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Abstract

Neural dynamics can shape human experience, including pain. Pain has been linked

to dynamic functional connectivity within and across brain regions of the dynamic

pain connectome (consisting of the ascending nociceptive pathway (Asc), descending

antinociceptive pathway (Desc), salience network (SN), and the default mode

network (DMN)), and also shows sex differences. These linkages are based on fMRI-

derived slow hemodynamics. Here, we utilized the fine temporal resolution of mag-

netoencephalography (MEG) to measure resting state functional coupling (FCp)

related to individual pain perception and pain interference in 50 healthy individuals

(26 women, 24 men). We found that pain sensitivity and pain interference were

linked to within- and cross-network broadband FCp across the Asc and SN. We also

identified sex differences in these relationships: (a) women exhibited greater within-

network static FCp, whereas men had greater dynamic FCp within the dynamic pain

connectome; (b) relationship between pain sensitivity and pain interference with FCp

in women was commonly found in theta, whereas in men, these relationships were

predominantly in the beta and low gamma bands. These findings indicate that

dynamic interactions of brain networks underlying pain involve fast brain communi-

cation in men but slower communication in women.
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1 | INTRODUCTION

The brain is a dynamic system that can respond to external stimuli and

sustains cognitive and sensory functions that fluctuate throughout

everyday situations. It is now understood that variability and fluctua-

tions of brain activity may constitute “priors” that contribute to the per-

ceptual variability within and across people (Kucyi & Davis, 2015, 2017;

Mayhew, Hylands-White, Porcaro, Derbyshire, & Bagshaw, 2013;

Ohara, Crone, Weiss, Kim, & Lenz, 2008; Ploner, Gross, Timmermann,

Pollok, & Schnitzler, 2006; Ploner, Lee, Wiech, Bingel, & Tracey, 2010).

The idea of priors builds on the concept that the brain is intrinsically

dynamic (Fox & Raichle, 2007) and this dynamic brain activity observed

prior to administration of a stimulus has been linked to different aspects

and variability in our perception of somatosensory, auditory, and

visual stimuli, cognitive performance, and pain (Boly et al., 2007; Coste,

Sadaghiani, Friston, & Kleinschmidt, 2011; Dunkley, Freeman,
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Muthukumaraswamy, & Singh, 2013; Hesselmann, Kell, & Kleinschmidt,

2008; Sadaghiani, Hesselmann, &Kleinschmidt, 2009).

How such neural dynamics contribute to pain at the individual

level is not understood. Pain is a subjective experience and accord-

ingly, there is significant inter-individual variability in sensitivity, per-

ception, and impact of pain on cognitive functions. The brain

mechanisms underlying these features are thought to involve a set of

brain regions that dynamically engage with one another, known as the

dynamic pain connectome that consists of the ascending nociceptive

pathway (Asc), salience network (SN), default mode network (DMN),

and descending antinociceptive pathway (Desc) (Kucyi & Davis, 2015,

2017). Therefore, here we have examined neural dynamics in the

dynamic pain connectome to gain insight into the individual variability

of the human pain experience.

The dynamics of neural activity within and between brain net-

works can be examined using an fMRI approach known as dynamic

functional connectivity (Hutchison et al., 2013). Our previous studies

used this technique to establish the concept of the dynamic pain

connectome and subsequently found links between dynamic func-

tional connectivity, pain sensitivity, mind wandering, and the effect of

pain on cognitive task performance (i.e., the “A”/“P” phenotype) dur-

ing painful stimulation (Cheng et al., 2017; Erpelding & Davis, 2013;

Kucyi, Salomons, & Davis, 2013). These studies established, the

importance of dynamics in brain communication pertaining to pain but

the slow hemodynamics (seconds timescale) of fMRI restricted such

studies. In the current study, we have examined neural dynamics on a

millisecond timescale that is in keeping with true temporal fidelity of

neuronal activity using magnetoencephalography (MEG). The MEG

technique allowed us to investigate functional coupling at different

frequencies. Such phase and amplitude measures can provide mecha-

nistic insight about communication within the brain (Buzsaki, 2006;

Siegel, Donner, & Engel, 2012). Thus in the current study, we were

interested in using MEG to examine the relationship between aspects

of pain (pain sensitivity, and pain interference on cognitive perfor-

mance) and oscillatory neural communication in the brain.

It is becoming increasingly evident that sex differences contribute

to the individual variability in pain perception and its underlying neural

mechanism. For example, previous studies have demonstrated sex dif-

ferences in pain thresholds and suprathreshold responses

(Berkley, 1997; Greenspan et al., 2007; Hashmi & Davis, 2014; Jensen

et al., 2011) and in functional connectivity within regions of the

dynamic pain connectome, especially in the salience network and in

the descending antinociceptive pathway (Coulombe, Erpelding,

Kucyi, & Davis, 2016; Rogachov et al., 2016; Wang, Erpelding, &

Davis, 2014). Furthermore, there are sex differences in the prevalence

of many chronic pain conditions (Pardue & Wizemann, 2001;

Unruh, 1996) and in the response to some treatments (Bartley &

Fillingim, 2013; Fillingim, King, Ribeiro-Dasilva, Rahim-Williams, &

Riley III, 2009). However, how brain dynamics, specifically in network-

level oscillatory communication within the dynamic pain connectome,

contribute to these sex differences is not understood.

Therefore the aims of this study are to determine: (a) Is neural

oscillatory communication within the dynamic pain connectome

related to pain sensitivity and pain interference on cognitive perfor-

mance and (b) Are there sex differences in oscillatory communication

within the dynamic pain connectome, and if so, are these related to

pain sensitivity or pain interference on cognitive performance.

2 | MATERIALS AND METHODS

2.1 | Participants

We recruited 50 people between the ages of 18–39 (24 men, age

(mean ± SD) 27 ± 5, 26 women, age (mean ± SD) 28 ± 6) through

posted advertisements and word of mouth. Informed written consent

was collected from all participants of the study for the study protocol

approved by the research ethics board of the University Heath Net-

work. The inclusion criteria were: (a) no prior history of chronic pain

or current experience of pain on a regular basis, (b) free of metabolic,

psychiatric or neurologic conditions, (c) no history of major surgery

due to a physiological condition, (d) no contraindications for the MRI,

and (e) age under 40 years old. An overview of the study design is

shown in Figure 1.

2.2 | Heat pain threshold determination

Each participant's heat pain threshold (HPT) was determined using the

method of limits. Heat stimuli were delivered to the participant's volar

forearm approximately 15 cm from the wrist using a 30 × 30 mm the-

rmode (TSA, Medoc Inc.). For each stimulus trial, the baseline the-

rmode temperature was 32�C from which the temperature increased

at a ramp rate of 0.5�C/s until the participant pressed a mouse button

or if the thermode reached the maximum point at 50�C, at which

point the thermode temperature returned to baseline at a rate of

2�C/s. Each participant was instructed to click a mouse button at the

first moment that they felt the heat stimulus was painful. For each

participant, three trials of HPT determination was performed with

an inter trial time of 5 s and the average temperature of the last two

trials was deemed to be the HPT.

