID-19 
Local binary pattern 
Entropy 
Gray level co-occurrence matrix 
Support vector machine classifier 
Chest X-ray 

A B S T R A C T   

A real-time COVID-19 detection system is an utmost requirement of the present situation. This article presents a 
chest X-ray image-based automated COVID-19 detection system which can be employed with the RT-PCR test to 
improve the diagnosis rate. In the proposed approach, the textural features are extracted from the chest X-ray 
images and local binary pattern (LBP) based images. Further, the image-based and LBP image-based features are 
jointly investigated. Thereafter, highly discriminatory features are provided to the classifier for developing an 
automated model for COVID-19 identification. The performance of the proposed approach is investigated over 
2905 chest X-ray images of normal, pneumonia, and COVID-19 infected persons on various class combinations to 
analyze the robustness. The developed method achieves 97.97% accuracy (acc) and 99.88% sensitivity (sen) for 
classifying COVID-19 X-ray images against pneumonia infected and normal person’s X-ray images. It attains 
98.91% acc and 99.33% sen for COVID-19 X-ray against the normal X-ray classification. This method can be 
employed to assist the radiologists during mass screening for fast, accurate, and contact-free COVID-19 diagnosis.   

1. Introduction 

The Severe Acute Respiratory Syndrome (SARS) related viruses come 
under the coronavirus family [1]. A recently found coronavirus of this 
family is known as Severe Acute Respiratory Syndrome Coronavirus-2 
(SARS-CoV-2). It becomes a pandemic disease termed as coronavirus 
infectious disease 2019 (COVID-19) [2]. It was originated due to an 
unknown cause in Wuhan city, province of China, at the end of 2019 and 
spread rapidly throughout the globe [3,4]. The primary diagnosis 
method for COVID-19 is a real-time reverse transcription-polymerase 
chain reaction (RT-PCR), which is widely used throughout the world. 
In the RT-PCR test, the complementary DNA (cDNA) is obtained using 
the reverse transcriptase process. After that, the PCR process is per-
formed in three steps namely, denaturation, annealing, and elongation 
[5]. The COVID-19 disease is highly transmissible due to direct-indirect 
association in the social circle and long duration sustainability of virus 
on different objects. Mostly, the SARS-COV-2 virus enters in 
human-body through the nose and mouth and retains there, which in-
creases the viral load rapidly. Due to continuous respiration, it reaches 
the lungs and affects the respiration process. Therefore, symptoms can 

be observed in lungs [6]. The chest X-ray and computed tomography 
(CT) scan-based radiological imaging methods are extensive factors in 
early diagnosis [7]. 

The deep neural network model CoroNet is proposed for classifying 
pneumonia, COVID-19, and normal cases with 89.6% accuracy [8]. 
Another deep neural network model COVID-Net is designed in [9] and 
other methods are also proposed [10]. Some researchers have used the 
ultrasound technique to monitor the COVID-19 positive patients [11]. 
The chest CT scans are used for ensemble support vector machine-based 
model development for COVID-19 detection [12]. Another CT 
image-based methodology for COVID-19 detection is developed using a 
deep network in which segmentation is applied to select the infected 
lungs region [13]. The texture descriptor of chest X-ray image based 
COVID-19 identification method is presented with 0.8889 F1 score in 
[14]. Recently, a fusion of multiple classifiers based method is devel-
oped for COVID-19 detection using X-ray images [15]. An 
autoregressive-moving-average based COVID-19 cases prediction 
method is developed in [16]. 
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1.1. Need of research 

The diagnostic duration of the COVID-19 is a crucial factor as the 
viral load increases rapidly inside the human body. The RT-PCR test 
takes nearly four dedicated hours to detect the COVID-19. It increases up 
to 10–12 h as per the time taken in the sample collection and availability 
of the laboratory. The accessibility of the RT-PCR test and getting final 
results are the key parameters to begin the treatment. Therefore, a fast 
and accurate diagnosis for COVID-19 is of the utmost importance. The 
sensitivity of RT-PCR test is very low (nearly 65%) and high miss- 
detection is observed. However, the symptoms of COVID-19 are 
noticed in different radiological examinations [17,18]. Therefore, the 
radiological observations are crucial and can overcome the limitations 
of RT-PCR test [19]. The availability of radio images of COVID-19 pa-
tients, pneumonia patients, and healthy persons is highly unbalanced 
[20]. 

