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ABSTRACT
Rapid uplifts of the Tibetan Plateau and climate change in Asia are thought to
have profoundly modulated the diversification of most of the species distributed
throughout Asia. The ranoid tree frog genus Rhacophorus, the largest genus in the
Rhacophoridae, is widely distributed in Asia and especially speciose in the areas south
and east of the Tibetan Plateau. Here, we infer phylogenetic relationships among species
and estimate divergence times, asking whether the spatiotemporal characteristics of
diversification within Rhacophorus were related to rapid uplifts of the Tibetan Plateau
and concomitant climate change. Phylogenetic analysis recovered distinct lineage
structures in Rhacophorus, which indicated a clear distribution pattern from Southeast
Asia toward East Asia and India. Molecular dating suggests that the first split within the
genus date back to the Middle Oligocene (approx. 30 Ma). The Rhacophorus lineage
through time (LTT) showed that there were periods of increased speciation rate:
14–12Ma and 10–4Ma. In addition, ancestral area reconstructions supported Southeast
Asia as the ancestral area of Rhacophorus. According to the results of molecular dating,
ancestral area reconstructions and LTT we think the geographic shifts, the staged rapid
rises of theTibetanPlateauwith parallel climatic changes and reinforcement of theAsian
monsoons (15 Ma, 8 Ma and 4–3 Ma), possibly prompted a burst of diversification in
Rhacophorus.
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INTRODUCTION
Abiotic factors like climatic and tectonic events, and biotic factors like inter- or intraspecific
interactions, competition and predationmay be the predominant driving factors during the
evolution and diversification of organisms (Antonelli & Sanmartín, 2011; Benton, 2009).
These factors can also affect the diversification at different temporal and geographical
scales (Benton, 2009). Understanding the processes of diversification and which factors
have driven the evolution and diversification of organisms, may help guide prioritization
in conservation and forecast the population demography under future climate conditions
(Avise, 2000; Frankham, Briscoe & Ballou, 2002). It had been shown that orogenic activity
during recent geological history was linked to the formation of hotspots of biodiversity
(Myers et al., 2000). Consequently, the study of the origin and evolution of biodiversity
in mountain systems has experienced a growing scientific interest (Klaus et al., 2016;
Van Der Meijden et al., 2007; Zhang et al., 2006). In Asia, the uplift of the Tibetan Plateau
was the most intense orogenic movement leading to the formation of several biomes
(Favre et al., 2015; Klaus et al., 2016;Myers et al., 2000; Yang, Dong & Lei, 2009). Therefore,
research has focused on the uplift of the Tibetan Plateau, based on a temporal (molecular
dating) and spatial (biogeographic) framework, which may have triggered a series of
evolutionary changes in different biological groups (Klaus et al., 2016), such as in plants
(Gao et al., 2013; Jabbour & Renner, 2012; Tu et al., 2010; Wang et al., 2009), birds (Lei, Qu
& Song, 2014; Tietze & Borthakur, 2012; Tietze et al., 2013), mammals (Deng et al., 2011)
and amphibians (Che et al., 2010; Guo et al., 2011; Li et al., 2013; Vijayakumar et al., 2016;
Zhang et al., 2006).

The ranoid treefrog genus, Rhacophorus, is the largest genus in the Rhacophoridae,
currently containing 88 species (Frost, 2016), which are widely distributed across India,
China, Japan, mainland South-east Asia, the Greater Sunda Islands and the Philippines
(Frost, 2016). A previous study disclosed that Rhacophoridae underwent an early dispersal
from India to Asia between 46 and 57Ma, that a transient faunal exchange ceased during the
Middle Eocene, and a subsequent increase of Rhacophorid dispersal events between Asia
and the Indian subcontinent during the Oligocene that continued until theMiddleMiocene
(Li et al., 2013). Uplift of the Tibetan Plateau and a series of climatic and environmental
changes led to many speciation events on a very large scale (Favre et al., 2015; Myers et al.,
2000; Yang, Dong & Lei, 2009). Rhacophorus taxa are widely distributed across the areas
around the Tibetan Plateau, according to previous study (Li et al., 2013), the speciation
process in this genus may be linked to the uplift of Tibetan Plateau during the Miocene
and Pliocene.

