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The phase cycling method is a state-of-the-art method to reconstruct complex-valued MR image. However, when it follows
practical two-dimensional (2D) subsampling Cartesian acquisition which is only enforcing random sampling in the phase-
encoding direction, a number of artifacts in magnitude appear. A modified approach is proposed to remove these artifacts under
practical MRI subsampling, by adding one-dimensional total variation (TV) regularization into the phase cycling method to
“pre-process” the magnitude component before its update. Furthermore, an operation used in SFISTA is employed to update
the magnitude and phase images for better solutions. The results of the experiments show the ability of the proposed method to
eliminate the ring artifacts and improve the magnitude reconstruction.

1. Introduction

In traditional magnetic resonance imaging (MRI), recon-
structing an image requires the full Fourier domain (k
-space) samples which are complex values and usually on a
regular Cartesian grid. The full acquisition leads to an
extremely time-consuming scan process. Compressed sens-
ing (CS) has proven to be effective to reconstruct high-
quality images from the incomplete set of k-space samples,
accelerating the scan process [1-5]. And many researchers
combine CS and parallel imaging techniques (CS-PI) to fur-
ther speed up the MRI acquisition [6-8]. Most approaches
applying CS in MRI reconstruction [2-8] focus on the mag-
nitude recovery, leaving the phase reconstruction less stud-
ied. However, MRI images are complex-valued, including
magnitude and phase parts. And the phase of MRI signal also
includes important information, such as field inhomogeneity
or the velocity of blood flow [9], and can be utilized to assess
B, field inhomogeneity and obtain clinically relevant physio-
logical parameters [10]. Therefore, the phase map is of interest
in many applications such as field map estimation [11] and
phase-contrast imaging [12, 13]. If we can reconstruct accu-

rate complex-valued MR image, i.e., its magnitude and phase
maps simultaneously, from under-sampled raw k-space data,
it will make CS more generally applicable in MRIL

Zibetti and De Pierro [14] proposed a new penalty to sep-
arate the regularization of magnitude and phase, enforcing
the magnitude to be sparse in finite differences domain and
the phase to be smooth in first-order roughness. This algo-
rithm gives some better results than standard CS. But it is
only applicable for first-order differences operators in CS
regularization, which is not the optimal choice. Moreover,
in this method, the phase is still not reconstructed indepen-
dently from the magnitude, because the parameter for the
phase regularization term is constrained by the correspond-
ing magnitude. It causes low SNR of the phase image in the
locations having low magnitude. At last, the initialization
for phase should be good when the first-order phase differ-
ence is large, as the regularization term for phase is not
convex here.

Some new regularization terms for phase component,
exploiting the periodicity of phase, were introduced by Zhao
et al. [15] to improve phase results. In this method, disconti-
nuities are allowed to exist in phase, since the smoothness
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FIGURE 1: The results of the phase cycling method under two undersampling schemes at 30% sampling rate on a brain dataset.

penalty for phase is modified. However, it has more compu-
tational complexity, e.g., about ten times, than the conven-
tional CS.

The phase cycling method [16] proposed by Ongetal. isa
state-of-the-art algorithm for complex-valued MR image
recovery. However, this approach follows the variable density
Poisson-disk plus partial Fourier (PDPF for short in this
paper) subsampling scheme that is impractical for MRI hard-
ware in 2D acquisition [17]. When random sampling is only
imposed in the phase-encoding direction [18] (RSPe for
short in this paper) on a 2D Cartesian grid, which is workable
in practical MRI 2D acquisition, there are usually some
noticeable artifacts in magnitude image, especially of brain
data. The artifacts will be shown in Section 2.

In this paper, we utilize the smoothing property of total
variation (TV) norm to remove the artifacts before each
magnitude update under some sampling scheme and apply
an update operation in the smoothing-based FISTA
(SFISTA) [19] to improve the image recovery. The detailed
procedure of this modified phase cycling method will be
given in Section 2.

