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Neuropathic pain (NP) is poorly managed, and in-depth mechanisms of gene
transcriptome alterations in NP pathogenesis are not yet fully understood. To
determine microRNA-related molecular mechanisms of NP and their transcriptional
regulation in NP, PubMed, Embase, Web of Science and CINAHL Complete (EBSCO)
were searched from inception to April 2021. Commonly dysregulated miRNAs in NP were
assessed. The putative targets of these miRNAs were determined using TargetScan,
Funrich, Cytoscape and String database. A total of 133 literatures containing miRNA
profiles studies and experimentally verify studies were included. Venn analysis, target gene
prediction analysis and functional enrichment analysis indicated several miRNAs (miR-
200b-3p, miR-96, miR-182, miR-183, miR-30b, miR-155 and miR-145) and their target
genes involved in known relevant pathways for NP. Targets on transient receptor potential
channels, voltage-gated sodium channels and voltage-gated calcium channels may be
harnessed for pain relief. A further delineation of signal processing and modulation in
neuronal ensembles is key to achieving therapeutic success in future studies.
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INTRODUCTION

Neuropathic pain (NP) is poorly managed and causes by a disease or lesion of the somatosensory
nervous system (Cohen and Mao, 2014), accompanied by metabolic diseases, mechanical trauma or
tumor invasion; it concerns various pathophysiological changes within the peripheral and/or central
nervous system (Costigan et al., 2009; Zhang Y. H et al., 2021). A distinctive feature of peripheral
neuropathic pain is mechanical allodynia, which is triggered by light touch (Costigan et al., 2009; Liu
et al., 2018). A number of rodent NPmodels that have been established to shape exploration efforts in
the pathophysiological mechanisms of NP in the nervous system include the sciatic chronic
constriction injury (CCI), spared nerve injury (SNI), spinal nerve ligation (SNL), sciatic nerve
transection, diabetic neuropathy and drug-induced neuropathy models. Although human perception
of pain is subjective that it cannot be completely duplicated in animal models, tactile allodynia in
rodent models is regarded to be a corresponding pattern for neuropathic mechanical hypersensitivity
in patients. These models commonly provide a clear picture of cause-effect relationship or particular
biomarkers in NP.
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In recent years, several studies have comprehensively
discussed epigenetic modifications have dominated our
understanding about activation and suppression of various
gene expressions in the persistent and development of NP
models (Penas and Navarro, 2018; Guo et al., 2019; An et al.,
2021; Zheng et al., 2021). Unfortunately, in-depth
mechanisms of gene transcriptome alterations in NP
pathogenesis are not yet fully understood. Our previous
study (Guo et al., 2019) have investigated the biological
function of microRNAs (miRNAs) in frequently used NP
rat model like CCI, SNI and SNL. Although miRNAs are non-
coding RNAs containing only 19–25 nucleotides and are not
directly involved in peptide synthesis, they markedly control
biological processes by affecting mRNA stability, as well as
protein translation (Lopez-Gonzalez et al., 2017; Song et al.,
2020). Nervous tissues, such as dorsal root ganglia (DRG),
spinal cord and prefrontal cortex (PFC), are of considerable
concern in terms of the therapeutic potential of miRNAs in
NP (Tang et al., 2021). A number of miRNAs, such as miR-
183 cluster, miR-155, miR-145, miR-203 and miR-200b/429,
are detected in nervous tissues and are involved in NP by
affecting neuronal excitability, neuroinflammation, or
neuronal plasticity (Hamada et al., 2014; Peng et al., 2017;
Shi et al., 2018; Zhang Y et al., 2020). In addition, the
dysregulation of certain miRNAs mediates downstream
molecular mediator of pain, which contain transient
receptor potential receptor channels, purinergic receptors,
and voltage-gated sodium and calcium channels (Yan et al.,
2020a; Yeh et al., 2020; Li et al., 2021). Although numerous
studies have attempted to provide novel mechanistic insights
into the role of miRNAs roles in NP, the entire pain pathway
still remains to be elucidated. Hence, we performed
comprehensive literature search on the microRNA-related
molecular mechanisms of NP, and bioinformatics analysis of
their transcriptional regulation. This study may shed light on
the enigmatic pathophysiology of NP.