To gain a better understanding of the diversification processes in biomes around the
Tibetan Plateau, we herein provide a historical biogeographic pattern ofRhacophorus. In the
present study, we collected all the sequences datasets of Asian Rhacophorus that have been
reported in addition to newly sequenced DNA from Rhacophorus specimens collected from
the Dabie Mountains in Anhui, China. We infer the phylogenetic relationships within the
genus and estimate the divergence times. Further, the correlation between diversification
events within Rhacophorus and the geographic shifts in the Tibetan Plateau are explored.
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Figure 1 Sample sites of Rhacophorus species used in this study.
Full-size DOI: 10.7717/peerj.3995/fig-1

MATERIALS AND METHODS
Ethical statement
The collection of samples was performed within a long-term investigation project on
amphibians of Dabie mountains. This investigation project and the sample collection
were approved by the Animal Research Ethics Committee of Anhui University (Animal
Ethics number: AHU3110) and Anhui Tianma National Nature Reserve, Anhui Province,
China. Field experiments were approved by Anhui TianmaNational Nature Reserve, Anhui
Province, China.

Data collection
For the phylogenetic analyses, sequences of about half the species of Rhacophorus were
used in combination with sequences of two outgroup species, Polypedates megacephalus
(Rhacophoridae, Polypedates) and Spinomantis peraccae (Mantellidae, Spinomantis) (Li et
al., 2013; Li et al., 2012a; Li et al., 2012b). Sequence data were obtained from GenBank (the
GenBank Accession numbers are given in Table S1). In total, there were 149 individuals
of 57 species of Rhacophorus involved (Fig. 1 and Table S1). All the taxonomic revisions
within Rhacophorus were follow previous studies (Biju et al., 2013; Li et al., 2013; Orlov et
al., 2012).
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Sampling, DNA extraction, PCR amplification, and sequencing
Between 2012 to 2015, nine specimens of R. zhoukaiyae were collected from the Dabie
Mountains, China (Pan et al., 2017). Muscle tissue from each individual was sampled and
preserved in 100% ethanol for DNA extraction. Total DNA was extracted from the samples
using a standard proteinase K/phenol-chloroform protocol (Sambrook, Fritsch & Maniatis,
1989). An EasyPure PCR Purification Kit (TransGene, Strasbourg, FR) was used to purify
theDNA extractions. The sequences of 12S and 16S ribosomeRNA (rRNA) ofR. zhoukaiyae
were collected from Pan et al. (2017). In addition, we also amplified and sequenced five
nuclear gene fragments with the indicated primer pairs (Table S2), including brain-derived
neurotrophic factor (BDNF), proopiomelanocortin (POMC), recombination activating
gene 1 (RAG-1), rhodopsin exon 1 (RHOD) and tyrosinase exon 1 (TYR) (Bossuyt &
Milinkovitch, 2000; Li et al., 2009; Van Der Meijden et al., 2007; Vieites, Min & Wake, 2007;
Wiens et al., 2005). Polymerase chain reactions (PCR) were performed using a reaction
mixture (25 µL) containing 1 µL genomic DNA (concentration 10–50 ng/µL), 2.5 µL 10×
buffer, 1 µL of 2.5 mM MgSO4, 2 µL of 2 mM dNTPs, 1 U Taq polymerase (Meridian
Bioscience, Singapore) and 0.3 mM of each of the primers. Pure molecular biology grade
water was added to reach the appropriate volume. The amplification protocol included an
initial denaturation step of 95 ◦C for 5 min; this was followed by 32 cycles of denaturation
at 95 ◦C for 30 s, primer annealing at 51 ◦C –57 ◦C for 30 s, and an extension at 72 ◦C for
40 s–80 s, with a final extension at 72 ◦C for 10 min. PCR products were purified using an
EasyPure PCR Purification Kit (TransGene) and sequenced using previous primers and the
BigDye Terminator v3.0 Ready Reaction Cycle Sequencing Kit (Applied Biosystems, Foster
City, CA, USA) following themanufacturer’s instructions on an ABI Prism 3730 automated
sequencer. All the sequences obtained in this studywere deposited intoGenBank (Table S1).
For the analyses, the sequences were trimmed to match data downloaded from GenBank,
then all the sequences were aligned automatically using Clustal X version 1.83 (Thompson
et al., 1997), followed by visual confirmation and manual adjustments. Nucleotide sites
with ambiguous alignments were removed from the analyses, and gaps were analyzed as
missing data.

