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Cancer is still a global public health problem. Although remarkable success has been
achieved in cancer diagnosis and treatment, the high recurrence andmortality rates remain
severely threatening to human lives and health. In recent years, peptide nanomedicines
with precise selectivity and high biocompatibility have attracted intense attention in
biomedical applications. In particular, there has been a significant increase in the
exploration of peptides and their derivatives for malignant tumor therapy and
diagnosis. Herein, we review the applications of peptides and their derivatives in the
diagnosis and treatment of bladder cancer, providing new insights for the design and
development of novel peptide nanomedicines for the treatment of bladder cancer in the
future.
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INTRODUCTION

One recent report from the World Health Organization’s International Agency for Research on
Cancer (IARC) released the latest global cancer burden data, showing that 4.57 million cancer cases
and 3 million resultant deaths increased in 2020 in China. Among them, bladder cancer is one of the
common urinary malignancies and ranks among the top ten cancers in terms of morbidity and
mortality. Bladder cancer is one of the most expensive cancers to cure because of its high recurrence
rate (Barani et al., 2021). Although new techniques involving radiotherapy, immunotherapy,
chemotherapy, etc., are blossoming in the treatment of bladder cancer (Booth et al., 2018; Tree
et al., 2018; Wołącewicz et al., 2020), their toxic side effects and high costs limit their broad
applications in clinical applications. Early diagnoses, including the examination of circulating tumor
cells, CT scan, magnetic resonance imaging, positron emission tomography, bone scan, chest X-ray,
etc., are crucial for the diagnosis and treatment of bladder cancer (Todenhöfer et al., 2018; van der
Pol et al., 2018; Wu et al., 2018), but their disadvantages, such as nonspecificity, heterogeneity, and
excessive detection, still limit their potential clinical applications (Faba et al., 2019). Cystoscopic
biopsy can improve the diagnostic accuracy, but it is difficult to identify superficial mucosal lesions
such as carcinoma in situ, and it is invasive. Abscission cytology is a standard non-invasive test for
the diagnosis and monitoring of bladder cancer. It has the disadvantage of being insensitive to low-
grade tumors and depends on accurate diagnosis by the pathologist (DeGeorge et al., 2017).

The primary purpose of drug delivery is to send enough drug payloads to the lesion sites while
minimizing their exposure to healthy tissues. To improve the specificity and pharmacokinetics of
anticancer drugs and avoid the side effects of traditional therapies, twomain strategies involving drug
carriers and covalent modifications are widely used. Drug carriers such as nanoparticles and
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hydrogels can protect drugs from the external environment
before on-demand release when they reach lesion sites.
Meanwhile, the physical and chemical properties of the drug
carriers significantly determine their biological distributions (Fan
et al., 2021; Huang et al., 2021). Covalent modifications enable
temporarily masking or limiting the bioactivity of the drugs and
confer them with the desired pharmacokinetics (Lin et al., 2019;
Cooper et al., 2021; Yang et al., 2021). It is noteworthy that both
the abovementioned strategies can alleviate the burden of drug
metabolism and improve the therapeutic effects of the original
drugs. Among numerous drug molecules, peptides are highly
competitive candidates for the treatment of bladder cancer
because of their small sizes, high specificity, low systemic
toxicity, etc. In addition, the diagnosis of bladder cancer
mainly depends on pathology and imaging examinations,
while the detection accuracy is still low. Using specific
biomarkers on bladder tumor cells, peptide nanotechnology
can significantly improve the sensitivity and specificity for the
diagnosis of bladder cancer. (Pan et al., 2014; Tummers et al.,
2017).