METHODS

Search Strategy
A systematic search was performed in April 2021 on four
electronic databases, namely, PubMed, Embase, Web of
Science and CINAHL Complete (EBSCO). The terms used
for search words included the following: (“neuropathic pain”,
“Neuralgia”, “Nerve pain”, “sciatica”, “chronic constriction
injury”, “spinal nerve ligation”, “spared nerve injury”,
“chronic compression dorsal root ganglion”, “CCI”, “SNI”,
“SNL” or “CCD”) and (“microRNA”, “micro-RNA”, “mir*”,
or “miRNA”). No language restrictions were employed. The
reference lists of all identified articles were examined. Full
details of the search strategy for all databases can be found in
Supplementary Appendix S1. Subsequently, all search
results were imported in EndNote X7 (Thomson Research
Soft, Stamford, United States). Duplicate items, reviews,
abstracts and full texts were removed.

Inclusion Criteria
Compared with our previous study (Guo et al., 2019), this
study focused not only on NP rat model like CCI, SNI and
SNL, but also on mouse model, meanwhile, contained drug-
and disease-induced neuropathy models. So, several
unambiguous inclusion criteria were listed as follows: 1)
types of studies: only original articles exploring miRNAs’
roles in NP through comparison with the rodent models in
NP condition and those without NP. Conference abstracts,
conference presentations, book chapters, book reviews, case
studies, meta-analysis, news items and corrections were
excluded; 2) types of animal models: a. mouse or rat
models of NP surgical models containing CCI, SNI, SNL,
sciatic nerve transection, partial sciatic nerve injury, brachial
plexus avulsion and trigeminal neuralgia, b. mouse or rat
models of drug-induced NP models, including vincristine,
cisplatin, oxaliplatin, bortezomib and taxanes, c. mouse or rat
models of disease-induced NP models, including diabetes-
induced neuropathy, post-herpetic neuralgia and cancer pain;
3) types of samples: nervous tissues, such as brain, spinal
cord, DRG, sciatic nerve, and nervous cells, just like
microglia, astrocytes and DRG neurons; and 4) types of
measurements: miRNA expression measured in the way of
polymerase chain reaction, microarray analysis or TaqMan
low density array.

Data Extraction
Data were extracted independently by two authors (Su X and
Chen YM). For each included study, the first author’s family
name, publication year, country, experimental design (e.g.,
experimental models, region used) and miRNA details (e.g.,
expression alteration, target genes and functions) were
extracted. In case of disagreement, the two authors discussed
the issue or consulted a third author (Wang XQ).

Bioinformatics Analysis of miRNAs and Its
Targets
Venn diagram analysis showed the number of overlapping
genes by Functional Enrichment analysis tool (FunRich
v3.1.3; installation package downloaded from http://www.
funrich.org/). The fold value for dysregulated miRNAs in
the matrix table is greater than or equal to 1.5. TargetScan
(http://www.targetscan.org/) was used to predict the target
genes of miRNAs and further verified the functional
specificity of miRNAs. Then, protein-protein interaction
(PPI) networks were established to having an integral
understanding about the association among the
overlapping targets of differentially expressed miRNAs.
Additionally, PPI data were achieved from the String
database (http://string-db.org/) and imported in Cytoscape
v3.7.2 (Shannon et al., 2003) to draw a map. The high
confidence score with >0.7 was defined to establish PPI
network. Gene Ontology (GO) annotation was used to
probe the functional roles of putative targets from three
aspects, namely, biological process (BP), cellular
component (CC) and molecular functions (MF). Kyoto
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Encyclopedia of Genes and Genomes (KEGG) analysis was
conducted to predict the metabolic pathways of gene
products. GO analysis and KEGG analysis were performed
in DAVID (The Database for Annotation, Visualization and
Integrated Discovery; https://david.ncifcrf.gov/).
Significantly targeted pathways were identified by Fisher
exact test with p-value <0.05. GraphPad Prism 8.0.1
(GraphPad Software, La Jolla California United States,
http://www.graphpad.com) was used to present the
enrichment results.