The process of X-ray imaging is very fast, contact-free, and easily 
available in most countries [21,22]. Therefore, an X-ray based highly 
accurate automated system with high sensitivity is needed to control the 
present COVID-19 pandemic. Most of the proposed models are based on 
neural network and deep learning, which require large size dataset to get 
good accuracy and sensitivity. Therefore, an X-ray image features based 
method is required to overcome the issue of large data availability, 
complete dependency on RT-PCR test, and time consuming CT scan 
process. Moreover, availability of X-ray imaging facilities are more in 
remote areas as compared to the CT scan. The X-ray process can be 
helpful in diagnosing and controlling of COVID-19 pandemic. 

In this paper, an image texture-based features are investigated, and a 
method is proposed to distinguish X-ray images of SARS-COV-2 patients 
from normal persons and pneumonia patients. In the present work, 
texture-based features, various image-based entropy features, co- 
occurrence matrix, and local binary pattern [23] are studied exten-
sively. Based on these features, a support vector machine (SVM) classi-
fier is employed to design an automated method for COVID-19 detection 
with respect to normal and pneumonia patients. The suitable kernel 
features of SVM are selected to achieve high sensitivity and accuracy. 

The rest of the paper is organized as follows. The proposed method 
for COVID-19 detection is detailed in Section-2. Section-3 describes the 
dataset and experimental setup. Results and discussion are explained in 
Section-4. Finally, the overall article is concluded in Section-5 with 
possible future work. 

2. Approach for COVID-19 detection 

The pictorial representation of the proposed approach is shown in 
Fig. 1. The proposed approach is developed for COVID-19 detection 
using chest X-ray images. The sample chest X-ray images are also shown 
in Fig. 1. In this method, first, the textural features are extracted from 

the chest X-ray images which are termed as image-based features. Sec-
ond, the local binary patterns (LBPs) [23] of the chest X-ray images are 
obtained. The same set of features are extracted from LBPs and termed as 
LBP-based features. Further, these features are combined to obtain the 
combined feature set. Thereafter, the extracted features are normalized 
and ranked. Then, a subset of feature vector is selected from the ranked 
features. Finally, the support vector machine (SVM) classifier is 
employed for COVID-19 detection. 

2.1. Local binary pattern (LBP) 

The LBP [24] is computed from the chest X-ray image which is an 
effective texture descriptor. It incorporates the local pixel intensities 
information in a binary coded decimal value. The LBP [24] is computed 
from the chest X-ray image which is an effective texture descriptor. It 
incorporates the local pixel intensities information in a binary coded 
decimal value. It has been widely used in texture-based applications as it 
characterizes the local variation in gray levels [23]. 

2.2. Features 

The gray-level co-occurrence matrix (GLCM), entropy-based fea-
tures, zernike phase and amplitude, Hu’s moments, and fractal dimen-
sion (FD) are computed from chest X-ray and its LBP-images. These are 
briefly explained in section below. 

2.2.1. GLCM features 
It is a statistical method to examine the texture by considering the 

spatial relationship of pixels. Its elements are created by the relative 
number of times the gray level pair (c, d) occurs when pixels are sepa-
rated by the distance (c, d) = (1, 0). For a m× n image, it can be defined 
as [25,26]: 

Gd(j, k)= |(c, d), (c+ x, d+ y) : I(c, d)= j, I(c+ x, d+ y)= k| (1) 

The 29 textural features are extracted from the obtained GLCM of the 
chest X-ray image [26]. 

2.2.2. Entropy based features 
The entropy-based features are also employed to measure the subtle 

variation in the textures. Three different entropy-based measures, 
namely Renyi entropy (RE), Yager entropy (YE), and Kapur entropy 
(KE), are utilized in the present work. 

RE is defined as [27] 

RE=
1

1 − A
log2

∑g− 1

j=0
hA
j (2)  

where A ∕= 1, and A > 0. The RE is a concentration measure parameter. It 

Fig. 1. Block diagram of the proposed approach.  
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is also used to measure the concentration of time-frequency images [28, 
29]. 