PEPTIDE-INSTRUCTED TUMOR
DIAGNOSIS

Magnetic resonance imaging (MRI) is a noninvasive technique
for tumor diagnosis in current clinical medicine. Although it has
been shown that MRI has the ability to display three-dimensional
anatomical details without injury and provide high spatial
resolution without invasiveness, MRI is still less sensitive than
fluorescence imaging for monitoring tiny tissue damage, cellular
activity, molecular activity, etc (Chandra et al., 2010; Schroeder,
2008). Therefore, the development of new contrast agents is
expected to enable the improvement of the detection accuracy
of MRI. Paramagnetic Gd3+ complexes and superparamagnetic
iron oxide (SPIO) nanoparticles are two widely used contrast
agents in MRI detection. Compared with the paramagnetic Gd3+

complex, SPIO is a better alternative to MRI contrast agents, of
which the signal contrast is several orders of magnitude higher
than that of the traditional Glacki contrast agent (Jun et al., 2008).
In a study of human bladder tumors, the researchers reported that
1.5T magnetic resonance imaging using SPIO as the contrast
agent realized in situ detection of malignant tumors with a small
size to ~4 mm, while it was unable to effectively distinguish the
depth of tumor invasion into the bladder walls (Beyersdorff et al.,
2000). Themain reason is that the cellular internalization levels of
SPIO are limited, and less than 1% of SPIO is internalized by
nonspecific endocytosis pathways (Moore et al., 2001). Due to the
great promise of SPIO in MRI applications, researchers have
endeavored to develop a variety of SPIO conjugates to enhance its
cellular uptake ratio, in which cell-penetrating peptides (CPPs),
such as R11, are considered to be one of the best transporters to
improve the active internalization of nanoparticles into target
cells (Hsieh et al., 2011; Ding et al., 2017). Ding et al. recently also
developed an SPIO nanoparticle whose surfaces are unctionalized
with bladder cancer-specific fluorescein isothiocyanate (FITC)
labeled cell-penetrating peptide (CPP) -polyarginine peptide

(R11) for active targeting and imaging for bladder cancer,
respectively. Their study showed that SPIO-R11 nanoparticles
can be internalized by T24 cells in a dose-dependent manner, and
that SPIO-R11 internalized dose is higher than that of SPIO itself,
since R11 is a cell-permeable peptide that enables efficient drug
delivery. Transmission electron microscopy (TEM) results
indicated that SPIO-R11 is mainly located in cellular vesicles
and lysosomes, but no signals in the nucleus were found. Due to
the cellular specificity of SPIO-R11, the uptake of nanoparticles
into bladder cancer cells was significantly higher than that of
immortalized bladder epithelial cells. In addition, SPIO-R11 had
a lower T2 relaxation time in MRI than SPIO. These results
suggested that SPIO-R11 has great potential as a targeted contrast
agent for the diagnosis and treatment of bladder cancer (Ding
et al., 2017).

Tumor cells are mutated from normal cells, of which the signal
transduction pathways are significantly different from those of
normal cells. Therefore, many signaling regulators or regulatory
proteins are overexpressed in tumor cells and can be used as
specific targets for tumor diagnosis (Oh and Bang, 2020; Wilson
et al., 2021). Recently, targeted peptides have attracted intense
attention because they can specifically bind with receptors on
tumor cells. By conjugating with radioactive or fluorescent
probes, scientists have prepared a variety of peptide probes to
specifically orient and image tumors (Ciobanasu, 2021; Kwak
et al., 2021; Lu et al., 2021; Sonju et al., 2021; Wang et al., 2021).
For instance, Wei et al. recently constructed a loaded nanoscale
oxygen generator (PLZ4@SED) by conjugating
superparamagnetic iron oxide nanoparticles (SPIOns) with
peptide motifs specific to bladder cancer cells. PLZ4@SED
showed good tumor targeting and permeability to patient-
derived bladder cancer cells. Meanwhile, they illustrated that
the presence of PLZ4@SED can improve the contrast of MRI
and promote chemotherapeutic efficacy by producing oxygen
through the Fenton reaction to relieve hypoxia. It was also
reported that PLZ4@SED presented great potential in the
diagnosis and treatment of bladder cancer (Lin et al., 2021).
Sweeney et al. (2017) demonstrated one successful application of
mesoporous silica nanoparticles (MSN), which are functionalized
using a bladder cancer-specific peptide CyC6, as the magnetic
resonance contrast agent. Due to the effective binding of the
modified MSN to tumor cells, tumor boundaries were much
clearer in the T1-and T2-weighted MRI and fluorescence
cystoscopic inspections compared to the traditional technique.