RESULTS

We identified 6,653 records from online databases. After
duplicate records were removed, 5,288 items remained. Two
authors assessed the title and abstract and found that 201
articles were pushed on full-text review. At last, 133 literatures
met the eligibility criteria and were included (excluded articles are
listed in Supplementary Table S1). Among these included
studies, 23 were about miRNA profiles (Supplementary
Tables S2, S3), 113 were about miRNA experimental
verification and three (Dong et al., 2014; Lu et al., 2017; Liu L
et al., 2020) were both about miRNA profile and experimental

verification. Among the 113 miRNA experimental verification
articles, 96 are about NP surgical models (Supplementary Table
S4), 6 are drug-induced NP models (Supplementary Table S5),
and 11 are disease-induced NP models (Supplementary Table
S6). The flowchart of the study selection procedure is shown in
Figure 1.

Study Characteristics
Details on the characteristics of articles that met inclusion criteria
are shown in Supplementary Tables S2–S6. A total of 23 articles
examined differential expression of miRNAs in NP rodent
model’s expression profiling study (Supplementary Tables S2,
S3). Among these articles, the quantity of the significantly
dysregulated miRNAs ranged from 1 to 59. As of April 2021,
there are no expression profiles papers on drug induced NP
models, 21 expression profiles papers on NP surgical models and
2 expression profiles papers on drug induced NP models. 34.8%
(8/23) of the studies collected DRGs and 43.5% (10/23) collected
SDH to examine differentially expressed miRNAs between NP
rats/mice and sham group rats/mice. In the latest study (Chen
et al., 2021), miRNA changes in DRG after SNI were analyzed by
DESeq2 and verified by qRT-PCR. Three miRNAs (miR-351-5p,
miR-125a-5p and miR-125b-5p) were significantly down-
regulated, whilst no up-regulated miRNA was mentioned.

A total of 113 articles experimentally verified that 91 miRNAs
might take part in NP regulation (Supplementary Tables S4–S6).
Specifically, 96 articles verified 79 miRNAs in NP surgical models
(Supplementary Table S4), 6 articles verified 5 miRNAs in drug-
induced NP models (Supplementary Table S5) and 11 articles
verified 11 miRNAs in disease-induced NP models
(Supplementary Table S6). The function of these NP-related
miRNAs was generally categorized by neuroinflammation,
neuronal adaptivity, neuronal excitability, neuronal plasticity,
neuronal proliferation, DNA methylation, neuroimmune and
GABAergic synapses excitability.

Supplementary Table S4 shows a comparison of the sham-
operated group and five NP surgical models, namely, SNL, SNI,
CCI, sciatic nerve transection, partial sciatic nerve ligation and
CFA-induced prosopalgia. As for tissue analysis, miRNA
expression was altered in the nervous tissues and nervous
cells. Nervous tissues included DRG, spinal cord, trigeminal
ganglions, caudal medulla and sciatic nerve; nervous cells
included microglia, DRG neurons and astrocytes. Briefly,
61.5% (59/96) of experimental studies evaluated the miRNA
expression in spinal cord, 38.4% (37/96) in DRG, 4.1% (4/96)
in sciatic nerve, 2.1% (2/96) in trigeminal ganglions, 1.0% (1/96)
in nucleus accumbens, 1.0% (1/96) in caudal medulla and 1.0%
(1/96) in sural nerve. Moreover, the expression level of several
miRNAs (Jiang et al., 2016; Tramullas et al., 2018; Wang et al.,
2018; Zhang X et al., 2020; Zhou et al., 2020; Sun et al., 2021;
Zhang J et al., 2021) in DRG and the spinal cord were changed. In
terms of included studies, 58miRNAs were down-regulated in the
NP process, of which miR-98, miR-96, miR-182, miR-183, miR-
7a, miR-30b, miR-206, miR-200b, miR-429, miR-150 and miR-
145 were reported two times or more. 26 miRNAs were up-
regulated, of which miR-21, miR-155 and miR-195 were reported
two times or more. In the down-regulated and up-regulated