2.3 | Effect of pain on a cognitive test

To define the effect of pain on a cognitive task, we performed a task

which was previously described and used (Cheng et al., 2017;

Erpelding & Davis, 2013; Kucyi et al., 2013; Seminowicz &

Davis, 2006, 2007; Seminowicz, Mikulis, & Davis, 2004). The cognitive

task is a modified version of the numerical task (Eccleston &

Crombez, 1999; Windes, 1968) that has been utilized instead of the

Stroop task because it has been shown to produce robust differences

in reaction time (RT) between task conditions (Erpelding &

Davis, 2013). Briefly, participants viewed a computer screen that dis-

played three boxes, each containing multiple copies of a digit from

1 to 9. Each of the three boxes contained a different number of copies
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of digits and unique value of digits in each box. For example, box one

might have three 2 s, box two might have seven 5 s, and box three

might have nine 1 s. The participant is instructed to use a numerical

keypad to report the number of digits in the box that contains the

most number of digits. The instructions are to respond as quickly and

as accurately as possible. The outcome measure of the task was the

RT for each correct trial. The value of the number and the number of

digits inside each box was different across each trial. Each participant

underwent 6 blocks of the task which alternated between pain and no

pain blocks (3 pain blocks and 3 no pain blocks) with the no pain block

always being the first block. Every block contained 24 trials with each

trial lasting for 2.5 s. Between each block, there was a short interval

of 20 s and a 5 s countdown was provided to indicate the start of the

next block.

Pain was evoked by transcutaneous electrical nerve stimulation

(TENS) of the median nerve at the left wrist area. The intensity of the

painful stimulation was determined prior to the task to induce a pain

rated as 40–50 (0 = no pain, 100 = worst pain imaginable). Although

some habituation could have occurred for some individuals, the inten-

sity of the stimulus was high enough that pain intensity remained in

this range throughout the testing. After the task, a pain intensity rat-

ing of 40–50 was confirmed in each participant.

For our outcome measures of interest, we first used the method

outlined in a previous paper (Cheng et al., 2017) to model each indi-

viduals' RT to the task as an ex-Gaussian function, a convolution of a

Gaussian and an exponential function (Ratcliff, 1979). This was per-

formed to account for outliers in the mean and standard deviation cal-

culations of the RT resulting from lapses in attention (Heathcote,

Popiel, & Mewhort, 1991) which can inflate mean and standard devia-

tion values of RT (Ratcliff, 1993). From this the mean, the standard

deviation and the exponential component was extracted. We confined

our analysis to the last two blocks (no-pain and pain) consisting of

24 trials in each condition because we previous observed learning

effects present in the first four blocks (Cheng et al., 2017). We also

removed incorrect trials (i.e., not reporting the correct number of

digits in the box with the most amount of digits or failing to report a

value within 2.5 s) and omitted participants who had low accuracy

rates (i.e., <75% correct trials). We quantified the interference effect

based on the difference of the mean RT values between the pain and

no-pain blocks. Individuals who have disrupted cognitive performance

due to pain were classified as P-type individuals (i.e., pain dominant)

and individuals who performed better with painful stimulation were

classified as A-type individuals (i.e., attention dominant) as per our

previous studies (Cheng et al., 2017; Erpelding & Davis, 2013;

Seminowicz et al., 2004). The difference of mean RT was always cal-

culated with mean RT no pain block—mean RT pain block. Individuals

with negative mean RT difference had improved cognitive perfor-

mance during painful stimulation (i.e., A-type individual) and

individuals who had positive mean RT difference had worse cognitive

performance during painful stimulation (i.e., P-type individual).

2.4 | Neuroimaging data acquisition

Every participant underwent a 5 min “resting state” scan using the

Elekta Neuromag TRIUX system using a 1,000 Hz sampling rate and

bandpass filter of 330 Hz at recording. To minimize artifacts, partici-

pants removed any metallic objects they wore and were asked to

refrain from wearing make-up or hair products which may have metal-

lic residue. For co-registration to individual's structural MRI and real-

time movement detection purposes, cardinal points were marked at

the nasion, right, and left preauricular positions and five head position

coils were placed around the head. The location of cardinal points and

head position coils were identified using an electronic positioning sys-

tem. Once placed inside the darkened magnetically-shielded room,

each participant was asked to view a cross-hair displayed on a screen

in front of the scanner, and to let their mind wander freely for the

duration of the resting state scan. Artifact correction was performed

using the MaxFilter program. Participants also underwent a 3T MRI

(GE Medical Systems, Chicago, IL) high resolution T1 scan of the brain

(1 × 1 × 1 mm3 voxels, matrix = 256 × 256, FOV = 25.6, flip angle

15�, 180 axial slices, repetition time = 7.8 s, echo time = 3 ms, inver-

sion time = 450 ms) so that the MEG data could be co-registered brain

anatomy.

2.5 | MEG data preprocessing and beamforming

The preprocessing pipeline that was used for the MEG data was based

on the MATAB program FieldTrip (http://www.fieldtriptoolbox.org/).

We applied a bandpass filter between 1 and 150 Hz and a notch filter

at 60 and 120 Hz. Independent components analysis using “runica”

was used to remove artefactual components likely cause by respira-

tion, heartbeats and eye-blinks. The MEG resting state data was co-

registered to each individual's high resolution T1 image using the car-

dinal points obtained during MEG data collection. The forward model

was constructed using a single-shell model (Nolte, 2003).

Time-series data from “virtual sensors” were extracted from

regions of interest (ROIs) using the atlas-guided beamforming method

(Hillebrand, Barnes, Bosboom, Berendse, & Stam, 2012). The Linearly

Constrained Minimum Variance beamformer (Van Veen, van

Drongelen, Yuchtman, & Suzuki, 1997) was used for this purpose and

a time-series was reconstructed for each ROI at the center of mass.

The beamformer is used to isolate signals of interest while

suppressing signals from unwanted sources. For each source esti-

mated in the brain, a weighting vector is applied to the signals

F IGURE 1 Overview of the
neuroimaging and psychophysical
testing protocols
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obtained from the physical sensors. The reconstructed time-series

from the previously defined ROIs is a result of the summation of all

the time-series that are estimated for each ROI.

