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Phytomelatonin is a pleiotropic molecule that originated in higher plants with many diverse actions and
is primarily an antioxidant. The recent identification and advancement of phytomelatonin unraveled the
potential of this modulatory molecule being considered a new plant hormone, suggesting its relevance in
treating respiratory infections, including COVID-19. Besides, this molecule is also involved in multiple
hormonal, physiological, and biological processes at different levels of cell organization and has been
marked for its ability to cross the blood-brain barrier and prominent antioxidant effects, reducing
mitochondrial electron leakage, up-regulating antioxidant enzymes, acting as a free radical scavenger,
and interfering with pro-inflammatory signaling pathways as seen in mood swings, body temperature,
sleep, cancer, cardiac rhythms, and immunological regulation modulators. However, due to its diversity,
availability, affordability, convenience, and high safety profile, phytomelatonin has also been suggested
as a natural adjuvant. This review discussed the origin, content in various plant species, processes of
extraction, and detection and therapeutic potentials of phytomelatonin in treating COVID-19-exposed
individuals.
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Over the years, discovering potential medicinal plants and
concurrent screening of their biological activities has increased
significantly, intending to provide useful information to enable
patients and physicians to make rational decisions [1]. These me-
dicinal plants can be in the form of plant extract (either as stan-
dardized extracts or in pure form). They have paved the way to a
wide range of opportunities in drug discoveries due to their un-
limited availability/unmatched diversity of their chemical constit-
uents [2,3]. Melatonin is a ubiquitous biological molecule with a
wide array of biological activities in plants, animals, unicellular
organisms, and fungi. Melatonin plays vital regulatory roles in
sleep, body temperature balance, locomotory activities, circadian
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rhythms, immune system, and retinal physiology [4,5]. In 1958, the
bovine pineal gland was the first source of melatonin. It was iso-
lated and identified as N-acetyl-5-methoxy tryptamine [6]. At
physiological concentrations, melatonin has been shown to have
good antioxidant capacity [7,8]. It has been employed as an anti-
cancerous agent to decelerate cancerous cells' growth rate [9,10].
Phytomelatonin is a term used to refer to melatonin from plant
origin.

In this review, we presented the origin of phytomelatonin, its
content in various plant species. Additionally, we went further to
give an overview of the extraction, detection, and isolation of
melatonin form using notable instruments and the pro-
inflammatory mediators in patients living with COVID-19 which
could be coupled with the anti-inflammatory and antioxidant ef-
fects of phytomelatonin for therapeutic intervention in COVID-19
individuals.

1286-4579/© 2021 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
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1. Origin of phytomelatonin

A widespread molecule named melatonin was discovered in
living organisms previous years ago. This molecule is also involved
in multiple hormonal, physiological, and biological processes at
different levels of cell organization. It has been marked for its
ability to cross the blood-brain barrier and prominent antioxidant
effects, reducing mitochondrial electron leakage, up-regulating
antioxidant enzymes, acting as a free radical scavenger, and inter-
fering with pro-inflammatory signaling pathways [11]. Phytome-
latonin  (N-acetyl-5-methoxytryptamine) is related to an
indoleamine derivative of the amino acid tryptophan chemically
(Fig. 1). The compound of melatonin of animal origin or obtained by
chemical synthesis is called melatonin, while plant origin is termed
phytomelatonin [12]. In 1993, Van Tassel and his group in a
congress communication described how they identified the
endogenous phytomelatonin in higher plants by Gas chromatog-
raphy by Mass spectrophotometer and Radio immune assay in a
flowering plant named ivy morning glory (Pharbitis nil L.) and to-
mato fruits (Solanum lycopersicum L.) [13]. In 1995, Dubbels and his
companions measured the levels of phytomelatonin in five edible
plants in extracts of Nicotiana tabacum L. using Radio Immune
Assay (RIA) and High-performance Liquid Chromatography-Mass
Spectrometer (HPLC-MS) [7]. Later on, the Japanese group quanti-
fied the presence of melatonin in large quantities of edible plants by
RIA and HPLC with Fluorescent detection [14].