FIGURE 1 | Flow chart of the study selection procedure.
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miRNAs, there were five overlapping genes, namely, miR-23a,
miR-142-3p, miR-21-5p, miR-15a and miR-101. Among them,
miR-23a expression decreased in SDH (Pan et al., 2018) and
increased in DRGs (Zhang Y et al., 2021); miR-142-3p expression
decreased in DRGs (Zhang et al., 2018) and increases in the sciatic
nerve (Li et al., 2021); miR-21-5p expression decreased in the
dorsal spinal cords (Zhong et al., 2019) and increased in DRGs
(Simeoli et al., 2017); miR-15a and miR-101 showed
contradictory results in the spinal cords and SDH,
respectively. Cai et al. (2020) indicated miR-15a was down-
regulated in spinal cords, while Li T et al. (2019) indicated
miR-15a was up-regulated. Xie et al. (2020) revealed miR-101
was down-regulated in SDH, whilst Qiu et al. (2020) disclosed
miR-101 was up-regulated.

Six studies verified that five miRNAs changed in NP
induced by chemotherapeutic drugs, such as paclitaxel,
oxaliplatin and bortezomib (Supplementary Table S5).
SDH and DRGs were collected for measurement. miR-30b-
5p (Li L et al., 2019) and miR-141-5p (Zhang and Chen, 2021)
were down-regulated in chemotherapeutic drug-induced NP;
miR-500 (Huang et al., 2016), miR-15b (Ito et al., 2017) and
miR-155 (Miao et al., 2019; Duan et al., 2020) were up-
regulated. NP induced by cancer pain and diabetes are
shown in Supplementary Table S6. Four studies showed
that three miRNAs were down-regulated (Elramah et al.,
2017; Wu X. P. et al., 2019; Liu C et al., 2020) (miR-124,
miR-329 and miR-300), and 1 miRNA was up-regulated
(Gandla et al., 2017) (miR-34c-5p) in NP induced by bone
cancer pain; and 7 studies indicated 5 down-regulated
miRNAs (Yang et al., 2017; Feng et al., 2018; Wu B. et al.,
2019; Yan et al., 2020b; Wu et al., 2020) (miR-190a-5p, miR-
146a, miR-193a, miR-145 and miR-590-3p) and 2 up-
regulated miRNAs (Chen et al., 2019; Chang et al., 2020)
(miR-155 and miR-133a-3p) in diabetic neuropathic pain.

Target Prediction and Venn Diagram
Analysis
We generated matrix tables catalogized by DRG, spinal cords and
brain tissues using FunRich (http://www.funrich.org), and
utilized array data from Supplementary Table S2. It reveals
the percentage and quantity of corporately expressed miRNAs
in the expression profiling studies. In the matrix table for spinal
cords of surgical NP rodents (Figure 2A), miR-365, miR-214 and
miR-184 were down-regulated in two or more studies, and miR-
21 was up-regulated in two studies. As for brain tissues
(Figure 2B), miR-200b-3p and miR-182 were down-regulated
in two studies, miR-873-5p was up-regulated, whereas none
commonly down-regulated nor up-regulated miRNA in DRGs
was found (Supplementary Figure S1). According to array data

FIGURE 2 | Tabular Venn diagram analysis. (A) Matrix table analysis for miRNAs expression profiles in spinal cord of NP surgical models. The number and
percentage of co-regulated miRNAs were highlighted. Overlapping miRNAs: 2 (4.3%): miR-21, miR-27b; 4 (13.3%): miR-22, miR-377, miR-7a, miR-21; 1 (3.3%): miR-
365; 1 (8.3%): miR-214; 1 (2.7%): miR-21; 1 (7.1%): miR-184. (B) Matrix table analysis for miRNAs expression profiles in brain of NP surgical models. The number and
percentage of co-regulated miRNAs were highlighted. Overlapping miRNAs: 4 (6.6%): miR-132, miR-151-3p, miR-186, miR-204; 2 (10.0%): miR-200b-3p, miR-
182; 1 (4.2%): miR-370-5p; 1 (4.0%) left: miR-873-5p; 1 (4.0%) right: miR-205; 1 (1.8%): miR-539.