2.6 | Regions of interest

The ROIs within key components of the dynamic pain connectome

were selected for the atlas-guided beamforming. The ROIs were cho-

sen based on our previous MEG study (Kim et al., 2019): (a) Asc: left

primary somatosensory cortex (S1) (−34, −30, 54), right S1 (34, −28,

54), left secondary somatosensory cortex (S2) (−60, −30, 20), right S2

(60, −22, 18), left and right posterior insula (−/+34, −20, 18), left and

right thalamus (−/+12, −18, 8); (b) SN: right temporoparietal junction

(TPJ) (50, −32, 28), right anterior insula (34, 18, 4), mid cingulate cor-

tex (MCC) (2, 12, 34), right dorsolateral prefrontal cortex (dlPFC)

(34, 46, 22); (c) DMN: posterior cingulate cortex (PCC) (−2, −46, 28),

and medial prefrontal cortex (mPFC) (−2, 50, 2); (d) Desc: subgenual

anterior cingulate cortex (sgACC) (4, 26, –8).

2.7 | Indices of functional coupling

We used two metrics to assess functional coupling (FCp): amplitude

envelope correlation (AEC) (Z. Liu, Fukunaga, de Zwart, & Duyn, 2010)

and weighted phase lag index (wPLI) (Vinck, Oostenveld, van

Wingerden, Battaglia, & Pennartz, 2011). We used the mathematical

formula in MATLAB to calculate these metrics. AEC is calculated by

correlating the band-filtered amplitude envelope between time-series

of each pair of ROIs and this measure has been most closely associ-

ated with fMRI measures of functional connectivity (Brookes

et al., 2011; De Pasquale et al., 2010; Z. Liu et al., 2010). wPLI is a

metric used to quantify the amount of nonzero phase lag between

two ROIs, defining the consistency of phase synchrony between the

two regions. In cross-regional oscillatory interactions, phase and

amplitude are believed to provide different information regarding the

underlying neurophysiology and can in part act independently of one

another (Siegel et al., 2012). Instantaneous phase and amplitude was

calculated for each time point in the time-series extracted from each

ROI using the Hilbert Transform. A finite impulse response filter was

used to filter data in the canonical frequency bands: theta (4–8 Hz),

alpha (8–13 Hz), beta (13–30 Hz), low gamma (30–60 Hz), and high

gamma (60–150 Hz). To correct for the presence of source leakage

we used orthogonalization in the ROI-nets toolbox (Colclough,

Brookes, Smith, & Woolrich, 2015). The process of orthogonalization

removes linear dependencies from two time-series by taking a set of

nonorthogonal independent functions and creating an orthogonal

relationship between them. Orthogonalization is important to attenu-

ate “ghost” coupling between two ROIs in amplitude envelope corre-

lation (Palva et al., 2018). The first and last 10 s were removed from

each resting state scan resulting in 280 s of data. This was then

divided into 28 10 s epochs.

We calculated both static and dynamic FCp (sFCp, dFCp) values

for each participant using the following approach: Static FCp was cal-

culated as the mean of all the epoched FCp values, whereas epoched

FCp values were calculated within 10 second epochs. Dynamic FCp

can measure the fluctuation of FCp between two regions over time.

To calculate dynamic FCp, a standard deviation was calculated from

the FCp values across the 28 10 s epochs.

2.8 | Statistical testing

Group differences in amplitude envelope correlation, wPLI, HPT, and

pain interference were based on two-tailed Student's t-tests between

the male and female groups. The Benjamin-Hochberg method

(Benjamini & Hochberg, 1995) at p < .05 was used to correct for mul-

tiple comparisons for the number of nodes. Correlation between FCp

and HPT as well as pain interference were performed using Spe-

arman's correlation with significance set at p < .05, corrected for mul-

tiple comparisons with the Benjamin-Hochberg method.

3 | RESULTS

3.1 | Behavioral data

The HPT findings were based on 49 out of the 50 participants

(24 men 25 women) because there was a thermode malfunction dur-

ing testing of one subject. The pain interference findings were based

on data from 46 out of 50 participants (22 men 24 women) because

there was a TENS malfunction during testing of four participants.

The behavioral data are summarized in Table 1. The average HPT

was 41.5 ± 3.8�C (range, 35.1–47.8�C) and the mean pain interfer-

ence was −69.26 ± 109.6 ms (range, −329.3 to 130.7 ms, 33 A-type

individuals and 14 P-type individuals). There were no sex differences

in age (p = .33, mean ± SD men 27 ± 5 years old and women

28 ± 6 years old) or pain interference (p = .86, mean ± SD men

−67.8 ± 103.1 ms, women −70.56 ± 117.5 ms). However, HPT was

significantly lower in women (mean ± SD 40.2 ± 3.6�C) compared to

men (mean ± S.D. 42.8 ± 3.7�C; p = .014).

3.2 | HPT is correlated with broadband
cross-network functional coupling

In this study we have used two different measures of FCp (AEC and

wPLI) that describe phase- or amplitude-based communication in the

brain. Furthermore, static and dynamic variants of the FCp measures

are able to capture the average strength of this connection (static)

compared to the amount of fluctuation in the communication

(dynamic). As such, the combination of the FCp metric and their vari-

ants can reveal the dynamic interaction within the dynamic pain

connectome.
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The whole group analysis of AEC in the SN, Asc, and DMN rev-

ealed that HPT is correlated with cross-network static and dynamic

FCp in the theta, alpha, beta and low gamma bands (for a summary of

findings, see Table 2). Figure 2 provides some representative exam-

ples of these correlations.

Within-network Asc static and dynamic inter-hemispheric AEC

was negatively correlated with HPT in theta and low gamma bands

between right S1-left post. Insula (rho = −0.37, p = .008) as well as

between the left S1 and right thalamus (rho = −0.4, p = .004), right S2

(rho = −0.39, p = .005), and right posterior insula (rho = −0.39,

p = .005). Cross-network static and dynamic AEC was negatively cor-

related with HPT in alpha, beta, and low gamma bands Asc-SN

between right posterior insula-MCC (rho = −0.47, p = .0006; Figure 2)

as well as between left S1 and the right anterior insula (rho = −0.37,

p = .009 (beta), rho = −0.35, p = .015 (low gamma)), right TPJ

(rho = −0.56, p = .0003; Figure 2) and the MCC (rho = −0.34,

p = .015). Cross-network alpha dynamic and static AEC is negatively

associated with HPT between Asc-DMN between right thalamus-PCC

(rho = −0.37, p = .007), and the bilateral posterior insula and mPFC

(rho = −0.42, p = .002 (left), rho = −0.39, p = .006 (right)) and also

between SN-DMN across right TPJ-mPFC (rho = −0.37, p = .009).

Cross-network beta dynamic AEC between Asc-Desc was negatively

associated with HPT across left S2-sgACC (rho = −0.42, p = .003) and

left posterior insula-sgACC (rho = −0.42, p = .003).