Furthermore, the Czech research group detected phytomelato-
nin in Chenopodium rubrum L. using Liquid chromatography with
mass identification LC/MS/MS. Quantitative analysis of phytome-
latonin in many plants has been carried out previously by many
researchers, and to date, the presence of this molecule in all plants
has gained acceptance [15]. While low levels (pg to ng/g) of phy-
tomelatonin are found in most plant tissues generally, higher levels
are detected in leaves and medicinal plants [16,17].

Melatonin of plant origin is termed phytomelatonin, and that of
synthetic or animal origin is melatonin, but structurally, melatonin
and phytomelatonin are the same molecules. Melatonin was
discovered to be naturally produced as tryptophan in cell species
with mitochondria (either in plants, animals, unicellular organisms,
and fungi). In plants, melatonin abundance varies. Several studies
have documented the occurrence of phytomelatonin in medicinal
herbs, fruits, wild plants, and vegetables, with a higher occurrence
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in aromatic plants and leaves than in seeds. However, as docu-
mented previously in decreasing order, the trend for its occurrence
was leaves > seeds > roots > flowers > fruits, even though the data
are missing in some plant organs [18]. Still, its highest levels have
been found in reproductive organs, especially in seeds, because
reproductive functions well in plant species survival. This plant has
generated a wide range of metabolic, physiological, and cellular
responses. It also acts as a biostimulator, plant growth regulator
and reduces secondary oxidative stress in plants [17,19,20]. Phyto-
melatonin is an interesting compound due to its outstanding ac-
tions at the cellular and physiological levels, especially its
protective effect in plants exposed to diverse stress situations.
Simultaneously, its vegetable origin offers many opportunities
because it is a natural compound [17]. The use of phytomelatonin in
cosmetics and dietary derivatives has been documented. As an anti-
tumor agent, it prevents residual synthetic by-products from being
incorporated during tumor treatments. The consumption of mela-
tonin (synthetic or phytomelatonin) plays a crucial role in some
critical aspects of human bodily actions leading to beneficial effects
on diseases and disorders, sleep regulation, immune, body tem-
perature, mood, food intake patterns, locomotor activity, and
circadian rhythms, among others [18,21,22].

Furthermore, several phytomelatonin-rich extracts of plant an-
tioxidants such as simple phenols, flavonoids, tocopherols, ascorbic
acid, carotenoids, and others, might be significant for maintaining a
proper cell redox balance. In some experimental studies, it was
proven that after consuming melatonin-containing food, the
melatonin concentration in human serum could significantly in-
crease. Also, some phytomelatonin rich foods have been analyzed.
A general healthy effect in antioxidant status and increase in
plasma melatonin levels, and increased sleep quality parameters
were recorded [23—26]. Researchers have discovered many aro-
matic and medicinal plants and edible plants, including the herbs
roots, leaves, fruits, and seeds of a considerable variety of plant
species contains melatonin which has been classified and has used
in ethnomedicine to treat numerous diseases of the central and
peripheral nervous system (Table 1) [5,15,27]. In medicine, labo-
ratory synthesized melatonin generated above 80% yield is often
used, most commonly available in many forms such as pills,
chewable, and liquids. Consumption of natural melatonin-rich
edible medicinal herbs and foods, such as pineapple, banana,
strawberry, carrot, onion, tomato, thyme, cucumber, cabbage, corn,

NH, NH,
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Melatonin (N-acetyl-5-
methoxytryptamine)