FIGURE 3 | Matrix table analysis for miRNAs expression profiles of
disease-induced NP models. The number and percentage of co-regulated
miRNAs were highlighted. The two overlapping miRNAs are miR-466i-3p and
miR-466g.
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from Supplementary Table S3, Venn diagram was drawn using
FunRich. It shows that miR-466i-3p and miR-466g were
commonly down-regulated (Figure 3). Experimentally verified
studies were analyzed, and rodent NP models were divided into
surgical, disease-induced and drug-induced NP models. The
Venn diagram shows that miR-155 was the only miRNA that
was verified in all three types of NP models with up-regulated
expression; miR-34c-5p was commonly up-regulated and miR-
145 was commonly down-regulated in disease-induced and drug-
induced NP models (Figure 4).

TargetScan was used to predict the miRNAs’ target genes and
then FunRich was used to draw Venn diagrams. There were 225
overlapping target genes in the two down-regulated miRNAs
(miR-200b-3p and miR-182), which detected from the cerebral
cortex; but none in the three down-regulated miRNAs (miR-365,
miR-214 and miR-184), which detected from spinal cords
(Figure 5A and Supplementary Figure S2). Analysis of
experimentally verified studies of surgical NP indicated that
miR-96, miR-182, miR-183, miR-30b and miR-145 were
down-regulated both in spinal cords and DRGs. Furthermore,
these five miRNAs were reported in at least two experimental
studies. The miR-183 cluster comprised miR-96, miR-182 and
miR-183. This cluster shared the same sequence homology, so it is
reasonable to merge the target genes of miR-96, miR-182 and
miR-183 for Venn diagrams analysis. A total of 63 overlapping
target genes were present in the miR-183 cluster, miR-30b and
miR-145 (Figure 5B). Moreover, 13 overlapping target genes
were found in three repeatedly verified up-regulated miRNAs
(miR-21, miR-155 and miR-195) (Supplementary Figure S3).

PPI Network Analysis
The PPI data of overlapping genes in pain-related nervous tissues
were obtained from STRING database, and the interaction
networks were constructed using Cytoscape software (v3.7.2).
The results of PPI analysis are shown in Figure 6 and
Supplementary Figure S4. The results showed 94 genes
exhibiting interactions in 225 overlapping target genes of miR-
200b-3p and miR-182 (Figure 6). A total of 17 genes showed
interactions in 63 overlapping target genes of miR-183 cluster,

miR-30b and miR-145 (Supplementary Figure S4). Each edge in
the PPI network represented protein-protein associations. Large
sizes and dark colors of edges meant high value of combined
scores, otherwise, small sizes and bright colors of edges meant low
value of combined scores. As shown in Figure 6, muscle and
microspikes RAS (Mras) connected with phosphatidylinositol 3-
kinase, catalytic, alpha polypeptide (Pik3ca), and cAMP
responsive element binding protein 1 (Creb1) connected with
E1A Binding Protein P300 (EP300) displayed highest connective
score with combined score of 0.997 and 0.996, respectively. In
addition, combined score of 0.998 was the highest score in
Supplementary Figure S4, which is insulin like Growth factor
1 receptor (Igf1r) connected with insulin receptor substrate 1
(Irs1).

Furthermore, the experimentally verified miRNAs in
Supplementary Table S4 and their corresponding target genes
were also mapped (Figure 7). Four down-regulated miRNAs
(miR-96, miR-183, miR-384 and miR-30b) directly targeted
Nav1.3. Similarly, four up-regulated miRNAs (miR-19a,
miR-221, miR-155 and miR-665) and one down-regulated

FIGURE 4 | The intersection of experimentally verified miRNAs in three
types of rodent NPmodels. OverlappingmiRNAs: 2: miR-34c-5p, miR-145; 1:
miR-155.

FIGURE 5 | Venn diagram analysis. (A)Overlapping target genes of miR-
182 and miR-200b in cerebral cortex. These down-regulated genes were
showed in Supplementary Table S2 and have been observed in more than
one studies. (B) Overlapping target genes of miR-96, miR-182, miR-
183, miR-145 and miR-30b in dorsal root ganglions. These five down-
regulated genes were showed in Supplementary Table S4 and have been
observed in two or more experimentally verified studies. miR-96, miR-182,
miR-183 formed miR-183 cluster, so their target genes were combined.
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FIGURE 6 | Protein-protein interaction (PPI) analysis. A total of 94 genes exhibited interactions in 225 overlapping target genes of miR-200b-3p and miR-182.
Large sizes and dark colors of edges meant high value of combined scores. High confidence score of 0.7 was selected to construction PPI network.