YE can be defined as [30] 

YE= 1 −

∑g− 1
j=0 |2hi − 1|
|P× Q|

(3)  

where P × Q denotes the size of image. 
KE is defined as [27] 

KE=
1

B − A
log2

∑g− 1
j=0 hA

j
∑g− 1

j=0 hB
j

(4)  

where A∕= B, and A, B > 0. Where g is number of gray levels of image. 
These entropy based features are widely applied for the analysis of im-
ages in the different applications such as glaucoma diagnosis in [23] and 
for the analysis of retinal health in [31]. These entropies have been 
previously found to be effective for human seizure detection [32,33], 
identification of focal Electroencephalogram (EEG) signals [34], and 
characterization of fatty liver disease [35]. The advantage of these en-
tropies lies in their generality and flexibility due to the parameters 
involved, which enable several measurements of uncertainty [23]. 

2.2.3. Zernike moments 
It is a projection of an image function on to the orthogonal basis 

functions named as Zernike polynomials. For an order p and repetition q, 
it can be defined as [36,37]: 

Apq =
p+ 1

π

∫ ∫

f (x, y)
[
Vpq(x, y)

]∗dxdy (5)  

where, x2 + y2 ≤ 1 and Vpq(x, y) is the Zernike polynomials which is 
defined in [36,37]. This provides two features namely Zernike ampli-
tude and Zernike phase. 

2.2.4. Hu’s moments 
The Hu’s moment represents the invariant image patterns. The Hu’s 

moments for an image f(x,y) can be given as [38,39]: 

Hm,n =
∑

x

∑

y
xmynf (x, y) (6) 

The central moments for non negative values of m and n can be 
defined as [39]: 

μm,n =
∑

x

∑

y
(x − x)m(y − y)nf (x, y) (7)  

where, x = H10
H00 

and y = H01
H00

. Therefore, the normalized central moments 
can be denoted as: 

∂m,n =
μmn

μτ
00

for m, n = 0, 1, 2, 3......, (8)  

where, τ = (m + n)/2+ 1. 
Now, the 7 Hu’s moments, denoted as HM1 − HM7, can be extracted 

which are explained in [38,39]. These moments are used as features for 
the detection of liver’s fibrosis stages in [39]. 

2.2.5. Fractal dimension 
It is based on the concept of the self similarity. It has a property of 

scale dependence which is useful for analysing the textures. It is used in 
Ref. [23] to capture the texture difference between glaucoma and 
normal images and can be defined as [40]: 

d=
logMr

log(1/r)
. (9) 

A texture is said to be self-similar if it is a union of Mr. Where, Mr are 
the distinct copies of a texture at a scale up or down by a factor r [40]. It 

shows higher values if the roughness of the texture is high [26]. 

2.3. Feature normalisation and selection 

In this work, zero mean and unit standard deviation [41] is employed 
to normalize the extracted features. In the performance evaluation, all 
features do not provide the same discrimination capability. Therefore, 
the subset of features is selected from the normalized features. In the 
proposed work, we have employed ReliefF [42] feature selection 
method. Tables 1 and 2 tabulates first 10 features after feature selection. 

2.4. Support vector machine (SVM) 

The SVM classifier [43–45] is employed for classification with radial 
basis function (RBF) [46] as a kernel. Let there be D data points 
{in, cn}

D
n=1, where in ∈ Rm and cn ∈ Rm are nth input data sample and 

corresponding class label, respectively. Further, the SVM classifier can 
be formulated as [47]: 

P(i) = sign

[
∑D

n=1
ancnK(i, in) + b

]

(10)  

where an positive real constant, K(i, in) is a kernel function and b is a real 
constant. 

In 10, K(i, in) is the RBF kernel function which is expressed as [47]: 

K(i, in)= exp

[
−
⃒
⃒
⃒
⃒i − in

⃒
⃒|

2

2σ2

]

(11) 

The kernel parameter, σ, is varied from 0.5 to 3 with a step size of 

Table 1 
Ranked image-based features of Normal vs COVID-19 class.  