2. Materials and Methods

The cost function of the phase cycling method is

= A(mee?) [+ g,0(m) + 9, p), (1)

where m and p are the magnitude and phase images, respec-
tively, y denotes the subsampled k-space measurements, A is
the system matrix for the complex-valued images, » denotes

Magnitude Phase

F1GURE 2: The magnitude and phase images in the initial step under
the RSPe sampling pattern at 30% sampling rate on the brain dataset
of Figure 1. Both images have artifacts.

the element-wise multiplication, e is the element-wise expo-
nential operator of the matrix ip, and g,,(m) and g,(p) are

the regularization functions for m and p, respectively. The
first term in Equation (1) indicates the data fidelity, where
A is normally the product of the Fourier sampling operator
and the sensitivity operator for multicoil data and reduces
to a subsampling Fourier matrix for single-coil data. For con-
venience, we call this data fidelity term f(m, p).

The alternating minimization is performed to update the
magnitude and phase images separately in this algorithm.
And the proximal method [20, 21] is applied to solve each
subproblem in the phase cycling method. The highlight of
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Inputs: the system matrix A,
the measurements y,

Initialization: set the iteration index k =0,

Repeat: For k=12, ..., K.
calculate mg.

update the magnitude

update the phase
PG =P+ Wy

the maximum number of iterations K,
the positive regularization parameter 7.
Outputs: reconstructed magnitude m and phase p.

set the initial magnitude m, = |A*y|,
set the initial phase p, = 2A"y,
generate the set of phase wraps w from the initial phase p,,.

mg' = my = iz, Vuf (Mo p).
do one-dimensional TV regularization of magnitude

myzy = prox, (yl|mllry_ip)(mg’)
M1 = (1= P/t ) Miry = (Pl )Prox, (G,,(m))(myry) + Vo f (Myrys )

randomly choose a phase wrap w; from w,

Pra = (1= pylie, )pg = (pyl, )prox, (9,(p))(pg) + p,V,f (m. pg) — wy

Pseupocobk 1: The pseudocode of the modified phase cycling method.

this method is that it shifts the phase wraps randomly over
iterations to avoid significant error accumulating at the same
location. It is because the phase wraps are artifacts in the ini-
tial solution and penalized by phase regularization in each
iteration, resulting in errors to accumulate at the same posi-
tion over iterations [16]. In this way, the magnitude and
phase images are updated at iteration k as follows:

mg =y~ p,,V,f (my, p), )
M,y = Prox, (g,,(m))(mg), (3)
P9 =P = PVof (ms py)s (4)
Prer = PrOX, (gp(P)) (pg +wy) —wy (5)

where
. 1 2
prox,(g)(x): = argmin,, ¢ g(u) + Py lu=x]"¢ (6)

is the proximal operator for function g, p,, and p, denote the

step-size for magnitude m and phase p, w; is a phase wrap
picked randomly from the set of phase wraps w generated
by the initial solution with equal probability.

The phase cycling algorithm performs well based on
PDPF undersampling scheme on a 2D Cartesian grid. Never-
theless, when it follows a practical RSPe subsampling scheme
in 2D Cartesian acquisition, some artifacts pointed by the red
arrows sometimes appear in magnitude image as shown in
Figure 1. In addition, as the center of k-space data consists
of low frequency signals, the central area is fully-sampled in
both undersampling schemes to improve the reconstruction
quality and compute coil sensitivities for multicoil data.

FiGure 3: The sampling pattern.

Under the RSPe sampling pattern, the collected k-space
data lack the whole echoes along several phase-encoding
lines. Via inverse Fourier transform, the data on these miss-
ing lines are zero-padded, generating significant artifacts in
the initial step in both magnitude and phase maps (see
Figure 2). The artifacts are like arcs generally in the horizon-
tal direction orthogonal to the phase-encoding coordinates.
So far, our observation is that, under the RSPe sampling pat-
tern, artifacts tend to happen in the initial step when the
magnitude image has some very big values forming lines,
arcs, or circles, which is common within brain images.
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FI1GURE 4: The results on a brain dataset for the proposed algorithm, the proposed method without TV regularization, and the phase cycling

method.