FIGURE 7 |DysregulatedmiRNAs-target gene network. The network is based on dysregulated miRNAs and their target genes identified in Supplementary Table
S4. Pink in rectangle represent up-regulated miRNAs, purple in rectangle represent down-regulated miRNAs, and blue in ellipse represent target genes.
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miRNA (miR-30a-3p) directly targeted suppressor of
cytokine signaling 1 (SOCS1).

Functional Enrichment Analysis
225 overlapping target genes of miR-200b-3p and miR-182 were
analyzed. The results of GO analysis consisted of cellular
components (e.g., nucleus, GO: 0005634), molecular functions
(e.g., protein binding, GO: 0005515), and biological process (e.g.,
transcription, DNA-templated, GO: 0006351). Overall, 133 GO
terms showed significant enrichment (p < 0.05), and the top 10
terms with enrichment score in each aspect are presented in
Figure 8. A number of enriched terms relevant to the nervous
system included dendrite (GO: 0005634), synapse (GO: 0045202),
axon (GO: 0030424), nervous system development (GO:
0007399) and neuron projection (GO: 0043005). Furthermore,
KEGG analysis showed 26 pathways showed significant
enrichment (p < 0.05), and the top 20 pathways with
enrichment score are presented in Figure 9. Many of the
enriched pathways were associated with the nervous system,
including cholinergic synapse, neurotrophin signaling pathway,
dopaminergic synapse, hippo signaling pathway and
glutamatergic synapse.

DISCUSSION

In this study, miRNAs in nervous tissues of NP rodent models
were comprehensively analyzed using 23 miRNA profile articles
and 113 miRNA experimental verification articles. Compared

with the sham-operated group, a total of 91 miRNAs verified by
113 experimental articles were differentially expressed in the NP
group. The potential functional specificity of the differentially
expressed miRNAs for pain was determined by GO and KEGG
pathway analysis. The results suggest that miRNAs served a vital
role in NP development and potentially novel strategies for NP
management.

NP pathogenesis is complex and remains poorly understood.
Regions of DRGs, SDH and anterior cingulate cortex (ACC) form
the somatosensory pathway from primary sensory neurons to
afferent nerve to central nervous system (CNS) in NP (Guo et al.,
2019). DRGs contain most of the body’s sensory neurons, and
transmitted sensory messages from receptors, such as
thermoreceptors and nociceptors, are active participants in the
signalling process (Pope et al., 2013). SDH is the relay station of
nociceptive stimuli to process somatosensory information and is
characterized as an unambiguous laminar structure with a
quantity of excitatory and inhibitory interneurons (Peirs and
Seal, 2016). ACC is a dominant cortical area implicated in diverse
neurological processes, such as nociception, cognition and
emotion and plays a critical role in emotional/aversive
component of pain (Tsuda et al., 2017).

Numerous circuits and molecules were identified as potential
biomarkers and regulators in NP. The renowned mediators
contain the transient receptor potential (TRP) channels (Lu
et al., 2017; Miao et al., 2019; Duan et al., 2020; Zhang and
Chen, 2021), voltage-gated sodium channels (NaVs) (Chen et al.,
2014; Lin et al., 2014; Shao et al., 2016; Su et al., 2017; Cai et al.,
2018; Li L et al., 2019; Yang et al., 2019; Yan et al., 2020b; Ye et al.,
2020; Sun et al., 2021), and voltage-gated calcium channels
(CaVs) (Favereaux et al., 2011; Gandla et al., 2017; Peng et al.,
2017). In DRG and SDH, TRP channels act as transducers for

FIGURE 8 | GO annotation enrichment analysis. The top 10 high
enrichment score terms in biological process, cellular components and
molecular functions. GO: gene ontology; BP: biological process; CC: cellular
components; MF: molecular functions.