Cystoscopy is one gold standard for the diagnosis of bladder
cancer. However, cystoscopy is an invasive and costly technique,
and it is difficult to detect flat malignancies using this technique.
Meanwhile, urine cytology is low-sensitivity for detecting low-
grade lesions, of which the detection accuracy is highly dependent
on the experience of the cytopathologists (Grossman et al., 2006;
Alfred Witjes et al., 2017; Babjuk et al., 2017). Recently, several
potential biomarkers have been identified that could potentially
provide noninvasive and objective approaches for the detection of
bladder cancers (Kluth et al., 2015). Lee et al. presented one
peptide conjugate consisting of fluorescein and the peptide
sequence of CSNRDARRC. They reported that the peptide
conjugate can specifically bind to bladder cancer tissue using
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frozen sections. Meanwhile, the peptide conjugate could
selectively bind to bladder tumor epithelial cells when it was
injected into the bladder cavity using a tumor-bearing rat model.
Furthermore, Lee et al. found that the peptide conjugate had the
ability to indicate bladder tumor cells in urine, presenting great
potential to be exploited as a real-time diagnostic probe to detect
bladder cancer (Lee et al., 2007). Prothrombin activators (TSPs)
can prevent angiogenesis in a variety of pathological conditions.
Some structural domains and peptide derivatives of TSP-2 enable
the promotion of angiogenesis in BC tissues. 4N1K
(KRFYVVMWKK), derived from the C-terminal cell-binding
domain of TSP-2, plays an important role in the pathology
and prognosis of bladder cancer. Using the hematoxylin-eosin
(H&E) staining technique to examine tumor tissues from bladder
cancer patients, Nakamura et al. verified that 4N1K was
significantly correlated with the tumor apoptosis index and
microvascular density but negatively related to T stage,
metastasis and tumor grade; promising 4N1K may be a useful
biomarker and a new therapeutic target for UC-UUT patients
(Nakamura et al., 2019).

PEPTIDE-INSTRUCTED LOCAL
CHEMOTHERAPY

Transurethral resection combined with chemotherapeutic
infusion is the standard treatment protocol for nonmuscular
invasive bladder cancer. However, the low bioavailability
(GuhaSarkar and Banerjee, 2010) and short retention period of
the current chemotherapeutic drugs (Tyagi et al., 2006; Wirth
et al., 2009) restricted their exposure time at the lesion sites.
Along with the advancement of nanotechnology, nanocarrier
drug delivery systems show advantages in solving these
problems. Guo et al. (2017) designed and synthesized a kind

of positively charged intelligent peptide nanocarrier cross-linked
with disulfide bonds [i.e., PLL-P (LP-co-LC). They prepared one
nanogel system (NG/HCPT) using this nanocarrier by artificially
loading 10-hydroxycamptothecin (10-HCPT). Compared with
free 10-HCPT, NG/HCPT not only has a higher drug loading
rate, longer retention time, and stronger tissue penetration ability
but can also accurately and rapidly release 10-HCPT into bladder
cancer cells, significantly enhancing the corresponding antitumor
effects and reducing the side effects (Figure 1). In 2020, Guo et al.
further synthesized a new R9-polyethylene glycol poly
(L-phenylalanine-L-cysteine) nanogel (R9-PEG-P (LP-co-LC)]
based on NG/HCP, which can improve the adhesion and
permeability of chemotherapeutic drugs. They prepared the
R9NG/HCPT nanogel using 10-HCPT as a model drug. The
morphology of R9NG/HCPT is similar to that of an octopus with
a spear. Highly positively charged R9 with strong membrane
penetrability can help R9NG/HCPT pass across the bladder walls
and enhance its cellular adhesion interactions through
nonspecific and electrostatic interactions, thus enabling
prolonged exposure to chemotherapeutic drugs at the lesion
sites. This system significantly improved the tumor
suppression efficiencies of 10-HCPT in both in situ mice and
rat tumor models, suggesting great potential in the local
chemotherapy of bladder cancer (Guo et al., 2020).