Fig. 1. Melatonin biosynthesis pathway.
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Table 1
Phytomelatonin content of some aromatic/medicinal plant species.
Common name Scientific name Plant organ  Reference
Apple Malus domestica (Borkh) Fruit [14]
Asparagus Asparagus officinalis (L.) Shoot [14]
Onion Bulb Allium cepa (L.) Bulb [14]
Cucumber Cucumis sativus (L.) Fruit [14]
Banana Musa paradisiaca (L.) Fruit [20]
Morning glory Pharbitis nil (Choisy) Shoot [51]
Almond Prunus amygdalus (Batsch). Seeds [19]
Cabbage Brassica oleracea (L.) Leaf [14]
Tomato Lycopersicon esculentum (Mill.). Fruit [89]
Oat Avena sativa (L.) Seeds [14]
Corn Zea mays (L.) Seeds [14]
Curcuma Curcuma aeruginosa (Roxb.) Root [90]
Ginger Zingiber officinale (Roscoe) Root [14]
Grape vine Vitis vinifera (L.) Fruit [91]
Sunflower Helianthus annuus (L.) Seeds [92]
White radish Raphanus sativus (L.) Root [90]
St. John's wort Hypericum perforatum (L.) Leaf [93]
Walnut Juglans regia (L.) Seed [91]
Burmese grape Baccaurea ramiflora Lour. Leaf [94]
Fever few Tanacetum parthenium (L.) leaf [95]
Pomegranate Punica granatum (L.) Fruit [39]
Strawberry Fragaria x ananassa (Duch.) Fruit [42]
Orange juice Citrus sinensis (L.) Fruit [41]
Feverfew Tanacetum parthenium (L.) Flower [95]
Water hyacinth  Eicchornia crassipes (Marth.) Flower [15]
Sweet cherries Prunus cerasus L. Fruit [15]
Grapevine Vitis vinifera (L). Fruit [92]
Barley Hordeum vulgare (L.) Seeds [14]
Poppy Papaver somniferum (L.) Seeds [92]
Turnip Brassica compestris (L.) Root [92]
Flax Linum usitatissimum (L.) Seeds [92]
Anise Pimpinela anisum (L.) Seeds [92]
Alfalfa Medicago sativum (L.) Seeds [92]
Black mustard Brassica nigra (L.) Seeds [92]
White mustard Sinapis alba (L.) Seeds [92]
Coriander Coriandrum sativum (L.) Seeds [92]
Wolf berry Lycium barbarum Seeds [92]
Fenugreek Trigonella foenum-graecum (L.) Seeds [92]
Tall fescue Festuca arundinacea Seeds [14]
Java bean Senna tora (L.) Leaf [94]
Fennel Foeniculum vulgare (Gilib.) Seeds [92]
Cherry Prunus cerasus (L.) Fruit [15]
Poppy Papaver somniferum (L.) seed [92]
Celery Apium graveolens (L.) Seed [92]
Wolf berry Lycium barbarum Seed [92]
Milk thistle Silybum marianum (L.) Seeds [92]
Bitter lemon Momordica charantia.(L) Leaf [94]
Black pepper Piper nigrum (L.) Leaf [94]
Pineapple Ananas comosus (Stickm.) Merill. ~ Fruit [14]
Wild strawberry  Fragaria ananassa (Duch.) Fruit [95]
Rice Oryza sativa japonica (L.) Seeds [14]
Carrot Daucus carota Root [14]
Beet Beta vulgaris (L.) Root [20]

ginger, etc. is necessary to avoid the presence of unwanted residual
compounds generated during the process of synthetic melatonin
process, and their human health associated risks [11,18,28].

2. Synthesis, extraction, detection, and isolation of melatonin
from plants

Melatonin is usually synthesised and secreted by the pineal
gland, in which the synthesis is affected by circadian rhythm.
During the synthesis of melatonin, the acetylation of serotonin by
the enzyme arylalkylamine N-acetyltransferase (AANAT) to
generate N-acetyl serotonin (NAS) has been considered as the rate-
limiting step [29]. NAS is then methylated into melatonin by
hydroxyindole-O-methyltransferase. On the other hand, arylalkyl-
amine N-acetyltransferase does not determine the rate of synthesis
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of melatonin in the living pineal gland at night [30]. Their position
was based on their findings that the decrease of NAT activity of
more than 10-fold did not cause a corresponding reduction in
melatonin production. Also, NAS is found in vast molar excess
compared with melatonin within 1 h of lights-off. In addition, NAT
protein levels increase throughout the night, while melatonin
output approaches peak levels within 3 h of lights-off. Also,
continuous increase of NAS over consecutive circadian cycles
within the same animals in vivo did not cause a rise in melatonin
output [31]. In addition, the synthesis of melatonin is continuous,
though the peak of its production and subsequent release from the
pineal gland occurs only at night. About 30 g of melatonin is re-
ported to be synthesized per day in an adult, while the maximal
concentration in the blood is achieved in the mid-dark period [32].