FIGURE 9 | KEGG pathway enrichment analysis. The top 20 enrichment
score pathways were showed. KEGG: Kyoto Encyclopedia of Genes and
Genomes.
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selectively activating sensory neurons and conveying diverse
kinds of stimuli involving chemical, mechanical, and thermal
stimuli. TRP ankyrin 1 (TRPA1) is one of branches of TRP
channels contributing to NP. In NP surgical models and drug-
induced NP models, TRPA1 is overexpressed and targeted by
miR-155 (Miao et al., 2019; Duan et al., 2020), miR-141-5p
(Zhang and Chen, 2021), mmu-miR-449a (Lu et al., 2017).
Ectopic action potential generation is considered to be one of
causes of NP formulation. NaVs intrinsically contribute to ectopic
activity generation (Bannister et al., 2020) and are typically
encoded by different subunits, NaV1.1-NaV1.9. DRG neurons
contain the most varied kind of NaV subtypes. Among them,
NaV1.3 (Chen et al., 2014; Ye et al., 2020), NaV1.6 (Li L et al.,
2019), NaV1.7 (Sun et al., 2021) and NaV1.8 (Yan et al., 2020b) are
overexpressed in NP and are targeted by miR-96, miR-183, miR-
182 and miR-30b. In addition, Sun and colleagues (Sun et al.,
2021) demonstrated that miR-96 knockout mice showed thermal
and mechanical allodynia. This allodynia was alleviated by
intraperitoneal or intrathecal injection of NaV1.7 or NaV1.8
blockers. SNI-induced suppressed expression of miR-96 in
SDH showed negative correlation to overexpression of NaV1.7-
NaV1.9. This dysregulation promotes the NP process, and can be
attenuated by intrathecal injection of corresponding NaVs
blockers. Thus, alternation in the expression of NaVs in nerve
injury-induced NP might be efficacious for pain relief.
Furthermore, increased expression and function of CaVs also
caused NP by increasing transmitter release (Davies et al., 2007).
CaVs are grouped into two classes, namely, high-voltage activated
type and low-voltage activated type (also known as T-type)
(Catterall et al., 2005). Apart from T-type CaVs, CaVs have
three types of subunits, namely, the α1 channel-forming
subunit, the intracellular β subunit and the α2δ auxiliary
subunit. The α2δ auxiliary subunit is composed of two
disulfide-bonded polypeptides (α2 and δ) (Dolphin, 2018).
Furthermore, CaV1.2 that encodes the α1 subunit of CaVs
targeted by miR-103 is upregulated in SNL rats (Favereaux
et al., 2011); CaV2.3, which targeted by miR-34c-5p, is
downregulated in bone metastatic pain mice (Gandla et al.,
2017). Both mRNA and protein levels of the α2δ-1 subunit
and α2δ-2 subunit of CaV are upregulated in SNI mice and
are correlated with mechanical allodynia (Peng et al., 2017). The
miR-183 cluster (miR-183/96/182) controls over 80% of NP-
related genes and scales mechanical allodynia by modulating the
α2δ-1 subunit and α2δ-2 subunit (Peng et al., 2017). Thus, post-
injury alteration in α2δ expression level, bound with upstream
miRNAs dysregulations, provides convincing evidence for
potential biomarkers and regulators in NP and therapeutic
possibilities of CaVs.

Several studies indicated that epigenetic changes,
translational modification and post-translational control
influence NP development and management. Epigenetic
changes are considered to involve histone acetylation and
DNA methylation. As such, gene expression is regulated but
does not change the coding sequence. DNA methylation
likely reduces transcription efficiency, whilst histone
acetylation in DNA presents the active transcriptional
region (Jenuwein and Allis, 2001). Methyl-CpG-binding