Polymeric micelles constructed using amphiphilic block
copolymers have been widely explored in recent decades due
to their high drug loading efficiency, long cycle time, well-
controlled release ability, and good targeting properties (Xiao
et al., 2012). Recently, Zhou et al. developed an amphiphilic
diblock copolymer poly (ε-caprolactone)-b-polyoxyethylene
(PCL-b-PEO) containing integrin targeting motif c (RGDfK)
and imaging dye FITC. The copolymer assembled into
micelles and strongly interacted with bladder cancer T24 cells.
After encapsulation with doxorubicin (DOX), the micelle could

FIGURE 1 | After intravesical instillation of NG/HCPT, the selective accumulation of nanodrugs in tumor tissue finally releases HCPT triggered by GSH(Guo et al.,
2017).
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efficiently prevent the proliferation of T24 cells and was expected
to be used as a nanoscale drug delivery system for bladder
perfusion chemotherapy (Zhou et al., 2013).

The combination usages of two or more drugs showed great
advantages in cancer treatments involving improving therapeutic
efficacy, lowering side effects, and preventing drug resistance, which
are promising strategies for the treatment of refractory cancers. The
positively charged adhesive chitosan-polymethacrylic acid (CM)
nanocapsules loaded with DOX and cisplatin modified with
peptide (Pt-Aly) presented high drug loading efficiency and
sustained drug release properties. Meanwhile, CM nanocapsules
can be firmly attached to the surface of the bladder cavity,
prolong the retention time of the payload in the bladder, and
have the effect of synergistically killing UMUC3 bladder cancer
cells. In addition, CM nanocapsules have no obvious damage to
the urothelium, which is expected to cooperate with intravesical
chemotherapy in the treatment of non-muscle invasive bladder
cancer (Lu et al., 2016). Overall, the intelligent peptide nanogel
systems have much more powerful retention efficiency and
permeability, providing a promising drug delivery platform for
local chemotherapy of bladder cancer.

PEPTIDE-ASSISTED SYSTEMIC
CHEMOTHERAPY

Systemic chemotherapy is one of the dominant techniques used
to treat musculoskeletal invasive bladder cancer (Calabrò and
Sternberg, 2009; Yin et al., 2016). However, nonspecific

distributions of traditional chemotherapeutic drugs in human
bodies have caused severe toxicity to normal tissues, including
liver and kidney organs, bone marrow, gastrointestinal tract
tissues, etc., and significantly limited their clinical applications.
Therefore, researchers are endeavoring to develop new drug
delivery systems that can transport the chemical drugs into
the desired sites to improve their therapeutic effects (Cheng
et al., 2019; Sonju et al., 2021). Peptide-drug conjugates are
promising prodrugs for the treatment of cancer that combine
one or more traditional chemical drugs with short peptides
through biodegradable linkers. This prodrug strategy can
uniquely and specifically employ the bioactivity and self-
assembling properties of short peptides to enhance the
therapeutic efficacy of traditional drugs (Cooper et al., 2021).
Zeng et al. (2021b) recently developed one short-peptide prodrug,
HCPT-FF-GFLG-EEYASYPDSVPMMS, consisting of 1) a self-
assembling motif (i.e., -FF-); 2) an EphA2 targeting sequence on
T24 cancer cells (i.e., YSAYPDSVPMMS); and 3) one short
peptide linker responsive to the CtsB enzyme (i.e., GFLG).
They found that this prodrug could be efficiently encapsulated
by T24 cells and cleaved intracellularly by CtsB, resulting in
nanofibrils in T24 cells (Figure 2). The formation of nanofibrils
loaded with HCPT prolonged its circulation period in vivo.
Moreover, this prodrug system could precisely deliver HCPT
into T24 cancer cells, reduce its accumulation in normal tissue
and lower the side effects. Pan et al. prepared one kind of
nanomedicine, DC-PNM-PTX, in which one bladder targeting
peptide sequence, PLZ4, one polymeric micelle, and the chemical
drug paclitaxel (PTX) were involved. They reported that DC-