Also in the whole group, cross-network theta, alpha, beta, and

gamma static and dynamic wPLI was correlated with HPT. Cross-

network static and dynamic wPLI in theta and alpha bands were posi-

tively correlated with HPT across SN-Asc between the right anterior

insula-right S1 (rho = 0.37, p = .009) and the right thalamus (rho = 0.38,

p = .006) however HPT was negatively correlated with beta and low

gamma static and dynamic wPLI across SN-Asc between the right

anterior and posterior insula (rho = −0.4, p = .004), right TPJ-right S1

(rho = −0.4, p = .004), right TPJ-left thalamus (rho = −0.37, p = .009),

and MCC-left S1 (rho −0.43, p = .002). Similar patterns were observed

with static and dynamic wPLI in the beta and low gamma band across

DMN-Asc where beta dynamic wPLI was positively correlated with

HPT between PCC-right thalamus (rho = 0.43, p = .003; Figure 2) and

low gamma static wPLI was negatively correlated with HPT between

TABLE 1 Behavioral data of the participants

Whole group Male Female

N 50 24 26

Age 27 ± 5 [18–39] 27 ± 5 [18–39] 28 ± 6 [19–36]

HPT (�C) 41.5 ± 3.8 [35.1–47.8] 42.8 ± 3.7a [35.1-47.8] 40.2 ± 3.6 [35.6–47.5]

Pain interference (ms) −69.26 ± 109.6 [−329.3–130.7] −67.8 ± 103.1 [−236.5–121.4] −70.56 ± 117.5 [−329.3–130.7]

Number of A/P type 33 A; 14 P 16 A; 7 P 17 A; 7 P

Note: Data shown are mean ± SD and range. Values inside the square bracket indicate minimum and maximum value.

Abbreviation: HPT, heat pain threshold.
aGroup differences at p < .05.

TABLE 2 Summary of correlations between heat pain threshold, pain interference, and functional coupling

Heat pain threshold Pain interference

Theta Alpha Beta Low gamma Theta Alpha Beta Low gamma

Within network

SN sFCp sFCp sFCp

Asc dFCp sFCp sFCp s,dFCp sFCp

DMN

Cross network

SN-Asc dFCp s,dFCp s,dFCp s,dFCp s,dFCp sFCp dFCp s,dFCp

SN-DMN dFCp s,dFCp sFCp

SN-Desc dFCp

DMN-Desc

Asc-DMN s,dFCp dFCp sFCp

Asc-Desc dFCp dFCp

Note: sFCp and dFCp mark significant correlations present with static and dynamic functional coupling. Significance determined at FDR < .05.

Abbreviations: Asc, ascending nociceptive pathway; d, dynamic; Desc, descending antinociceptive pathway; DMN, default mode network; FCp, functional

coupling; s, static; SN, salience network.
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PCC-left S2 (rho = −0.41, p = .003). HPT was also negatively corre-

lated with cross-network static and dynamic wPLI in the theta and

alpha band across DMN-SN between the mPFC andMCC (rho = −0.41,

p = .004) as well as right dlPFC (rho = −0.41, p = .004). Last, within

network static beta wPLI was negatively correlated with HPT across

right TPJ-right anterior insula (rho = −0.43, p = .002).

3.3 | Pain interference is correlated with theta,
alpha, and low gamma functional coupling

In the entire cohort, static and dynamic AEC in the theta, alpha, and

low gamma bands in both within- and cross-network nodes were cor-

related with pain interference. All of the correlations are summarized

on Table 2 and examples of the correlations are displayed on Figure 3.

Pain interference was negatively correlated with within-network

static AEC in the theta, alpha, and low gamma bands across right

thalamus-left S2 (rho = −0.42, p = .004), left S1-right S1 (rho = −0.4,

p = .006), left S2-right S1 (rho = −0.46, p = .001), left S2-right poste-

rior insula (rho = −0.45, p = .002), left S1-right S2 (rho = −0.46,

p = .001), left thalamus-left S1 (rho = −0.39, p = .009), and right

S1-right posterior insula (rho = −0.38, p = .009), however, it was posi-

tively correlated with dynamic alpha AEC between left thalamus and

left S2 (rho = 0.42, p = .004). Cross-network static and dynamic AEC

in theta, alpha, beta, and low gamma was negatively correlated with

pain interference across Asc-SN between right thalamus-MCC

(rho = −0.39, p = .007), right thalamus-right dlPFC (rho = −0.39,

p = .008 (theta), rho = −0.41, p = .005 (low gamma)), left S1-right ante-

rior insula (rho = −0.4, p = .006), left S2-right anterior insula

(rho = −0.52, p = .0002) (Figure 3), right S2-right dlPFC (rho = −0.42,

p = .004), right posterior insula-right dlPFC (rho = −0.39, p = .007),

right S1-right TPJ (rho = −0.38, p = .008), and right anterior and poste-

rior insula (rho = −0.39, p = .008). Last, pain interference was nega-

tively correlated with static and dynamic AEC in theta and low gamma

bands across DMN-Asc between mPFC-right thalamus (rho = −0.41,

p = .005) and right S2 (rho = −0.39, p = .008) as well as SN-DMN

between right TPJ-PCC (rho = −0.49, p = .0006; Figure 3) and

between SN-Desc across right TPJ-sgACC (rho = −0.37, p = .009).

Within- and cross-network static and dynamic wPLI in theta,

alpha beta and low gamma bands were also correlated with pain inter-

ference. Within network static alpha and low gamma wPLI across

nodes of the Asc was negatively correlated with pain interference

between left S2-left thalamus (rho = −0.44, p = .002), left S2-right S2

(rho = −0.39, p = .008), left S2-right posterior insula (rho = −0.46,

p = .001), right S1-right S2 (rho = −0.39, p = .008), right S2-left poste-

rior insula (rho = −0.43, p = .003), and the left and right posterior

insula (rho = −0.38, p = .009). As well, pain interference was nega-

tively correlated with within SN dynamic theta wPLI across right TPJ-

right anterior insula (rho = −0.41, p = .005) but positively correlated

with within DMN static theta wPLI across PCC-mPFC (rho = 0.38,

p = .009). Cross-network static and dynamic theta, low gamma wPLI

between the Asc-SN was negatively correlated with pain interference

across right S2-right anterior insula (rho = −0.39, p = .008 (dynamic),

F IGURE 2 Examples of significant correlation between static and
dynamic FCp andheat pain threshold. The example nodes from left to right:
cross-network static gamma amplitude envelope correlation between the

left primary somatosensory cortex and the right temporoparietal junction,
cross-network dynamic alpha amplitude envelope correlation between the
mid-cingulate cortex and the right posterior insula, dynamic betaweighted
phase lag index between the posterior cingulate cortex and the right
thalamus. AEC, amplitude envelope correlation;MCC,mid-cingulate cortex;
PCC, posterior cingulate cortex; S1, primary somatosensory cortex; TPJ,
temporoparietal junction;wPLI, weighted phase lag index
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rho = −0.46, p = .001 (static)), right posterior and anterior insula

(rho = −0.48, p = .0008) (Figure 3), right thalamus-right TPJ (rho = −0.39,

p = .007), left posterior and right anterior insula (rho = −0.43, p = .003),

left S2-right TPJ (rho = −0.4, p = .005), left S2-right anterior insula

(rho = −0.36, p = .01), and also negatively correlated with cross-

network dynamic beta wPLI between Asc-Desc across the right

S1-sgACC (rho = −0.45, p = .002).