Since the phase cycling approach effectively averages the
artifacts of phase wraps spatially in phase image over itera-
tions by virtue of shifting the phase wraps randomly, the arti-
facts caused by the RSPe sampling pattern can be averaged
incidentally. This can be deduced by comparing the phase
maps under the RSPe sampling pattern in Figures 1 and 2.
As phase values interact with magnitude values via calculat-
ing the gradient of the data fidelity term f(m, p) (see Equa-
tions (2) and (4)), the artifacts of magnitude reduce more
or less eventually by means of delivering the abovementioned
phase image with less or no artifacts to the data fidelity term.
However, these errors in magnitude cannot be removed thor-
oughly in most situations.

In our method, before each update, one-dimensional TV
regularization is conducted on the magnitude images to elim-
inate the artifacts mentioned above. This is inspired by the
piecewise-smooth nature of TV norm [22-24]. Since the arti-
facts appear to be oriented towards the coordinates orthogo-
nal to the phase-encoding direction, the one-dimensional TV
regularization of magnitude shown in Equations (7) and (8)

is enforced in the phase-encoding direction before each mag-
nitude update in the phase cycling algorithm.

mg' = my = P,V f (M p), (7)

(8)

where ||m||;v_,p denotes the one-dimensional TV norm in
the phase encoding direction, m;y denotes the magnitude
after the one-dimensional TV regularization for iteration k,
p,.1v is the step-size of the TV regularization, and y is a pos-
itive regularization parameter.

Furthermore, inspired by SFISTA [19], the following
generalized step called the smoothing-based proximal opera-
tor (SPO) in this paper replaces the proximal operator in the
phase cycling method:

Myry = prox, (VHm”TV—lD) (mg’) >

Yoo = (1 - 5) - Eprox, (g0) () +pV.S, (9)
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TaBLE 1: Comparison of the magnitude results by the proposed and phase cycling methods under RSPe sampling pattern in terms of peak-to-
signal noise ratio (PSNR) and structural similarity index metric (SSIM).

Methods PSNR [dB] (magnitude) SSIM (magnitude) PSNR [dB] (phase) SSIM (phase)
The proposed 38.2+0.45 0.97 £ 0.002 16.9+0.04 0.88 +0.002
Phase cycling 36.1+0.81 0.95 +0.005 17.0 £0.05 0.88 £0.004

FIGURE 5: The sampling pattern.

where p is the step-size, 4 denotes smooth approximation
parameter, and V, f represents the gradient of the data fidel-
ity term f with respect to the update variable x.
The proposed method benefits from the smoothing effect
of TV norm and the regularization-solving capacity of SPO.
The pseudocode of the modified phase cycling method is
shown as follows:

3. Results and Discussion

The proposed approach and the phase cycling method are
implemented in MATLAB (MathWorks, Natick, MA) and
run on a laptop with a 1.1 GHz Intel Core i7 with 6 multi-
cores, and 16 GB memory. The step-size p,, for magnitude
update is 1/A . (A*A), and the step-size p, for phase update

is 1/(A,. (A*A) max (|m|*)), where A_, denotes the maxi-
mum eigenvalue calculated analytically. The maximum
number of iterations K is 100. The /;, norm on the Daube-
chies 4 wavelet transform coefficients of magnitude is
selected to be function g, (m) unless otherwise specified.
The smooth approximation parameter y is set as 1 for the
best performance of SPO. For each method, the regulariza-
tion parameters are chosen for its optimal performance in
terms of peak-to-signal noise ratio (PSNR) and structural
similarity index metric (SSIM) [25].

A fully sampled human brain dataset [16], with a 2D
image size of 230 x 180 and acquired by an 8-channel head
coil, is available in the software package at https://github
.com/mikgroup/phase_cycling.git. [, regularization is imposed
on the Daubechies 4 wavelet domain for the phase image. The
positive TV regularization parameter y is set to be 0.005. To
get the measurements y, data along 20% phase-encoding cen-

ter lines are fully sampled and the other data are from 10%
randomly chosen phase-encoding lines in the rest k-space.
This undersampling pattern is shown in Figure 3.