FIGURE 2 | (A) The molecular structure of HCPT-FF-GFLG-EEYSAYPDSVPMMS; (B) The illustration of the bladder tumor cell targeting, intracellular fibrillation and
drug release of HCPT-FF-GFLG-EEYSAYPDSVPMMS(Zeng et al., 2021a).
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PNM-PTX could specifically target bladder cancer cells, prevent
bladder tumor growth in a xenograft tumor model, and efficiently
prolong mouse survival compared to unmodified PTX.
Nanomaterials modified with multiple ligands targeting cell
membrane receptors play positive roles in tumor therapy,
which is beneficial for reducing the toxicity and side effects of
traditional chemotherapy and improving antitumor outcomes
(Pan et al., 2016).

PEPTIDE-INSTRUCTED GENE THERAPY

Gene therapy is a revolutionary technique that directly uses
therapeutic genes to treat various diseases. As one alternative
to traditional treatments (Dunbar et al., 2018; High and
Roncarolo, 2019), the first clinical trial of gene therapy was
approved in 1989, and nearly 2,600 trials have been completed
or are under their ways worldwide until now (Ginn et al., 2018).
However, it is still challenging to direct the genes into targeted
cells without damaging other cells. It has been shown that virus-
like particles (VLPs) from human JC polyomavirus (JCPyV) can
package and deliver exogenous DNA into sensitive cells for gene
expression (Chang et al., 1997). To improve the specificity of gene
therapy, Lai et al. (2021) conjugated SPB peptides targeting
bladder cancer cells onto JC polyomavirus (JCPyV) virus-like
particles (VLPs) and succeeded in the delivery of the suicide gene
thymidine kinase. Both in vitro and in vivo experiments
illustrated that the suicide gene was only expressed in human
bladder cancer cells but not in lung cancer and neuroblastoma
cells that were sensitive to JCPyV VLP infection, implying the
great specificity of VLP-SPBs. Meanwhile, the gene transduction
efficiency of VLP-SPBs is approximately 100-fold that of the VLP
itself. The binding of JCPyV VLPs with specific peptides can
improve their original affinities and change the expression
directions of the packed genes. Moreover, VLP-SPBs presented
the ability to selectively prevent the growth of bladder tumors but
had no significant inhibitory effects against lateral lung tumors. In
general, gene therapy is one flourishing technique to treat various
diseases, and malignancies are their main enemy. The
applications of the targeted peptide delivery systems enable
artificial control and regulation of gene expression at the
cellular level, thus succeeding in disease treatments but not
affecting normal tissues and organs.

Epidemiological data have shown that more than 50% of
human malignancies, including bladder cancer, are related to
mutations in the p53 gene (Hainaut et al., 1997). Mutant p53
protein enables the acceleration of tumor formation and
metastasis and is associated with resistance to radiotherapy
and chemotherapy, as well as poor prognosis (Al-Sukhun and
Hussain, 2003). The functional restoration of p53 protein can
promote the expression of downstream genes to block cell cycles
or induce cell apoptosis, resulting in the suppression of tumor
progression. It has been shown that one C-terminal peptide
sequence (p53c) can restore the binding ability to specific
DNA sequences and the transactivation function of the
mutant p53 gene, leading to p53-dependent apoptosis of
tumor cells (Selivanova et al., 1997). However, due to the