3.4 | Sex differences in functional coupling are
most pronounced across cross-network nodes in the
beta and low gamma bands

In the sex differences analysis, group differences in static and dynamic

AEC were observed across many cross-network nodes of the dynamic

pain connectome. There was a general pattern of greater dynamic

AEC in male brains and lower static AEC in female brains. All of the

results are summarized on Figure 4a and examples of the correlations

are displayed on Figures 5 and 6.

Sex differences were most pronounced across Asc-SN in theta,

alpha, beta, and low gamma bands and these were observed as

greater dynamic AEC and less static AEC in male brains between the

right S2 node and: the right TPJ (p = .001, p = .004 (theta dAEC,

sAEC), p = .0007, p = .006 (beta dAEC, sAEC), p = .0015 (low gamma);

Figure 5), MCC (p = .04), right dlPFC (p = .017) and the right anterior

insula (p = .018), as well as left S1-right TPJ (p = .007), right thalamus-

right dlPFC (p = .008), and right posterior insula-right dlPFC (p = .01).

Other cross-network nodes that showed greater dynamic low gamma

AEC in male brains included: Desc-Asc between the sgACC node and:

left thalamus (p = .015), right thalamus (p = .028), right S1 (p = .009),

left posterior insula (p = .015), and the right posterior insula (p = .026)

as well as Desc-SN between the sgACC node and: right TPJ

(p = .0066; Figure 5), right anterior insula (p = .026) and the right dPFC

(p = .011), between Desc-DMN across PCC-sgACC (p = .025) and also

between the DMN-Asc, right TPJ-PCC (p = .0076). Sex differences in

within-network static and dynamic alpha, beta, and low gamma AEC

were observed in nodes of the Asc: greater static AEC but less

dynamic AEC was observed in female brains compared to male brains

between the left S1 node and: the right thalamus (p = .009 (alpha

sAEC), p = .0047 (beta sAEC); Figure 5) and the right posterior insula

(p = .0036 (alpha sAEC), p = .009 (beta sAEC)), left thalamus-right pos-

terior insula (p = .007), right thalamus-left posterior insula (p = .006),

right S2-right posterior insula (p = .01), and left thalamus-right thala-

mus (p = .019). Male brains showed greater dynamic beta and low

gamma AEC compared to female brains within nodes of the SN

between the right TPJ and the right anterior insula (p = .03), MCC

(p = .02), and the right dlPFC (p = .013) as well as between the right

anterior insula and the right dlPFC (p = .006).

Sex differences in wPLI were most pronounced in the theta, beta,

and low gamma bands within the Asc and across Asc-DMN. Within

the Asc, male brains had greater static beta and dynamic gamma wPLI

across right S1-right S2 (p = .001) (Figure 6), right S1-right posterior

insula (p = .007), and right S2-right posterior insula (p = .0046). Male

brains had greater static and dynamic theta, beta, and low gamma

wPLI between DMN-Asc across the PCC node and: right S1 (p = .002

(theta dynamic), (p = .002 [theta static]; Figure 6), right S2 (p = .0055)

and the right thalamus (p = .008). Male brains also had greater static

F IGURE 3 Examples of significant correlation between static and
dynamic FCp and pain interference. The example nodes which are
shown from left to right: cross-network static theta amplitude
envelope correlation between the left secondary somatosensory
cortex and the right anterior insula, cross-network static theta
amplitude envelope correlation between the posterior cingulate
cortex and the right temporoparietal junction, static theta weighted
phase lag index between the right anterior insula and the right
posterior insula. AEC, amplitude envelope correlation; PCC, posterior
cingulate cortex; S2, secondary somatosensory cortex; TPJ,
temporoparietal junction; wPLI, weighted phase lag index
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theta wPLI between nodes of Asc-Desc between the right anterior

insula-sgACC (p = .0007; Figure 6), however, female brains had

greater within network dynamic beta wPLI in the SN between the

right anterior insula and the MCC (p = .001; Figure 6).

3.5 | Different patterns of relationship observed
between HPT and FCp in men and women

There were many prominent correlations between HPT and FCp in

men where static and dynamic alpha, beta and low gamma FCp was

negatively correlated with HPT across several cross-network nodes of

the dynamic pain connectome. Cross-network static and dynamic

alpha, beta and low gamma FCp between SN-Asc was negatively cor-

related with HPT across the right dlPFC and: right S1, right S2 and left

thalamus as well as right TPJ-right S2 and right TPJ-left S2, however

theta static and dynamic AEC between SN-Asc was positively corre-

lated with HPT in right thalamus-right dlPFC and left S1-MCC. Cross-

network static and dynamic alpha, beta, and low gamma AEC across

DMN-Asc was negatively correlated with HPT between the mPFC

and: the left S1, left posterior insula (Figure 7), right posterior insula

and the right S2. HPT was also negatively correlated with cross-

F IGURE 4 Summary figure of the
sex differences analyses for FCp and
correlation with pain measures.
(a) Significant differences in static and
dynamic FCp between men and
women with light blue representing
greater FCp in men, pink indicating
greater FCp in women and black
indicating greater FCp in both groups

depending on the nodes of the
network (b)Different patterns of
significant correlations between FCp
and heat pain threshold/pain
interference in men and women. HPT
or AP (pain interference) indicates
significant correlations with heat pain
threshold and pain interference while
s and d indicates static or dynamic
FCp, respectively. Light blue indicates
significant correlation observed in only
men, pink indicates significant
correlations in only women and black
indicates significant correlations
observed in both groups. Significance
determined at FDR for t-tests and
correlations <.05. Asc, ascending
nociceptive pathway; d, dynamic;
Desc, descending antinociceptive
pathway; DMN, default mode
network; FCp, functional coupling;
HPT, heat pain threshold; s, static; SN,
salience network
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network static low gamma AEC between Desc-Asc nodes sgACC and:

the right S2 and the left posterior insula as well as between nodes of

Desc-SN sgACC-right TPJ. Last, HPT was negatively correlated with

low gamma static FCp across within-network nodes of Asc and SN:

right thalamus-left S1, right TPJ-right dlPFC, and right anterior insula-

MCC (Figure 7).

In women, there were both negative and positive correlations

between static and dynamic theta, alpha, beta, and low gamma FCp

and HPT. Cross-network FCp between SN-Asc in theta, beta, and low

gamma static and dynamic FCp were negatively correlated with HPT

across the right TPJ and: the right S1, the left S1, and the left poste-

rior insula. Cross-network dynamic theta and beta FCp between

Desc-Asc as well as Desc-SN was negatively correlated with HPT

across the sgACC and: the left posterior insula and the right dlPFC.