Feature Normal COVID-19 (%)  

mn ± sd  mn ± sd (%)  

Fractal dimension 2.24 ± .019  2.18 ± .03  
Hu moment 2 16.58 ± 0.90  19.06 ± 2.13  
Zernike amplitude 6.52 ± 3.24  12.62 ± 7.48  
Zernike Phase − 98.32 ± 81.04  − 20.54 ± 63.08  
Long run low gray level   
run emphasis 1.34 ± 1.66  3.04 ± 3.90  
Variance 3767.95 ± 684.66  2879.38 ± 1298.63  
Kurtosis 2.35 ± 0.36  269 ± 0.84  
Low gray level run emphasis 0.07 ± 0.05  0.12 ± 0.11  
Hu moment 1 6.72 ± 0.09  6.73 ± 0.19  
Renyi entropy 5.63 ± 1.00  6.23 ± 1.23  

*mn = mean, sd = standard deviation. 

Table 2 
Ranked LBP-based features of Normal vs COVID-19 class.  

Feature Normal COVID-19 (%)  

mn ± sd  mn ± sd (%)  

Zernike phase − 16.82 ± 36.48  − 7.33 ± 73.70  
Hu moment 2 19.14 ± 0.981  20.03 ± 1.41  
Skewness − 0.14 ± 0.080  − 0.10 ± 0.17  
Hu monent 1 6.68 ± 0.023  6.69 ± 0.06  
Hu moment 4 27.18 ± 0.77  27.58 ± 1.54  
Fractal dimension 2.61 ± 0.009  2.61 ± 0.02  
Variance 7679.63 ± 302.97  7647.63 ± 483.51  
Hu moment 3 26.01 ± 1.03  26.53 ± 1.30  
Renyi entropy 4.47 ± 0.476  4.54 ± 0.75  
Hu moment 7 54.61 ± 1.57  55.48 ± 2.66   
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0.1. The performance of the proposed approach is validated using 3-fold 
cross-validation [48]. Accuracy and sensitivity [49] are utilized as a 
measure of performance. 

3. Dataset & experimental setup 

3.1. Dataset 

The dataset utilized in this work is obtained from Kaggle. It consists 
of chest X-ray images of 3 classes which are normal, pneumonia, and 
COVID-19 infected persons. All the images are in 1024× 1024 resolu-
tion stored in portable network graphics (PNG) file format. There are 
2905 X-ray images, of which 1341, 1345, and 219 images belong to 
normal persons, pneumonia-infected patients, and COVID-19 infected 
patients, respectively. 

3.2. Experimental setup 

To evaluate the performance of the proposed approach, the following 
experimental setup has been adopted in this paper: 

3.2.1. Based on the features 
In the proposed approach, the features are extracted from the chest 

X-ray images in the following three ways, such as:  

1 Image-based features: The features are directly extracted from the 
chest X-ray images.  

2 LBP-based features: The LBPs are obtained from the chest X-ray 
images. Thereafter, the features are extracted from the LBPs.  

3 Combined features: The image-based and LBP-based features are 
combined to perform the experiments. 

3.2.2. Based on the class 
The database used in this work consists of three classes. To evaluate 

the performance of the proposed approach, the experimental set-up is 
organised as follows:  

1 One-vs-One (OvO): In this experimental setup, binary classification is 
performed between the extracted features of any two classes while 
discarding the third class. For convention, normal class versus (vs) 
COVID-19 class, normal class vs Pneumonia class, and Pneumonia 
class vs COVID-19 class is denoted as N vs C, N vs P, and P vs C, 
respectively.  

2 One-vs-All (OvA): In this experimental setup, the extracted features 
of any two classes are combined and treated as a single class. 
Thereafter, the binary classification is performed between the com-
bined and remaining classes. Similar to OvO convention, the OvA 
classes are categorized as normal plus COVID-19 vs Pneumonia (NC 
vs P), normal plus Pneumonia vs COVID-19 (NP vs C), and normal vs 
Pneumonia plus COVID-19 (N vs PC). 