lipophilicity of biological membranes and their roles as
biological barriers to defeat exterior enemies, many synthetic
compounds cannot cross cell membranes. R11 can be specifically
captured by bladder and prostate tissues and is promising for use
as a drug or probe carrier for the treatment and detection of upper
urinary tract tumors (Hsieh et al., 2011; Ding et al., 2017). Zhang
et al. showed that the synthetic peptide R11-p53c can be
effectively and preferentially delivered into bladder cancer
cells, resulting in the reactivation of the p53 gene and
inhibition of tumor growth. More interestingly, R11-p53c also
presented excellent antitumor effects in primary and metastatic
tumor models, which could prolong the survival period while
having no significant systemic toxicities. In addition, their study
also illustrated that R11-p53c could prevent the growth of both
mutant and recombinant p53c tumor cells but had no significant
inhibitory effects on normal cells. It was also noted that
transcriptional levels of several p53 target genes were
upregulated after treatment with R11-p53c. Overall, R11-p53c
has the potential to treat both primary and metastatic bladder
cancer and should be a promising therapeutic agent for the
treatment of upper urinary tract tumors. (Hsieh et al., 2011).

PEPTIDE-MEDIATED PHOTOTHERMAL
THERAPY

Photothermal therapy (PTT) is a highly promising strategy to
defeat malignancies that mainly utilizes photothermal materials
to convert light energy into heat in situ, finally raising the local
temperature to result in cell apoptosis and tumor killing (Gao
et al., 2019; Chen et al., 2020; Jiang et al., 2020). By taking
advantage of photothermal conversion, PTT has been widely used
in a variety of tumor treatments, and some of them are under
clinical trials (Timko et al., 2010; Chen et al., 2014). One crucial
issue for PTT applications is to develop carrier materials with
good selectivity to tumor cells. Tao et al. (Tao et al., 2019) loaded
folate-modified vincristine into polydopamine-coated Fe3O4

(Fe3O4@PDA-VCR-FA SPs) and applied them for the
treatment of bladder cancer. PDA shells can not only improve
colloid stability and biocompatibility but also enhance
photothermal effects and prolong the blood circulation period.
The half-life period in blood and the tumor retention rate of
Fe3O4@PDA-VCR-FA SPs are 2.83 h and 5.96% ID g−1,
respectively, which are significantly improved compared with
those before folic acid modification. The superparamagnetism of
Fe3O4 and the loading of vincristine enable arming Fe3O4@PDA-
VCR-FA SPs with nuclear magnetic resonance imaging (NMRI)
and chemotherapy abilities. With the further help of near-
infrared laser-triggered photothermal therapy, Fe3O4@PDA-
VCR-FA SPs can completely remove bladder cancer and
prevent its recurrence. Moreover, no obvious toxicity to the
liver, kidney or other organs was detected through
biochemical and pathological tests, suggesting the good
biocompatibility of Fe3O4@PDA-VCR-FA SPs. Zeng et al.
(2021b) recently reported a novel RGD-mediated
photosensitive drug-peptide conjugate (BBTD + GA/PEG-
RGD) for the treatment of musculoskeletal invasive bladder
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cancer. This system can specifically target integrin αvβ3 outside
the membrane of bladder cancer. Meanwhile, the system can
prevent the overexpression of heat shock protein 90 and reduce
the resistance of cancer cells to heat stress, finally succeeding in
low-temperature PTT with great antitumor properties (Figure 3).
Furthermore, the results of animal experiments showed that this
system had advantages involving 1) good tumor targeting ability
and stability; 2) less thermal damage to normal tissue; 3) great
therapeutic effects against musculoskeletal invasive bladder
cancer; and 4) a longer survival period compared to the
control groups. Low-temperature PTT is highly effective in
preventing tumor growth without damaging normal tissues,
promising great clinical applications for optical tumor therapy
in the future.

THERAPEUTIC PEPTIDES

Mitochondria play an important role in apoptotic death (Bock
and Tait, 2020), and some anticancer agents can destroy
mitochondrial functions and induce tumor cell apoptosis
(Vasan et al., 2020). One typical example is the cationic
amphiphilic peptide KLAKLAKKLAKLAK (i.e., KLA). KLA is
a natural antibacterial peptide that can bind and damage
negatively charged bacterial membranes. Normally, KLA does