Interestingly, within-network dynamic and static theta, alpha, and beta

FCp in the Asc were positively correlated with HPT across nodes of

left S2-right posterior insula, left S1-right S1 and left S1-left posterior

insula.

In both groups, static alpha wPLI within the Asc nodes of left thal-

amus and left S1 was positively correlated with HPT (Figure 7).

All of the correlation values are summarized on Table 3 and on

Figure 4b and examples of correlations are summarized in Figure 7.

3.6 | Sex differences in the relationship between
pain interference and FCp observed in cross-network
nodes in women and within-network nodes in men

In men, pain interference was negatively correlated with within- and

cross-network static and dynamic FCp mainly involving the Asc

and the SN. Within-network theta, alpha, and low gamma static and

dynamic FCp were negatively correlated with pain interference in

nodes of the Asc and SN between the right S1-left thalamus, right

S2-left thalamus, right S1-right posterior insula, left S1-right S2, left

S1-left thalamus, right S2-left S2, left S2-right thalamus, and right

anterior insula-right dlPFC. Cross-network static and dynamic theta,

beta, and low gamma FCp between SN-Asc was also negatively corre-

lated with pain interference across right dlPFC and: the right S2, right

posterior insula, left posterior insula and the right thalamus as well as

the right anterior insula-left S2. Cross-network static theta AEC

F IGURE 5 Examples of sex differences in static and dynamic amplitude coupling between men and women. Static beta amplitude envelope
coupling differences are shown on the left with the left primary somatosensory cortex-right thalamus and right secondary somatosensory cortex-
right temporoparietal junction nodes shown as examples. Dynamic low gamma amplitude envelope correlations are shown on the right with the
subgenual anterior cingulate cortex-right temporoparietal junction and right secondary somatosensory cortex-right temporoparietal junction
shown as examples. Significance determined at FDR < .05. AEC, amplitude envelope correlation; Asc, ascending nociceptive pathway; Desc,
descending antinociceptive pathway; DMN, default mode network; S1, primary somatosensory cortex; S2, secondary somatosensory cortex; SN,
salience network; sgACC, subgenual anterior cingulate cortex; TPJ, temporoparietal junction
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between the DMN-SN was negatively correlated with pain interfer-

ence across mPFC-right anterior insula however the same cross-

network static and dynamic alpha, beta FCp was negatively correlated

with pain interference between mPFC-MCC. Last, cross-network

alpha dynamic wPLI was positively correlated with pain interference

between SN-Desc nodes right anterior insula-sgACC while dynamic

beta wPLI between Asc-Desc nodes right S1-sgACC was negatively

correlated with pain interference.

In women, the most prominent relationship between FCp and

pain interference was observed between cross-network FCp between

SN-Asc. In this cross-network FCp, dynamic alpha AEC was positively

correlated with pain interference across right TPJ-right S1 however,

the same cross-network static and dynamic FCp in alpha beta, theta,

and low gamma was negatively correlated with pain interference

between the right TPJ and: left S1, right S2, right thalamus, and the

left thalamus as well as between the right anterior insula and: the right

posterior insula, the left posterior insula and the right thalamus.

Cross-network static theta AEC between DMN-SN was negatively

correlated with pain interference across the right TPJ-PCC, as well

DMN-Asc between the mPFC-left S2 and between Asc-Desc across

right S1-sgACC and right posterior insula-sgACC. Last, pain interfer-

ence was positively correlated with dynamic beta AEC between the

SN-Desc across right anterior insula-sgACC.

All of the correlation values are summarized on Table 4 and on

Figure 4b and examples of correlations are summarized on Figure 8.

4 | DISCUSSION

The current study identified relationships between inherent brain net-

work dynamics and pain sensitivity. To do this, we developed a novel

metric to evaluate dynamic functional coupling that provides a win-

dow into dynamics of oscillatory neural activity and its relationship

with pain. It should be noted that the term “functional coupling” (FCp)

refers to a concept related to that of “functional connectivity”, the lat-

ter term being used primarily in fMRI studies to designate synchro-

nous activity between brain areas. Here, we report three main

findings: First, there is a robust relationship between FCp and pain

F IGURE 6 Examples of sex differences in static and dynamic weighted phase lag index between men and women. Static theta weighted
phase lag index differences are shown on the left with the right primary somatosensory cortex-posterior cingulate cortex and subgenual anterior
cingulate cortex-right anterior insula nodes shown as examples. Dynamic beta weighted phase lag index differences are shown on the right with
the right secondary somatosensory cortex-right primary somatosensory cortex and mid-cingulate cortex-right anterior insula shown as examples.
Significance determined at FDR < .05. Asc, ascending nociceptive pathway; Desc, descending antinociceptive pathway; DMN, default mode
network; MCC, mid-cingulate cortex; PCC, posterior cingulate cortex; S1, primary somatosensory cortex; S2, secondary somatosensory cortex;
SN, salience network; sgACC, subgenual anterior cingulate cortex; wPLI, weighted phase lag index
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sensitivity/pain interference. These relationships (summarized in

Table 2) were observed across nodes of the Asc and the SN for both

within- and cross- network connections. Second, sex differences in

FCp were identified within the dynamic pain connectome; a general

pattern being that women exhibited greater static FCp (particularly

across nodes of the Asc in the theta and alpha bands) and men

exhibiting greater dynamic FCp (particularly across nodes of the SN

mainly in the beta and low gamma bands). Last, sex differences in the

relationship between FCp and pain sensitivity was most pronounced

in men across Asc and SN while sex differences in the relationship

between FCp and pain interference were most pronounced in the

theta band.

Our study builds on previous findings that identified pain-evoked

oscillatory activity in healthy individuals within a specific functional

band (Furman et al., 2017; Huishi Zhang, Sohrabpour, Lu, & He, 2016;

May et al., 2019; Nickel et al., 2019; Nir, Sinai, Moont, Harari, &

Yarnitsky, 2012; Ploner et al., 2006; Schulz et al., 2015). These previ-

ous studies mostly relied on electroencephalography (EEG) and so the

findings had limited spatial resolution. As such, a main advantage and

novelty of our current study is the use of MEG to specifically interro-

gate regions of the dynamic pain connectome associated with pain

and the focus on inter-regional oscillatory communication. Further-

more, our use of a resting state paradigm (rather than experimental

evoked pain) allowed us to measure trait brain dynamics associated

with pain processing. This provides insight into the inherent or “priors”

of brain activity that are critically important to set the conditions from

which an individual's pain sensitivity likely originated from. Finally,

another novel feature of our study was the development and applica-

tion of a measure of the dynamics of oscillatory communication within

the dynamic pain connectome.

At the whole group level, there was a robust association between

Asc and SN with pain measures (pain sensitivity, pain interference).