Phylogenetic analyses
Two different datasets were generated for the different analyses. Dataset 1 was used for
a phylogenetic analysis of Rhacophorus by Maximum Likelihood (ML) and Bayesian
methods, and was comprised of the 12S and 16S rRNA gene together with the complete
t-RNA for the valine sequence of the Rhacophorus species and the outgroups (Table S1).
Dataset S2 contained more genes (12S, 16S, Val, BDNF, POMC, RAG-1, RHOD, TYR)
of more individual and species than Dataset S1 (Table S1). However, it was only used
to calculate a Bayesian consensus tree. The best-fit model of evolution was calculated by
MrModeltest 1.0 b under the AIC criterion (Nylander, 2003). ML analyses were performed
in RAxML version 8 (Stamatakis, 2014) and a general time reversible model of nucleotide
substitution under the Gamma model of rate heterogeneity (i.e., GTRCAT). Support for
the internal branches for the best-scoring tree was evaluated via the bootstrap test with
1,000 iterations. A Bayesian inference of phylogeny was performed using the MrBayes
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Table 1 Detailed results of molecular dating using BEAST 1.7.4, and the calibration points. Labels for
nodes correspond to Fig. 3. Unit: one million years. The abbreviation of time to most recent common an-
cestor is TMRC.

Node TMRC Mean (95%) Mean(95%) (Li et al., 2013)

Root – 33.27 (25.11–40.20) 36.5 (31.2–40.9)
a Clade A, B, C 29.51 (25.34–34.07) 30.6 (25.2–34.7)
b Clade A, B 27.38 (22.44–32.17) –
c Clade A 21.56 (17.92–25.22) 21.6 (17.5–25.1)
d Groups A2–A6 14.09 (10.96–17.41) –
e Groups A3–A6 11.39 (8.89–14.16) –
f Groups A4–A6 8.56 (6.43–10.88) –
g Groups A5, A6 5.33 (3.92–6.99) –
h Ggroup A6 2.9 (1.78–4.29) –
i – 8.4 (6.43–10.29) 8.6 (5.5–9.8)

3.1.2 software program (Huelsenbeck & Ronquist, 2005), using the best-fit substitution
model. Two Markov Chain Monte Carlo (MCMC) models were run to provide additional
confirmation of the convergence of posterior probability distributions. Analyses were run
for 3,000,000 generations. Chains were sampled every 1,000 generations. The first 25% of
the total trees were discarded as ‘‘burn-in’’ and the remaining trees were used to generate
a majority-rule consensus tree and to calculate Bayesian posterior probabilities.

Divergence time analyses
To estimate divergence times of Rhacophorus, we applied a Bayesian MCMC method with
mitochondrial genes (Dataset S1), which employs a relaxed molecular clock approach, as
implemented in BEAST 1.7.4 (Drummond et al., 2012). We assumed a relaxed uncorrelated
log normal model of lineage variation and a Yule Process prior to the branching rates based
on the GTR+ I+ Gmodel as recommended by MrModeltest 1.0 b (Nylander, 2003). Four
replicates were run for 10,000,000 generations with tree and parameter sampling every
1,000 generations. The first 25% of samples were discarded as burn-in. All parameters
were assessed by visual inspection using Tracer v. 1.5 (Rambaut & Drummond, 2007). The
tree was generated and visualized with TreeAnnotator v. 1.6.1 (Rambaut & Drummond,
2010) and FigTree v. 1.3.1 (Rambaut, 2009), respectively. Calibration points were taken
from Li et al. (2013) (Table 1). In addition, to visualizing the temporal accumulation of
species, a log-transformed lineage-through-time (LTT) (Nee, May & Harvey, 1994) plot
was constructed and compared with the null distribution for the LTT line simulated under
the empirical pure-birth model. For visualizing diversification rate changes, we plotted the
number of newly appearing species against the fixed time intervals of 2 million years (Ma)
(Venditti, Meade & Pagel, 2010).