One of the significant issues with phytomelatonin quantification
in plants has been the great variability of biosynthetic complexity
compared to animals [33]. The melatonin biosynthetic pathway has
been clearly determined in animals, including mammals, where
melatonin biosynthesis is under the successive regulation of four
enzymes [17]. Melatonin can be metabolized in living tissues via
enzymatic or non-enzymatic pathways. In plants, melatonin is
converted to 2-hydroxy melatonin (2-OH) M, unlike mammals,
where melatonin metabolism is established differently [34]. Kim
et al. [35] and Slowminiski et al. [31] indicated that 6-hydroxy
melatonin  (6-OH) M, N1  -acetyl-N2 - formyl-5-
methoxykynuramine (AFMK), and 5-methoxytryptamine (5-MT)
are metabolites of melatonin in skin cells [36]. These products are
usually obtained via two pathways: kynuric and indolic pathways.
The 6-hydroxy melatonin and (5-MT) are the major and minor
metabolites via the indolic pathway, respectively, while N1 -acetyl-
N2 - formyl-5-methoxykynuramine was detected in the kynuric
pathway [37]. AFMK is the only antioxidant that can donate two
electrons for reduction, unlike other antioxidants. This compound
is more active biologically than its parent compound (melatonin)
since it can serve as an antioxidant and modulate cutaneous
cancerous cells' proliferation (anti-carcinogenic). It can be easily
detected when the skin is under environmental stress like UV
exposure [37,38]. In addition to the fact that abiotic factors mainly
modulate melatonin biosynthesis in plants, tryptophan is trans-
formed into 5-hydroxytryptophan by tryptophan 5-hydroxylase to
produce serotonin [16]. Besides, 5-hydroxytryptamine is generated
from tryptamine, obtained from tryptophan via an alternative
pathway catalyzed by the same enzymes. This additional pathway
indicates that the action of enzymes in plants to produce serotonin
varies from that observed in animals. The first pathway occurs
mainly in mammals, whereas the second one occurs in plants.
Another pathway not seen in animals is associated with trypt-
amine, acting as a substrate of serotonin N-acetyltransferase,
forming N-acetyltryptamine, which can be hydroxylated to form N-
acetylserotonin [17,33].

Proper extraction and difficulty in recovering phytomelatonin
from plant extracts, for example, walnut, because of its implications
in human consumption was the initial challenge to phytomelatonin
quantification as its level varies from plant to plants [39—41].
Organic solvents such as chloroform, methanol, or ethyl acetate are
generally used to extract melatonin from liquid nitrogen-treated
plants. However, low recovery rates have been reported with
aqueous extraction [42] due to the amphipathic nature of mela-
tonin molecules, organic solvents with direct sample extraction
procedures (without homogenization of fresh tissues) are highly
suggested [15]. Extraction, purification, and determination of
melatonin from higher plants with different methods have been
carried out previously by different researchers. Simpler extraction
solvents-phosphate-buffered saline, ethanol [27], 10% Na,COs [6],
or potassium phosphate buffer have been employed by many
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authors [5,14,15]. The most suggested methods for quantifying and
detecting phytomelatonin are liquid chromatography with time-of-
flight/mass spectrometry (LC-TOF/MS), liquid chromatography, and
identification by mass spectrometry (LC-MS/MS). Multiple reaction
monitoring (MRM) and LC-MS/MS with positive electrospray ioni-
zation (ESI+) is widely used. Due to cross-reactivity with coex-
tractives, some methods like RIA or ELISA present serious problems
during the extraction of melatonin in plants [23,39,42].

There is still much controversy over the stability of melatonin in
plants, irrespective of the growing evidence of its importance in
plant life. However, a very highly sensitive but less specific method
such as LC with electrochemical or fluorometric detection is also
outstanding if supplemented by identification by LC-MS/MS
[43—49]. Some researchers have used acetone-, Tricine-based
extraction mixtures, sometimes including antioxidants, HClO4, or
the chelator EDTA to extract melatonin from plants, while some
suggested the use of potent hydroxyl radical scavengers (acetone,
Tris/HCl, or Tricine/NaOH buffer) with added antioxidants
[13,15,45,50]. Melatonin in plants can be converted to a volatile
(e.g., pentafluoropropionyl — derivative and quantified by GC-MS).
CG-MS, Liquid chromatography-tandem mass spectrometry (LC-
MS/MS) has been used to identify melatonin in plants [13,51].
Furthermore, a more sensitive technique like HPLC with electro-
chemical detection, Gas chromatography-mass spectrometry (GC-
MS) or LC-MS, LC-MS are often used and in higher plants and algae
[15,42,52] even though it is low in specificity — many compounds
with similar oxidation potentials may have same retention times to
melatonin [52].