Our previous fMRI studies have linked activity of the SN and the Asc

with cognitive performance during painful stimulation in healthy con-

trols (Cheng et al., 2017; Erpelding & Davis, 2013; Seminowicz &

Davis, 2006, 2007). One of these studies showed that increased dFC

within the SN is associated with less pain interference (Cheng

et al., 2017). In the current study, we found negative correlations

between pain interference and within SN static theta FCp. Negative

correlations between pain interference and dynamic FCp were more

prominent with dynamic FCp between Asc and SN and within the

Asc. Similar patterns of negative correlations were found between

Asc-SN FCp and HPT. The Asc consists of brain regions thought to

relay nociceptive input while the salience system is associated with

attention toward an incoming stimulus (Craig, 2003; Menon &

Uddin, 2010). Interestingly both HPT and pain interference were

F IGURE 7 Examples of sex differences in significant correlation
between static and dynamic FCp and heat pain threshold. The
example nodes which are shown from left to right: within-network
static alpha weighted phase lag index between the left primary
somatosensory cortex and the left thalamus, within-network dynamic

low gamma weighted phase lag index between the mid-cingulate
cortex and the right anterior insula, dynamic beta amplitude envelope
correlation between the subgenual anterior cingulate cortex and the
left posterior insula. AEC, amplitude envelope correlation; MCC, mid-
cingulate cortex; mPFC, medial prefrontal cortex; S1, primary
somatosensory cortex; sgACC, subgenual cingulate cortex; wPLI,
weighted phase lag index
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negatively correlated with the Asc-SN cross-network dynamics. Since

HPT and pain interference were not correlated with each other, this

rules out the possibility that the negative correlation resulted from a

link between the two variables. Similar patterns of relationships

between Asc-SN FCp and pain measures may arise because

individuals who have greater dynamic engagement between the Asc

and SN are able to orient their attention more nimbly to incoming

stimuli and the flexibility of their attentional system may allow them

to redirect their attention readily. Increased flexibility in the SN may

reflect the possibility that in individuals who improve their

TABLE 3 Sex differences in
correlations between HPT and FCp

Within-network Network nodes Male HPT (rho) Female HPT (rho)

Asc R S1-L S1 −.54 (LG dwPLI) .56 (beta swPLI)

R S1-R thalamus −.54 (alpha swPLI) Ns

L S1-L thalamus .53 (alpha swPLI) .54 (alpha swPLI)

L S1-R thalamus −.53 (LG sAEC) Ns

L S1-L PI Ns .51 (alpha swPLI)

L S2-R PI Ns .53 (theta dAEC)

R PI-R thalamus .53 (theta dwPLI) Ns

L PI-L thalamus .54 (beta dwPLI) Ns

SN R TPJ- R AI −.56 (LG sAEC) Ns

R TPJ-R dlPFC −.57 (LG swPLI) Ns

R AI-MCC −.6 (LG dwPLI) Ns

Cross-network

Asc-SN R S1-R dlPFC −.56 (LG sAEC)

−.63 (LG swPLI)

−.64 (LG dwPLI)

Ns

R S1-R TPJ Ns −.62 (beta swPLI)

L S1-R TPJ Ns −.58 (LG sAEC)

L S1-R dlPFC −.69 (alpha sAEC) Ns

L S1-MCC .56 (theta dwPLI) Ns

R S2-R dlPFC −.56 (LG swPLI)

−.67 (LG dwPLI)

Ns

R S2-R TPJ −.56 (LG sAEC) Ns

L S2- R TPJ −.61 (beta dwPLI) Ns

L PI-R TPJ Ns −.58 (theta dAEC)

R thalamus-R dlPFC .57 (theta swPLI) Ns

L thalamus-R dlPFC −.53 (alpha dwPLI) Ns

Asc-DMN L S1-mPFC −.55 (beta dAEC)

−.56 (LG sAEC)

Ns

R S2-mPFC −.6 (LG sAEC)

−.59 (beta swPLI)

Ns

R PI-mPFC −.66 (alpha dAEC) Ns

L PI-mPFC −.59 (alpha sAEC) Ns

Asc-Desc R S2-sgACC −.58 (LG sAEC) Ns

L PI-sgACC −.54 (LG sAEC) −.6 (beta dAEC)

R thalamus-sgACC −.63 (swPLI) Ns

SN-DMN R dlPFC-PCC −.59 (alpha dwPLI) Ns

SN-Desc R TPJ-sgACC −.53 (LG sAEC) Ns

Note: Significant Pearson's correlations at FDR < .05 are shown for each group.

Abbreviations: AEC, amplitude envelope correlation; AI, anterior insula; Asc, ascending nociceptive path-

way; d, dynamic; Desc, descending antinociceptive pathway; dlPFC, dorsolateral prefrontal cortex; DMN,

default mode network; L, left; LG, low gamma; MCC, medial cingulate cortex; PI, posterior insula; R, right;

s, static; S1, primary sensory cortex; S2, secondary sensory cortex; sgACC, subgenual anterior cingulate

cortex; SN, salience network; TPJ, temporoparietal junction.
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performance with painful stimulation, painful stimuli improves their

performance by increasing their levels of arousal as theorized by the

inverted-U hypothesis of performance and arousal (Landers, 1980).

There was a key difference between the brain/pain relationships

across the two pain measures: HPT but not pain interference was cor-

related with cross-network dynamic FCp between the Asc and the

DMN. The DMN is believed to receive sensory information

(Raichle, 2015) and is also involved in mind wandering and internal

TABLE 4 Sex differences in
correlations between pain interference
(A/P score) and FCp

Within-network Network nodes Male A/P (rho) Female A/P (rho)

Asc R S1-L thalamus −.55 (alpha dwPLI) Ns

R S1-R PI −.59 (alpha swPLI) Ns

L S1-L thalamus −.56 (alpha sAEC) Ns

L S1-R S2 −.57 (LG sAEC) Ns

R S2-L S2 −.62 (theta sAEC) Ns

R S2-L PI −.58 (theta sAEC) Ns

R S2-L thalamus −.6 (theta swPLI)

−.54 (theta dwPLI)

Ns

L S2-R thalamus −.54 (theta dAEC) Ns

L S2-L thalamus Ns .53 (alpha dAEC)

−.68 (alpha swPLI)

SN R AI-R dlPFC −.55 (alpha swPLI) Ns

Cross-network

Asc-SN R S1-R TPJ Ns −.59 (alpha dAEC)

L S1-R TPJ Ns −.54 (alpha sAEC)

L S1-R dlPFC −.69 (alpha sAEC) Ns

R S2-R dlPFC −.56 (theta dAEC)

−.64 (theta swPLI)

Ns

R S2-R TPJ Ns −.58 (beta sAEC)

−.61 (LG sAEC)

L S2-R AI −.58 (beta sAEC) Ns

R PI-R AI Ns −.62 (theta swPLI)