Ancestral area reconstructions
Ancestral area reconstructions were inferred by the program RASP 3.2 (Yu et al., 2015)
for speciational evolution in phylogenetic trees, using the Bayesian Binary MCMC (BBM)
method (Ronquist & Huelsenbeck, 2003) and the statistical dispersal-vicariance method
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(S-DIVA) (Yu, Harris & He, 2010). To reconstruct ancestral areas on the basis of the
topography, the distributional range of Asian Rhacophorus was divided into four regions,
W, X, Y and Z (Fig. 2). W represents Southeast Asia, including the Indochinese Peninsula,
Sundaland and the south margin of the Tibetan Plateau, X contains the Hengduan
mountains and the mountains around the Sichuan Basin, Y refers to South China and
Japan and Z represents India (Fig. 2). The tree data sets and the condensed tree were
generated by BEAST 1.7.4 (Drummond et al., 2012). The distribution of each species was
collected from http://maps.iucnredlist.org. For all analyses, the maximum number of
ancestral areas at each node was constrained to three. The frequencies of an ancestral range
at a node were averaged over all trees and each alternative ancestral range at a node was
weighted by the frequency of occurrence for the node.

RESULTS
Molecular phylogenetic analyses
The aligned mtDNA gene fragments from Rhacophorus consisted of 1,935 bp nucleotide
positions before trimming (Dataset S1). After trimming, 1,851 nucleotide positions
were retained for genealogical reconstructions. The fragments contained 934 constant
and 917 potentially phylogenetically informative characters. The ML or BI phylogenetic
approaches based on Dataset S1 resulted in virtually identical topology, and all terminal
clades obtained relatively high-supporting values (Fig. S1). The genus Rhacophorus was
supported as monophyletic containing four major clades (Fig. S1). For further probing of
the dispersal process and diversification of the Asian tree frog, the molecular dating and
ancestral area reconstructions were carried out. The phylogenetic tree, collected from the
molecular dating, showed three distinct clades (A, B and C) in the genus of Rhacophorus
(Fig. 2). There were some difference in the species distribution areas among the three
clades. Species in clade A were mostly distributed in Southeast Asia and East Asia, species
in Clade B were distributed in Southeast Asia and India, and species in lineage C only
found in Southeast Asia. Clade A contained six groups, A1 to A6 (Fig. 2). The phylogenetic
tree, based on Dataset S2, was largely consistent with the results from Dataset S1 (Fig. S2).
However, there were some minor differences between them, such as the polyphyletic of
clade B and C in Fig. S2 . But, generally, it did not affect the results of ancestral area
reconstructions of Rhacophorus.

Molecular dating, ancestral area reconstructions and lineage
through time
Dating analyses based on Dataset S1 suggested that the most recent common ancestor
(MRCA) of Rhacophorus dates back to 29.51 Ma (median value; 95% of the highest
posterior density [HPD] = 25.00–34.07 Ma) (Table 1 and Fig. 3).The MRCA of Clade A
and Clade B was estimated at 27.38Ma (95%HPD= 22.44–32.17Ma). TheMRCA of Clade
A was 21.56 Ma (95% HPD = 17.92–25.22 Ma) and the MRCA of Clade B was 26.73 Ma
(95% HPD = 21.56–31.83 Ma).