3. Molecular immune pathogenesis of COVID-19

The immune system is an essential part of the body system,
ensuring that the body is protected from diseases. Typically, im-
munity is categorized into innate and adaptive immunity. Innate
immune, otherwise called natural immunity, is the first line of
defense against invading pathogens [53]. Innate immunity has a
fast response system but lacks antigen specificity. Thus, it does not
provide lifetime immunity [53]. The human innate immune system
includes cellular defenses such as macrophages, lymphoid cells,
dendritic cells, neutrophils, natural killer cells, and epithelial bar-
riers such as skin surface and mucous membrane. Other compo-
nents of the innate immune system include soluble mediators such
as mannose-binding lectin, c-reactive proteins, kinins, and surfac-
tant covering the respiratory passages; pattern recognition re-
ceptors (PPRs) such as NOD-like receptors (NLRs), C-type lectin
receptors (CLRs), toll-like receptors (TLRs), RIG-I-like receptors
(RLRs), among others [54]. When COVID-19 virus enters the cells,
the viral antigen is probed by the antigen presentation cells (APC)
through the help of the major histocompatibility complex (MHC).
The antigen is recognized by virus-specific cytotoxic T lymphocytes
(CTLs) [55]. However, the antigen presentation activates the body's
humoral and cellular immunity as directed by B and T cells specific
to the virus.

3.1. Inflammatory mediators in COVID-19

Inflammation is a protective approach employed by higher or-
ganisms in response to stimuli from harmful agents such as mi-
crobial infection, tissue injury, and other uncomfortable conditions
[56]. Inflammatory stimuli are recognized by the host cells via a
specialized transmembrane receptor known as pattern recognition
receptors (PRRs). Pattern recognition receptors are germline-
encoded receptors that detect cellular damage and the presence
of pathogens [56,57]. Acute inflammation has been regarded as an
essential part of innate immunity. Acute lung inflammation is a
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complex pathophysiological mechanism involving various inflam-
matory mediators such as chemokines and cytokines [53].

3.2. Cytokine storm in COVID-19

Acute respiratory distress syndrome has been regarded as the
primary cause of death during COVID-19 infection. An essential
mechanism of action of acute respiratory distress syndrome is the
cytokine storm. Cytokine storm is a fatal unregulated systemic in-
flammatory response that arises due to the release of large amounts
of pro-inflammatory cytokines such as IFN-a, IFN-g, IL-1b, IL-6, IL-
12, IL-18, IL-33, TNF-a, TGFb, and chemokines such as CCL2, CCL3,
CCL5, CXCL8, CXCL9, CXCL10 by the immune effector cells during
SARS-CoV infection [55]. Normally, a cytokine storm activates a vi-
olent attack by the immune system on the body leading to ARDS and
multiple organ failure which then, causes death in severe cases [58].

3.3. Mechanism of action of inflammatory mediators in COVID-19

The early induction of IL-10 consequent to SARS-CoV-2 infection
during the initiation phase in the lung has been reported to indicate
a negative feedback mechanism that could provide a countermea-
sure to inflammation resulting from other pro-inflammatory me-
diators (Fig. 2) [59]. Activation of pro-inflammatory cytokine and T
cell activation and proliferation by IL-10 have been reported
responsible for the lethal immunopathological situation observed in
COVID-19 patients [60]. However, the increase in endogenous IL-10
production has been thought to activate the immune system and
thus enhance the release of other pro-inflammatory mediators of
cytokine storm and exacerbate viral-sepsis linked hyper inflam-
mation [60]. Another critical interleukin implicated in COVID-19 is
IL-6. IL-6 receptors are present in most immune cells. Thus, IL-6
functions as an activator of immune cell proliferation and differen-
tiation [61]. Due to the significant role played by Interleukins in the
pathogenesis of COVID-19 immunopathological condition, possible
inhibitors of these pro-inflammatory mediators are being investi-
gated. Under normal conditions, the concentration of circulating IL-
6 levels is low, at the range of 1-5 pg/mL, while during COVID 19
infection, it increases uncontrolled [60]. IL-6 proliferation is acti-
vated by SARS-CoV-2 or other immune cells [62]. Specifically, CD4*T
lymphocytes differentiate into pathogenic Th1 cells rapidly, thereby
releasing granulocyte colony-stimulating factors and other pro-
inflammatory cytokines that facilitate a high expression of IL-6 [60].