R PI-R dlPFC −.63 (theta sAEC)

−.6 (beta sAEC)

−.56 (LG sAEC)

Ns

L PI-R AI Ns −.53 (LG dwPLI)

L PI-R dlPFC −.6 (theta sAEC)

R thalamus-R AI Ns −.56 (theta swPLI)

R thalamus-R dlPFC −.58 (theta sAEC) Ns

R thalamus-R TPJ Ns −.63 (dwPLI)

L thalamus-R TPJ Ns −.51 (theta dAEC)

Asc-DMN L S2-mPFC Ns .59 (alpha dwPLI)

Asc-Desc R S1-sgACC −.58 (beta dwPLI) −.52 (LG dwPLI)

R PI-sgACC Ns −.54 (theta sAEC)

SN-DMN R TPJ-PCC Ns −.61 (theta sAEC)

R AI-mPFC −.59 (theta sAEC) Ns

MCC-mPFC .62 (alpha dAEC)

−.57 (beta swPLI)

Ns

SN-Desc R AI-sgACC .56 (alpha dwPLI) .61 (beta dAEC)

Note: Significant Pearson's correlations at FDR < .05 are shown for each group.

Abbreviations: AEC, amplitude envelope correlation; AI, anterior insula; Asc, ascending nociceptive path-

way; d, dynamic; Desc, descending antinociceptive pathway; dlPFC, dorsolateral prefrontal cortex; DMN,

default mode network; L, left; LG, low gamma; MCC, medial cingulate cortex; PI, posterior insula; R, right;

s, static; S1, primary sensory cortex; S2, secondary sensory cortex; sgACC, subgenual anterior cingulate

cortex; SN, salience network; TPJ, temporoparietal junction.
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thought (Andrews-Hanna, 2012; Andrews-Hanna, Smallwood, &

Spreng, 2014; Axelrod, Rees, & Bar, 2017; Kucyi et al., 2013; Kucyi &

Davis, 2014). As such, increased dynamics between the DMN and the

Asc may result in less mind wandering away from a stimulus and

increased sensitivity toward incoming stimuli resulting. Thus, a

reduced HPT could be the outcome of individual differences in cross-

network FCp.

We previously used fMRI to demonstrate that there are sex differ-

ences of the connectivity of the sgACC with the SN and the Desc net-

works (Wang et al., 2014). The current study builds on this finding of sex

differences within the dynamic pain connectome using the millisecond

temporal resolution of MEG. Our most pronounced sex difference here

was that women had greater static FCp mainly in the theta and alpha

bands while men had greater dynamic FCp mainly in the beta and low

gamma bands. Sex differences in static FCp was observed across nodes

of the SN and across nodes of the Asc. Sex differences involving the SN

was expected based on our previous fMRI findings (Wang et al., 2014)

but we did not expect to find sex differences of the Asc, although sex dif-

ferences have been reported in the functional connectivity of the left

and the right somatosensory cortices (H. Liu, Stufflebeam, Sepulcre,

Hedden, & Buckner, 2009). Our results showed that inter-hemispheric

static FCp in the Asc and between Asc-SN were significantly different

between the sexes. Other sex-differences findings observed with dFCp

were particularly interesting because many of the findings involved the

sgACC. The sgACC and the Desc have demonstrated sex-differences of

functional connectivity in several past studies (Biswal et al., 2010; Kong,

Tu, Zyloney, & Su, 2010; Wang et al., 2014). Thus, our current findings

support and extend previous findings (Casanova, Whitlow, Wagner,

Espeland, & Maldjian, 2012) and suggest that dynamic cross-network

FCp involving the sgACC showwidespread sex differences. Thus even at

high temporal resolutions (beta, low gamma dynamic FCp) the sgACC

can exhibit activity that indicates is an important hub for sex differences

in brainmechanisms of pain processing.

Utilizing the high temporal resolution of theMEG, we had the oppor-

tunity to examine whether there are sex-specific patterns of FCp. We

found that the majority of sex differences in static FCp were observed in

the theta and alpha bands, whereas sex differences in dynamic FCp were

observed in the beta and low gamma bands. Frequency bands are thought

to serve specific functions in network level organization (Buzsaki, 2006;

Buzsáki & Draguhn, 2004). In particular, slow frequency bands (e.g., alpha

and theta) are thought to be involved in long range communication and

network level organization, whereas faster frequency bands (e.g., gamma)

have been associated with local organization of functions. As such, the

sex differences we found for static FCp in the slower frequency bands

may be attributable to inherent differences in network organization

between men and women. In contrast, our findings of sex differences in

dynamic FCpmay reflect more transient differences in the local organiza-

tion of brain regions within the dynamic pain connectome because it has

previously been shown that more diverse states are occupied in men

(Yaesoubi,Miller, & Calhoun, 2015).

The sex differences we identified in the relationship between pain

and the brain demonstrate that there are both common and unique sets

of networks related to pain sensitivity and pain interference in men and

women. The most robust relationship in both sexes was observed

between the pain measures and cross-network FCp across Asc-SN.

However, sex differences were most prominent in the relationships with

F IGURE 8 Examples of sex differences in significant correlation
between static and dynamic FCp and pain interference. The example
nodes which are shown from left to right: within-network static alpha
weighted phase lag index between the right primary somatosensory
cortex and the right posterior insula, cross-network static theta
amplitude envelope correlation between the posterior cingulate
cortex and the right temporoparietal junction, static low gamma
amplitude envelope correlation between the right secondary
somatosensory cortex and the right temporoparietal junction. AEC,
amplitude envelope correlation; PCC, posterior cingulate cortex; S1,
primary somatosensory cortex; S2, secondary somatosensory cortex;
TPJ, temporoparietal junction; wPLI, weighted phase lag index
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within-network FCp in the Asc and the SN where significant relation-

ships with painmeasures were mostly observed inmen. In women, many

of the significant relationships were observed with cross-network FCp,

especially in the theta band. These results suggest pain processing may

depend more on the dynamics of within-network connections in men

and on cross-network connections inwomen. In addition, sex differences

in the spectral profile of the significant relationships between pain mea-

sures and FCp suggest that there may be different underlying mecha-

nisms (e.g., local organization vs. global organization of networks) related

to pain processing inmen andwomen.

In conclusion, the current study sheds light on brain mechanisms

of pain processing in healthy men and women. Individual variability in

pain processing may be explained dynamic interaction between

regions of the dynamic pain connectome through neural oscillations

however, the regions involved in theses interactions vary widely

across the canonical bands. Thus, the temporal aspects of dynamic

neural interactions are crucial to healthy pain processing. Further-

more, men and women had distinct functional band involvement in

the dynamic neural interactions associated with pain processing

suggesting sex differences in the underlying brain mechanisms of pain

processing. Thus the type of frequency band and the different brain

networks involved in the dynamic integration of brain regions play an

important role in pain processing of men and women.
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