Ancestral area reconstructions from S-DIVA and BBM analyses were largely similar with
some minor differences (Fig. 2). All analyses supported Southeast Asia (Area W, Fig. 2) as
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Figure 3 (. . .continued)
Pleistocene (red line) (modified from Zachos et al. (2001), Zachos, Dickens &Zeebe (2008) and Favre et al.,
2015). The establishment of ice sheets in the Northern Hemisphere is indicated by grey to black bars on
top. The onset and development of the monsoon is symbolised by a blue polygon and its intensification by
grey bars (I, II and III) (Wan et al., 2007; Jacques et al., 2011). The climate oscillations during the Quater-
nary are represented by a grey bar (IV) (Deng et al., 2011); (C) geological sequences of events are related to
the diversification of Rhacophorus including the reconstructions historical land and sea in Southeast Asia
and a graphical representation of the extent of the uplift of the TP through time. ¬ and ­ show two Ceno-
zoic reconstructions of land and sea in the Indo-Australian Archipelago (modified from Lohman et al.,
2011). Red shading in ® and ¯ indicates the portion of the TP that had achieved altitudes comparable to
the present day for each given time (modified fromMulch & Chamberlain (2006) and Favre et al., 2015).

the ancestral area of Rhacophorus and most speciation events were attributed to dispersal.
The empirical LTT plot of Rhacophorus showed that, after a lengthy period of constant di-
versification, the diversification rate of the genus had increased during the middle Pliocene.
The cumulative curve of species-birth per time interval showed that the diversification of
Rhacophorus fluctuated through time, especially during 14–12 Ma and 10–4 Ma (Fig. 4).

DISCUSSION
The dispersal process of Rhacophorus and its spread toward East
Asia and India
Previous studies have indicated that the diversification of Rhacophoridae was closely linked
to the India-Asia collision (57 Ma–35 Ma) (Li et al., 2013). Southeastern Asia houses three
globally significant hot spots divided by sharp, yet porous biogeographic boundaries (Evans
et al., 2003; Favre et al., 2015; Schmitt, Kitchener & How, 1995;Wallace, 1860). Studies have
shown that the dynamics of the formation of biodiversity in Southeastern Asia is assumed
to be interrelated with many geological events and a unique climatic history. Events
such as the continuing processes of volcanic uplift and the emergence of many new
islands in Indo-Australian Archipelago during the Miocene-Pliocene (Fig. 3C) (Esselstyn,
Timm & Brown, 2009; Hall, 1996; Hall, 1998; Hall, 2002; Lohman et al., 2011), the rapid
uplifts of the Tibetan Plateau (Shi et al., 1999), repeated sea level fluctuations during
the Pleistocene (Bird, Taylor & Hunt, 2005; Esselstyn, Timm & Brown, 2009; Hall, 1998;
Heaney, 1985; Heaney, 1986; Jansa, Barker & Heaney, 2006; Voris, 2000) and the onset
of the Asian monsoon system (An et al., 2001; Qiang et al., 2001; Sun &Wang, 2005;
Zhisheng et al., 2001). Many phylogeographical studies of plants and animals support this
assumption (Deng et al., 2011; Klaus et al., 2016; Shi et al., 1999), such as those on Lilium
(Gao et al., 2013), Delphinieae (Jabbour & Renner, 2012), Hyoscyameae (Tu et al., 2010),
Mandragoreae (Tu et al., 2010), Saussurea (Wang et al., 2009), birds (Lei, Qu & Song,
2014; Tietze & Borthakur, 2012; Tietze et al., 2013; Yang, Dong & Lei, 2009), Hynobiidae
(Zhang et al., 2006), lizards (Guo et al., 2011) and Spiny Frogs (Che et al., 2010), so the
diversification and speciation in Rhacophorus may also be related to the special geological
formations and the climatic history.