4. Anti-inflammatory and antioxidant effect of
phytomelatonin in the respiratory level

The scope of the impact of phytomelatonin in humans is broad.
Its relevance in respiratory organ and tissue affliction is at its peak
since the emergence of the COVID-19 pandemic. Phytomelatonin
roles have been seen in mood swings, body temperature, sleep,
cancer, cardiac rhythms, and immunological regulation modula-
tors, as well as antioxidant property [18].

4.1. Anti-inflammatory effect

Different biochemical mechanisms impact the anti-
inflammatory qualities of phytomelatonin. A protein deacetylator
identified as silent mating type information regulation 2 homolog 1,
also known as sirtuin-1 (SIRT1) is known to mediate the remedial
properties of phytomelatonin. Phytomelatonin can inhibit HMGB1
protein, limiting the partitioning of the macrophages in the direc-
tion of the pro-inflammation area [63]. A typical example of the
impact of melatonin on the up-regulation of SITR1 was seen in the
lung injury induced by exposure to heavy metal chromium [64].
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Fig. 2. Involvement of the immune system in COVID-19. Reproduced with permission from Tufan et al. [60].

Pro-fibrotic and pro-inflammatory cytokines are usually regulated
on the administration of phytomelatonin by inhibiting the nuclear
factor-Kappa beta (NF-kf) and reducing the activity of matrix
metalloproteinases-3 (MMP-3) [65]. This has been seen in occasions
of acute respiratory diseases and acute lung infections [4]. To shield
the lungs from an intending injury, increasing NF-E2-related factor 2
(Nrf2) activities is vital. From the studies of Ahmadi & Ashrafizadeh
[66], phytomelatonin escalates the activities of NF-E2-related factor
2. It has been documented and advocated that this compound de-
creases the mobility of fibroblasts as a result of the curtailed activity
of chloride channels which are usually regulated by protein kinase C
[67]. Pneumonitis and Lung fibrosis have been known to be
impaired by phytomelatonin and its metabolites [68]. They play a
role such as the regulation of pro-fibrogenic and inflammatory
mechanisms that are involved in the development of pulmonary
fibrosis. This mechanism regulation of platelet-derived growth fac-
tor, renin-angiotensin system, impaired caveolin 1 function, inter-
leukin 17A, and vascular endothelial growth factor prevents damage
to the lung caused by contraction of fibrous tissues at wound sites
that in turn distorts the tissue [69].

Phytomelatonin has had positive impacts at the pulmonary
level, as observed in different studies. The expression of hypoxia-
inducible factor-1o. (HIF-1a.) and nuclear factor-kB (NF-kB) in low
oxygen conditions leads to pulmonary hypertension has been
recorded to be inhibited by melatonin. It has repressed the prolif-
eration of pulmonary artery smooth muscle and the level of some
phosphorylated kinases elicited by hypoxia [70]. It was also
observed that in the process that the plasma levels of interleukin-6
(IL-6), tumor necrosis factor-o. (TNF-a), and C-reactive protein