protein 2 (MeCP2), a protein with affinity for methylated
DNA and repressing transcription from methylated gene
promoter, is vital for neuronal proliferation and embryonic
development. Manners et al. (Manners et al., 2016) found that
SNI caused the redistribution of MeCP2 to methyl-CpG
binding domain. Enriched MeCP2 can bind to the miR-
126 locus in NP condition and restrain miR-126
transcription. Repressed miR-126 expression contributes to
the up-regulation of its two target genes Dnmt1 and Vegfa in
SNI mice. DNA methyltransferase 3A (Dnmt3a) was
increased in injured DRG. Xu et al. (Xu et al., 2017)
indicated that SNL-induced miR-143 downregulation is a
negative regulator in Dnmt3a expression in DRG.
Furthermore, histone deacetylases (HDACs) were implied
in the mechanisms of transcriptional regulation, cell cycle
progression, neuron degeneration and regulation of neuronal
plasticity. Overexpression of HDAC4 alleviated the effects of
miR-206-3p on NP (Wen et al., 2019). Overall, miRNA-
regulated DNA methylation and histone acetylation may
be a potential target for NP therapeutic management. The
interactions between transcriptional factors (TFs) and
mitogen-activated protein kinases (MAPKs) are also
involved in NP. MAPK6 up-regulation in SDH of CCI rats
was deemed to be a direct downstream target gene of miR-
26a-5p (Zhu et al., 2018). Suppressed miR-125a-3p
contributed to p38 MAPK up-regulation in rat trigeminal
ganglions at different time points with prosopalgia (Dong
et al., 2014). Inhibition of miR-155 reduces NP during
chemotherapeutic bortezomib via downstream signals p38-
MAPK (Duan et al., 2020). Additionally, in diabetes mellitus
rats, miR-133a-3p antagomir administration lightened
diabetic NP and down-regulated p38 MAPK (p-p38)
phosphorylation (Chang et al., 2020). Hence, pain-related
miRNAs and proteins may reveal critical insights into how
neurons process incoming stimuli inputs and attempt to
create an effective method for low risk of inflammation
and NP management.

PPI network analysis may help predicted some target genes to
broaden the treatment options for NP in the near future. Mras
connected with Pik3ca displayed highest connective score with
combined score of 0.997 predicted by PPI network. Mras is a
member of the Ras family of small GTPases that impacts mouse
embryonic stem cell plasticity and neurogenesis (Mathieu et al.,
2013). Pik3ca is usually described as an oncogenic gene and
related to PI3K-AKT signaling pathway (Koundouros et al.,
2020), which is in line with Figure 9. Another pair with high
combined score of 0.996 is Creb1 and EP300. Creb1 encodes a
transcription factor. This protein activity is regulated by protein
kinase A (Maekawa et al., 2008) and also related to PI3K-AKT
signaling pathway (Rodon et al., 2014). Creb1 was recognized as
one of most enriched genes in brain and found to regulate a quite
number of downstream genes in NP process (Yan et al., 2019).
EP300 is identified as a transcriptional co-activator and is
important in the processes of cell proliferation and
differentiation (Son et al., 2019). Knockdown of miR-30a-3p
in L4-6 spinal dorsal toot increased EP300 level and induced
NP (Tan et al., 2020). At present, there is no study targeting Mras
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and Pik3ca in neuropathic pain. Using Pik3ca inhibitors in NP
model may be an initial attempt to ameliorate pain in the near
future.

Bioinformatics insights into the potential neurobiological
mechanisms correlative of NP were investigated in a
comprehensive and systematic literature search framework.
This framework provided guidance for literature validation of
microRNA regulatory networks inferred from real experimental
data. An extensive range of miRNAs was obtained to explore the
relationship among their downstream genes via network and
pathway-based analysis. Based on this analysis, it is helpful to
form integrative research strategies from NP mechanisms to
treatment. Some limitations still exist in this study. Firstly, a
few microRNAs revealed contradictory results in NP process,
which may be caused by differences in tissue collection timing,
modeling methods and detected tissue region. Secondly, the
GRADE system to evaluate level of evidence and Funnel plots
for publication assessment are lacking. Although the outcomes
deduced from bioinformatic analysis, to some extent, may exist
heterogeneity from different study designs, network analysis
combined pathway analysis can be more robust for possible
false positive results.

In summary, we investigated miRNA expression and their
target gene roles in NP. Bioinformatics analysis elucidates that
several miRNAs (miR-200b-3p, miR-96, miR-182, miR-183,
miR-30b, miR-155 and miR-145) and its target genes are
involved in known relevant pathways of NP. Targets on
voltage-gated sodium channels may be harnessed for pain
relief. As knowledge of molecular, genetic and epigenetic
mechanisms about pain specificity and neuron plasticity
accrues from rodent models, further delineation of signal
processing and modulation in neuronal ensembles is key to
achieving therapeutic success in future studies.
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