The phylogenetic analysis shows that Rhacophorus is composed of multiple lineages. In
the phylogenetic tree with timescale, calculated by BEAST, Rhacophorus is composed
of three major clades, A, B and C (Fig. 2). Among these clades, Clade C was the
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basal branch of Rhacophorus, which contained ten species from Southeast Asia, and
the age of the MRCA of Rhacophorus was estimated at 29.51 Ma (i.e., 95% CI [25–
34.07 Ma], Fig. 2 and Table 1). The MRCA of Clades B and Clade A was 27.38 Ma
(95% CI [22.44 Ma–32.17 Ma]) during the Oligocene (Fig. 2, Table 1). The members of
Clades A and B are mainly distributed in the south of the Tibetan Plateau margin, India
and Eastern Asia (Fig. 1). Clade A contained six groups which were distributed in three
areas: Southeast Asia (group A1), the south of the Tibetan Plateau margin (group A2) and
an Eastern Asia (group A3 to A6) (Figs. 1 and 2). The MRCA of Clade A occurred 21.56
Ma ago (95% CI [17.92–25.22 Ma]; Fig. 2) and the time of the split of different groups
was estimated at 14.09 Ma (A2 vs A3∼A6, 95% CI [10.96–17.41 Ma]), 11.39 Ma (A3 vs
A4∼A6, 95% CI [8.89–14.16 Ma]), 8.56 Ma (A4 vs A5∼A6, 95% CI [6.43–10.88 Ma]) and
5.33 Ma (A5 vs A6, 95% CI [3.92–6.99 Ma]) respectively (Table 1). In addition, the LTT
plot analysis indicated an increased diversification rate during two periods (14–12 Ma and
10–4 Ma) (Fig. 4). Basically, the above mentioned phylogeographical information reflected
the trend of diversification and the speciation process. Obviously, the distribution of these
species expanded continuously from Southern Asia to India and Eastern Asia, reaching as
far as Japan (Fig. 2).