4. Results & discussion 

Potency of the proposed method is examined based on features for 
different class combinations. The number of features extracted from a 
single chest X-ray image via the image-based method, LBP-based 
method, and combined method are 42, 42, and 84, respectively. 
Thereafter, the subset of features is selected from the original feature 
vector by employing the feature selection method. In the proposed 
method, first 25 features are selected from the ranked original feature 
vector using the ReliefF feature selection method. Further, in the pro-
posed approach, the ranked feature vector is fed to the SVM classifier for 
classification. The ranked image-based and LBP-based features for N vs C 
have been tabulated in Tables 1 and 2, respectively. From these tables, it 
is perceived that fractal dimension, Zernike amplitude, Zernike phase, 
Hu moment 2, and Renyi entropy are highly discriminatory as well as 

highly prioritized using ReliefF-based feature ranking method. There-
fore, these features may contribute significantly to distinguish the 
COVID-19 class from other classes. 

4.1. Effect of LBP on information enhancement 

The use of features computed from LBP based images along with the 
features extracted from X-ray images enhances the texture-based infor-
mation. Various features explained in section 2.2 are computed from 
LBPs of X-ray images. From Tables 1 and 2, it can be observed that FD 
computed from the LBPs of image has shown higher values as compared 
to the FD computed from the image without LBP. A higher mean value of 
FD indicates higher roughness of the texture. Hence, LBP is useful to 
increase the roughness of the texture which in turn improves the feature 
discrimination. Moreover, FD computed from the LBPs of image has 
shown lower values of standard deviation than FD computed from an 
image without LBP. 

It can also be interpreted from Tables 1 and 2 that the RE computed 
from the LBP images is found lesser then the RE computed from X-ray 
images. Higher values of RE are an indication of a higher concentration 
of information in the textures. After applying the ReliefF based feature 
ranking method, it is observed that Renyi has achieved 9th position out 
of 42 features in LBP image based features while other entropy features 
are ranked lower position. Hence, RE computed from the LBP image 
show a lower concentration of information than RE computed without 
LBP. However, the standard deviation for RE computed from the LBP 
image is found lower than the direct computation of RE from the images. 

The Hu moment-based features are applied for pattern recognition. 
The shape-related information in terms of spatial and intensity patterns 
is associated with the order of Hu moment. In Tables 1 and 2, it can be 
observed that the Hu moment 2 achieves a higher rank in both image- 
based features and LBP-based features for normal vs COVID-19 class. 
The mean values of Hu moment 2 are high for the LBP image as 
compared to the image-based computation. Moreover, the deviation is 
also high for the Hu moment 2 feature computed directly over the X-ray 
image than computed over the LBP-based X-ray image. In this way, it can 
be said that the LBP-based features are useful and can be applied to 
improve the distinguish behavior of the proposed methodology for 
COVID-19 identification. 

4.2. Experimental results 

Experimental results obtained for the proposed approach for 
different combination of classes are tabulated in Table 3 for experi-
mental setup-1, i.e., OvO. The proposed approach achieves the classifi-
cation acc of 99.04%, 92.60%, and 97.57% and sen of 99.55%, 95.07%, 
and 99.47% for N vs C, N vs P and P vs C, respectively for image-based 
method. On the other hand, for the combined features, the proposed 
approach achieves classification acc of 98.91%, 94.19%, and 97.89% 
and sen of 99.33%, 94.55%, and 99.70% for N vs C, N vs P and P vs C, 
respectively. The proposed method achieves high acc and sen while sen 

Table 3 
Classification performance for One-vs-One (OvO) experimental setup.  

Type Class acc (%) sen (%) 

Image-based features N vs C 99.04 99.55  
N vs P 92.60 95.07  
P vs C 97.57 99.47 

LBP image-based features N vs C 96.99 98.90  
N vs P 92.44 94.18  
P vs C 95.14 98.66 

Combined features N vs C 98.91 99.33  
N vs P 94.19 94.55  
P vs C 97.89 99.70 

*acc = accuracy, sen = sensitivity, N = Normal class, P = Pneumonia class, C =
COVID-19 class. 
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Fig. 2. Classification performance for N v C. (a) and (b) represent the plot of accuracy and sensitivity against the number of features for all three cases. (c) and (d) 
represents accuracy and sensitivity against the RBF sigma values. 