not damage eukaryotic membranes and has no toxicity to
eukaryotic cells. However, internalized KLA can rupture the
mitochondrial membrane, resulting in cytochrome C release
and cell apoptosis (Huang et al., 2017). KLA is always
conjugated with transmembrane peptides (CPPs) to promote
its internalization efficiency by tumor cells; however, the
conjugated KLA-CPPs also have high cytotoxicity to normal
cells because of their nonspecific interactions (Wang et al.,
2016). To overcome the potential nonspecific interactions,
Jung et al. designed and synthesized a mixed peptide (Bld-1-
KLA) consisting of 1) a targeting peptide to bladder cancer cells
CSNRDARRC (Bld-1) and 2) an effector peptide
D-KLAKLAKKLAKLAK (KLA) that can destroy the
mitochondrial membrane and induce apoptosis. Bld-1-KLA
can selectively bind and internalize into bladder cancer cells to
induce cell apoptosis without significant toxicity to other tumor
cells and normal cells. After intravenous administration of Bld-1-
KLA in the HT1376 tumor-bearing mouse model, it was shown
that Bld-1-KLA had a higher tumor homing and inhibition ability
than the control groups (Figure 4). Together, these results suggest
that Bld-1-KLA is a promising targeted therapeutic against
bladder cancer (Jung et al., 2016).

Fibroblast cytokine 9 (FGF9) is overexpressed in many cancer
cells (Ren et al., 2016; Mizukami et al., 2017), and its targeted
receptor FGFR3c is an important driver of bladder cancer

FIGURE 3 | Schematic illustration of synthesizing BBTD + GA/PEG-cRGD nanoparticles for photohyperthermia therapy of MIBC(Zeng et al., 2021a).
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progression (Iyer and Milowsky, 2013; Wang et al., 2020). The
important role of FGFR3c makes it an important therapeutic
target for the treatment of bladder cancer. Wang et al. (2020)
reported one FGF9 binding peptide, P4, using the phage display
technique. Meanwhile, they found that P4 is highly homologous
to the immunoglobulin-like domain II-III (D2-D3) of FGFR3c
using sequence comparison. Functional analysis showed that P4
had the ability to prevent the FGF9-induced aggressive
phenotypes, including cell proliferation, migration, and
invasion, and inhibit tumor progression by downregulating the
MAPK and Akt cascade pathways. More importantly, FGF9 was
found to be a potential driver of drug resistance in gastric and
bladder cancer cells, in which the presence of P4 can increase the
sensitivity of chemical drugs. In conclusion, Wang’s study
identified a novel FGF9-binding peptide that may serve as a
potential agent to treat malignancies with abnormally
upregulated FGF9.

CONCLUSION

In recent decades, significant success has been achieved in the
diagnosis, treatment, and prevention of bladder cancer. However,
bladder cancer is characterized by polycentricity, multiple
occurrences, and recurrence, suggesting great challenges for its
clinical treatment. With the development of modern biosynthesis
technology, peptide nano drugs have become one of the hot spots
in drug research. Compared with monoclonal antibody drugs,
recombinant protein drugs and small molecule drugs, peptide
nano drugs have the characteristics of simple spatial structure,
significant curative effect and high safety, and have been widely
used in the diagnosis and treatment of tumors. With the
continuous progress of related technologies, the clinical

application of peptide nano drugs is more and more in-depth,
and the development space is broad. Peptides are promising for
intracellular delivery of chemical drugs, DNA, siRNA,
fluorescent molecules and nanoparticles. Compared with
other chemical entities, peptides have the advantages of low
molecular weight, low cost and good stability. At the same time,
polypeptides can be easily modified to attach and enter tumor
cells, and finally transport the goods to the desired and desired
places. In general, peptide nanodrugs can improve tumor
targeting and permeability, reduce systemic toxicity, reduce
and prevent recurrence, shorten treatment time and reduce
treatment cost. They are of great value for the clinical
application of bladder cancer. Peptide drugs have
outstanding advantages. With the continuous progress of
biotechnology and peptide synthesis technology, peptide
drugs have broad market development space and are
expected to become one of the main drugs for cancer
diagnosis and treatment (Lin et al., 2021).
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FIGURE 4 | Bld-1-KLA destroys the mitochondrial membrane and induces apoptosis.
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