During the Oligocene and Miocene the uplift progressed, causing the extension of
the Tibetan Plateau (Harrison et al., 1992; Mulch & Chamberlain, 2006). The start of the
uplift of the northern Tibetan Plateau occurred at about 30 Ma BP (Sun &Wang, 2005)
or slightly earlier (Wang et al., 2012b). Then, the eastern parts of the Tibetan Plateau likely
reached an elevation comparable to the present-day elevation in the Mid to Late Miocene
(from 15 to 5 Ma) (Axelrod, 1997; Currie, Rowley & Tabor, 2005; Jacques et al., 2011; Spicer
et al., 2003; Tapponnier et al., 2001; Valdiya, 1999; Zhang et al., 2013). The southeastern
edge of the Tibetan Plateau, the Hengduan mountain range, experienced rapid uplift only
after the Miocene (5.33 Ma), reaching a peak elevation shortly before the Late Pliocene
(5.33–2.66Ma) (Li & Fang, 1999;Mulch & Chamberlain, 2006; Sun et al., 2011;Zheng et al.,
2000), which separated several major rivers that ran in parallel (the Yangtze, Mekong, and
Salween valleys) (Clark et al., 2004). This series of rapid Tibetan Plateau uplifts dramatically
changed the terrain and landform in this area, which resulted in speciation, especially in
animal groups (Che et al., 2010; Deng et al., 2011; Gao et al., 2013; Jabbour & Renner, 2012;
Lei, Qu & Song, 2014; Li et al., 2013; Shi et al., 1999; Tietze & Borthakur, 2012; Tietze et al.,
2013; Tu et al., 2010; Wang et al., 2009; Zhang et al., 2006). Zhang et al. (2006) found that
the origin and phylogenetic divergence of the Hynobiidae had a correlation to the uplift
of the Tibetan Plateau (Zhang et al., 2006). The phylogenetic history of Paini (Anura:
Dicroglossidae) illuminates a critical aspect of the timing of geological events, especially
for the uplift of the Tibetan Plateau (Che et al., 2010). On the other hand, the Tibetan
Plateau and its adjacent mountain ranges acted as an orographic barrier to atmospheric
circulation in Asia and consequently contributed to the formation of the Asian monsoon
system, which was one of the major climatic changes in this region (Early Miocene, 24
Ma) due to the Tibetan Plateau’s considerable size and altitude (Guo et al., 2008; Kutzbach,
Prell & Ruddiman, 1993; Liu & Yin, 2002; Ruddiman & Kutzbach, 1991; Song et al., 2010;
Sun &Wang, 2005; Tang et al., 2013; Zhisheng et al., 2001). In the following millions of
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years, the East Asian monsoon intensified three times (∼15 Ma, ∼8 Ma and 4–3 Ma)
(An et al., 2001; Jacques et al., 2011; Molnar, Boos & Battisti, 2010; Song et al., 2010; Sun &
Wang, 2005; Valdiya, 1999;Wan et al., 2007; Zhisheng et al., 2001). The development of the
Asian monsoon system directly gave birth to the warm and humid climate in the south
of China (Sun &Wang, 2005), which was maybe favorable for the geographical spread
and speciation of amphibians (Che et al., 2010; Thorn & Raffaelli, 2001; Wu et al., 2013;
Zhang et al., 2006). In addition, the climate oscillations that began about 2.8 million years
ago, in the Late Pliocene (Deng et al., 2011), also provided the chance for diversification
and speciation of many species (Zhang, Fengquan & Jianmin, 2000), such as birds (Lei,
Qu & Song, 2014), the Tibetan woolly rhino (Coelodonta thibetana) (Deng et al., 2011) and
stream-dwelling frog (Feirana quadranus) (Wang et al., 2012a). Molecular dating suggested
that the TMRC of Clade A and Clade B was during the Oligocene (22.44 Ma–32.17 Ma)
(Fig. 3, Table 1). At same time, ancestral area reconstructions supported Southeast Asia (W)
as the ancestral area of Rhacophorus and the dispersal events happened from ancestral area
of Clade A and Clade B (Fig. 2, node b). In addition, the land and sea in the Indo-Australian
Archipelago changed greatly during this period (Lohman et al., 2011), which may promote
the dispersal events from Southeast Asia. In Clade A, the time of the split of subgroups
was estimated from 14.09 to 5.33 Ma (Table 1). In addition, the time of most nodes in
Clade B also occurred during this period (Fig. 3). Based on the LTT plot analysis, there
were two increased diversification rate periods (14–12 Ma, 10–4 Ma) in Rhacophorus
(Fig. 4). The series of Tibetan Plateau rapid uplifts (from 15 to 2.66 Ma) dramatically
changed the landscape, which resulted in the diversification of species or speciation in this
area (Che et al., 2010; Deng et al., 2011; Gao et al., 2013; Jabbour & Renner, 2012; Lei, Qu &
Song, 2014; Li et al., 2013; Shi et al., 1999; Tietze & Borthakur, 2012; Tietze et al., 2013; Tu
et al., 2010; Wang et al., 2009; Zhang et al., 2006) and the biotic interchange between the
Indian subcontinent and mainland Asia (Klaus et al., 2016). In addition, the intensified
East Asian monsoon (∼15 Ma, ∼8 Ma and 4–3 Ma) directly gave birth to the warm and
humid climate in the south of China, which was favorable for the geographical spread and
speciation of amphibians (Che et al., 2010; Thorn & Raffaelli, 2001; Wu et al., 2013; Zhang
et al., 2006). Obviously, the diversification events in Rhacophorus were in line with the time
frame of the orogenic movement and climatic histories, especially the staged rapid uplift
of the Tibetan Plateau and the enhanced Asian monsoon system (Figs. 2 and 3). Therefore,
we think that the diversification and speciation events in Clade A and Clade B, are related
to the staged uplift of the Tibetan Plateau and the subsequent chain-reaction events,
such as the establishment of the Asian monsoon system, which facilitated the radiations
and speciation of amphibians (Che et al., 2010; Thorn & Raffaelli, 2001; Wu et al., 2013;
Zhang et al., 2006).

Overall, the evolutionary history of Rhacophorus originated approx 30 Ma Bp
(Oligocene). Basically, it is the dispersal process from its ancestral area, Southeast Asia,
toward India and East Asia. During the process, Rhacophorus diversified by multiple
factors, such as geographic shifts, the staged rapid rises of the Tibetan Plateau with parallel
climatic changes, the reinforcement of the Asian monsoons (15 Ma, 8 Ma and 4–3 Ma)
and alternating glacial-interglacial oscillations.
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