Fig. 3. Classification performance for P v C. (a) and (b) represent the plot of accuracy and sensitivity against the number of features for all three cases. (c) and (d) 
represents accuracy and sensitivity against the RBF sigma values. 
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of RT-PCR test is very less and showed miss-detections [18]. 
Fig. 2 represents the classification performance plot for N vs C 

experimental setup. The variation of acc and sen with respect to the 
number of features is shown in Fig. 2 (a) and (b), and it can be observed 
that the image-based features achieve the highest acc and sen using the 
first 15 features. The variation in the acc and sen with respect to the RBF 
sigma values can be observed in Fig. 2 (c) and (d). It can also be noticed 
that the RBF sigma value is best suited in the range of 1.7–2.0. For the 
RBF sigma value higher then 2.0, sen is reduced in all three combina-
tions of feature sets. The plots for classification performance of P vs C are 
delineated in Fig. 3. For P vs C, the combined method achieves high acc 
and sen using 21 features. The RBF sigma value in the range 2.7–3 is best 
suited for getting high acc and sen. 

Furthermore, the experiments have also been performed for OvA 
experimental setup. The classification performance for OvA is tabulated 
in Table 4. Fig. 4 shows the plot of the classification performance for NP 
vs C. It can be observed from Table 4 that the image-based method and 
combined method achieves the classification acc 98.11% and 97.97% & 
sen 99.70% and 99.88% for NP vs C, respectively. Both the methods 
require 13 to 16 features to attain high acc and sen. The RBF sigma value 
should be in the range of 2.6–3.0 for achieving high acc with a little 

lower sen nearly 99.8%. 
From Tables 3 and 4, it can be observed that the combined features 

provide better classification performance as compared to LBP-based 
features and image based features. Sen is a crucial parameter for 
reducing the misidentification and controlling the spread of the COVID- 
19 pandemic. By observing the sen values from Tables 3 and 4, it can be 
concluded that the combined approach provides better classification 
performance for the detection of COVID-19 cases. Very high sensitivity 
values such as 99.33%, 99.70%, and 99.88% are obtained for N vs C, P vs 
C, and NP vs C, respectively for combined feature setup. We have also 
computed the 3-class performance of the proposed approach. For the 
OvO setup, the average performance is computed by averaging the N vs 
P, P vs C, and N vs C. Similarly, in the OvA setup, the average has been 
taken for NP vs C, NC vs P, and N vs PC. The proposed method achieves a 
3-class average classification acc of 97% and 95.08% for OvO and OvA 
experimental setup, respectively. 

The proposed approach has also been compared with other existing 
methods for COVID-19 detection and shown in Table 5. It can be noticed 
from the comparison table that the proposed approach achieves better 
classification performance than the existing compared methodologies. 
The convolution neural network-based COVID-19 detection method 
achieved acc 96.78% for the two-class problem and 94.72% for three 
class problem. The deep neural network is applied for COVID-19 
detection and attained the 98.08% acc for COVID-19 vs normal class 
and 87.2% acc for COVID-19 vs others. These methods require the 
availability of a larger dataset of COVID-19 X-ray images, which may be 
a significant issue. Other compared methods have been proposed mostly 
for COVID-19 vs normal class. Accomplishment of the proposed 
approach can be stated as follows:  

1 Method achieves very high sen as well as acc for COVID-19 detection.  
2 Significantly better classification performances than the state-of-the- 

art methods developed for COVID-19 detection. 

Table 4 
Classification performance for One-vs-All (OvA) experimental setup.  

Type Class acc (%) sen (%) 

Image-based features NC vs P 91.88 94.55  
NP vs C 98.11 99.70  
N vs PC 92.67 98.88 

LBP image-based features NC vs P 90.64 93.84  
NP vs C 96.54 99.66  
N vs PC 92.36 92.77 

Combined features NC vs P 93.32 94.55  
NP vs C 97.97 99.88  
N vs PC 93.94 93.88  

Fig. 4. Classification performance for NP v C. Fig. (a) and (b) represent the plot of accuracy and sensitivity against the number of features for all three cases. Fig. (c) 
and (d) represents accuracy and sensitivity against the RBF sigma values. 
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3 Provides better classification performances for both binary and three 
class cases. 