Figure 4 shows the results of both methods and the pro-
posed method without TV regularization on the brain
dataset. To better display phase results, the background
areas of the phase images were roughly masked out by
thresholding the bottom 10% of the magnitude images.
For the phase cycling algorithm, ring artifacts can be seen
in the magnitude image. While, due to SPO, the proposed
method without TV regularization reconstructs the magni-
tude image with less error compared to the phase cycling
method, there are still some ring artifacts in the magnitude
result. Furthermore, the proposed method removes the ring
artifacts and promotes the quality of magnitude recovery
significantly owe to the TV regularization and SPO. Com-
paring the magnitude images and their corresponding error
maps of the proposed method with and without 1D TV
regularization, it can be deduced that the 1D TV regulari-
zation can indeed decrease and even eliminate the ring
artifacts. On the other hand, the magnitude image of the
phase cycling method has more errors in general, which
can be demonstrated by the contrast of the error maps.
The three approaches perform comparably with each other
in phase reconstruction.

Table 1 lists the PSNRs and SSIMs of the magnitude and
phase maps by the proposed and phase cycling methods
under the RSPe sampling pattern with a 30% sampling rate.
Here, ten distinct RSPe sampling schemes with 30% samples
are adopted to verify the robustness of the proposed method.
The PSNR of the magnitude images by the proposed method
improves about 1~3dB, while the SSIM promotes about
0.01~0.02.

Another 256 x 256 single-coil brain dataset (see Dataset
S1 in the Supplementary Material) is used to test the pro-
posed algorithm. /; regularization is imposed on the Daube-
chies 6 wavelet domain for the phase image. y = 0.004. The
data in the readout direction are always full sampled. And
the random sampling only takes place in phase-encoding
direction, with 20% center coordinates and 10% randomly
selected coordinates elsewhere. Under this sampling pattern
shown in Figure 5, Figure 6 displays the results of the pro-
posed method with and without TV regularization and the
phase cycling algorithm. The last method produces several
artifacts pointed by arrows in the magnitude result. The arti-
fact pointed by the yellow arrow may be mistaken as tissue in
the brain. The proposed algorithm removes these artifacts
distinctly thanks to the TV regularization, while without it
the proposed method generates some ring artifacts. And the
phase images reconstructed by three approaches are nearly
the same.
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F1GURE 6: The results on another brain dataset for the proposed algorithm with and without TV regularization and the phase cycling method.

Here, we still do ten experiments under ten different
RSPe sampling schemes with 30% samples to calculate the
PSNRs and SSIMs of magnitude images by the proposed
and phase cycling methods. In terms of PSNR, the former
results in 34.9 + 0.11 dB, and the latter results in 33.7 £ 0.15
dB. And in terms of SSIM, the former results in 0.91 +
0.002, and the latter results in 0.903 + 0.004.

The value of the TV regularization parameter y should be
chosen cautiously. When it is too large, the magnitude image
will blur and lose much detailed information, whereas too
small y renders this artifact-elimination regularization inef-
fective. In our experience, the value between 0.001 and
0.005 is appropriate.

4. Conclusions

We add the one-dimensional TV regularization of magnitude
into the phase cycling algorithm, and use SPO to solve the
magnitude and phase subproblems. The 1D TV regulariza-
tion is like a preprocessing step for magnitude in each itera-
tion. And the SPO improves the magnitude recovery to
some extent. The modified algorithm can significantly reduce
or totally eliminate the artifacts of magnitude by the phase-
cycling method under practical RSPe undersampling pattern,
while the quality of the reconstructed phase image is compa-
rable to the phase cycling method. However, the performance
of the proposed algorithm is sensitive to the value of TV
regularization parameter.

Data Availability

The 230 x 180 brain data acquired by an 8-channel head coil
are from previously reported studies and datasets, which
have been cited. The processed data are available in the soft-
ware package at https://github.com/mikgroup/phase_cycling
.git. The 256 x 256 brain data used to support the findings of

this study are included within the supplementary informa-
tion file “Dataset S1.mat”.
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