4 A short range of RBF sigma values are suggested for faster and ac-
curate detection. 

In accordance with the above discussion, it can be stated that the 
present method highly appropriate for COVID-19 detection using chest 
X-ray images. In the future, the method will be tested using a larger size 
dataset considering other lung diseases, which may help the physicians 
to improve the accuracy of diagnosis. 

5. Conclusion 

In this article, a novel method for COVID-19 detection is introduced, 
which uses texture and LBP-based features. The present method is 
focused on the automated diagnosis of COVID-19 using entropy, co- 
occurrence matrix, fractal dimension, and LBP-based features. It re-
duces the dependency on the larger-size dataset as required in deep 
learning-based methods. In the proposed method, high sen is achieved 
with high acc for COVID-19 vs others (sen: 99.88%, acc: 97.97%), 
COVID-19 vs normal (sen: 99.33%, acc: 98.91%), and COVID-19 vs 
pneumonia (sen: 99.70%, acc: 97.89%) cases. It is evidenced that the 
Zernike amplitude & phase, Fractal dimension, Hu’s moment are the key 
features that contributed remarkably for COVID-19 detection in all the 
considered experimental set-up. The proposed diagnostic system is 
contact-free, fast, and highly accurate. Therefore, it can be implemented 
in hospitals to assist the subject experts in the screening of COVID-19 
patients. However, the data used in the study is not balanced as 
COVID-19 infected persons images are less. Study on large dataset is 
required. In the future, a cloud-based platform can be developed for 

COVID-19 detection in which the X-ray images can be uploaded from 
remote locations and fast results can be declared accurately. Moreover, 
the SARS-COV-2 virus load based study can be performed for infection 
severity level detection. 
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Table 5 
A comparative summary of the existing methods for automated COVID-19 
detection.  

Author No. of 
images 

Image 
type 

Method Performance 
parameters (%) 

Ioannis 
et al. [10] 

C: 224, P: 
700, N: 504 

X-ray VGG-19 acc: 93.48, sen: 
92.85 (3-class)     
acc: 98.75, sen: 
92.85 (2-class) 

Sethy et al. 
[50] 

C: 25, P: 25 X-ray ResNet50 + SVM  acc: 95.38, sen: 
97.30 (2-class) 

Hemdan 
et al. [51] 

C: 25, N: 25 X-ray COVIDX-Net acc: 90, sen: 90 (2- 
class) 

Narin et al. 
[52] 

C: 50, P: 50 X-ray ResNet-50 acc: 98, sen: 96 (2- 
class) 

Ying et al. 
[53] 

C: 777, N: 
708 

CT-scan DRE-Net acc: 94, sen: 96 (2- 
class) 

Wang et al. 
[54] 

C: 195, P: 
258 

CT-scan M-inception acc: 82.90, sen: 83 
(2-class) 

Zheng et al. 
[55] 

C: 313, P: 
229 

CT-scan Unet acc: 90.80, sen: 84 
(2-class) 

Xu et al. 
[56] 

C: 219, P: 
224, N: 175 

CT-scan ResNet acc: 86.70, sen: NR 
(3-class) 

Oztruk et al. 
[18] 

C: 125, P: 
500, N: 500 

X-ray DarkCovidNet acc: 87.02, sen: 
85.35 (3-class)     
acc: 98.08, sen: 
95.13 (2-class) 

Singh et al. 
[12] 

C: 344, N: 
358 

CT-scan Ensemble vector 
machine 

acc: 95.7, sen: - (2- 
class) 

Proposed 
approach 

C: 219, P: 
1345, N: 
1341 

X-ray texture features acc: 97, sen: 97.86 
(3-class)     

acc: 97.97, sen: 
99.88 (2-class, NP 
vs C)     
acc: 98.91, sen: 
99.33 (2-class, N vs 
C) 

*N = Normal class, P = Pneumonia class, C = COVID-19 class, ac = accuracy, sn 
= sensitivity, NR = not reported. 
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