(CRP), heat shock protein 70 extracellular (Hsp70e), and vascular
endothelial growth factor (VEGF) were appreciably decreased [71].
These findings put forward that phytomelatonin also has an anti-
inflammatory impact at the pulmonary level. A study using an
animal model (mice and rats) investigated the effect of melatonin
on pulmonary injury caused by ischemia. It was discovered that this
compound could prevent the activation of NF-kB and JNK and also
boost the activation of Nrf2. It also limited the expression of some
inflammatory biomarkers (TNF-a, IKK-y, interleukin-18) and
apoptotic markers such as Bcl-2-associated X protein (Bax/Bcl-2)
and cleaved caspases (CASP3). These mechanisms all together lead
to the reduction of programmed cell death of lung cells due to
ischemia [72]. When there are surplus fluids in the lungs, it is called
pulmonary edema. Exposure to drugs, pneumonia, toxins, and a
heart condition can also lead to this phenomenon. This fluid ac-
cumulates in the lungs' air sacs and makes it strenuous to breathe,
which can lead to respiratory failure [73]. Administration of phy-
tomelatonin has been seen to alleviate this condition by several
mechanisms, some of which are inhibiting NLRP3 (NOD-, LRR- and
pyrin domain-containing protein 3), which is also responsible for
an inflammatory form of cell death releasing pro-inflammatory
cytokines IL-1p, responsible for the inflammation of airways dur-
ing this pathology [74].

The respiratory infection experienced in cases of COVID-19 is
greatly related to what is today known as the cytokine storm or
hypercytokinemia. A hyperinflammatory response significantly
characterizes this. During this scenario, a violent production of pro-
inflammatory cytokines such as TNF-o and IL-1f spiking or accel-
erates the generation of free radicals. In extreme situations, it can
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lead to pronounced COVID-19 signs such as fever, dry cough from a
lung injury, and breathing difficulty, leading to death in long-term
cases [7]. Usually, in a healthy condition, the body produces its
melatonin for inflammatory purposes. It is usually produced using
Acetyl coenzyme A (obtained in mitochondrion from pyruvate
during glycolysis by pyruvate dehydrogenase complex) as a
cofactor for the enzyme (arylalkylamine N-acetyltransferase)
required in the rate-limiting step. But in the course of the COVID-19
infection, a Warburg effect improves ATP production and macro-
phage activity leading to an exacerbated cytokine production [75].
This is mediated by the transcription factor HIF-1a (hypoxia-
inducible factor-1a) and the serine/threonine kinase, mTOR
(mammalian target of rapamycin), thereby limiting the production
of the endogenous melatonin. When phytomelatonin is adminis-
tered, it represses these mediators, allowing the pyruvate dehy-
drogenase complex to activate, producing acetyl CoA in the
mitochondria and making it available for the continuous produc-
tion of endogenous melatonin. This, with the administered phyto-
melatonin, works together to relieve the COVID-19 symptoms [7].

4.2. Antioxidant effect

Phytomelatonin, as seen in recent studies, has displayed rele-
vant synergistic actions with other antioxidants such as vitamin C,
vitamin D3, vitamin E, glutathione, and some antioxidant enzymes
such as catalase, lipoxygenase, glutathione peroxidase, and reduc-
tase, including superoxide dismutase that alters cytokine storm and
oxidative stress with impaired acute respiratory distress syndrome
(ARDS) secondary to coronavirus disease [76]. Recent findings have
also stipulated that increased levels of phytomelatonin have
increased the serum antioxidant activity in the blood. It has also
inhibited the activity of pro-oxidants [18]. Ji et al. [77] investigated
the impact of melatonin on inhaling an environmental pollutant of
particulate matter 2.5 pm that leads to chronic cough in a pig. The
study uncovered that the oxidative stress caused by the chronic
cough from the inhalation of the particulate matter was reduced.
Melatonin was used to manage infants with respiratory conditions,
and it was seen to instigate antioxidant activities in the lung easing
their ailment [78]. Melatonin and its metabolites have also been
reported to offer various photoprotective properties, including
protecting melanocytes from UVB- induced oxidative stress and
DNA damage, serving as local antioxidants under oxidative stress
conditions caused by multiple environmental factors and inducing
the expression of antioxidative enzymes in melanocytes [79,80].

Severe acute respiratory syndrome (SARS) leads to the devel-
opment of oxidative stress. This stress leads to low-density lipo-
proteins (LDL) oxidation, signaling the Toll-like receptor 4 (TLR4)/
NF-kB, thereby activating the surplus production of interleukins-6
alveolar macrophages. This causes acute liver injury. The TLR4
serves as a target for melatonin [81]. Cavalcante et al. [82] sug-
gested that the administration of this compound suppressed
oxidative stress in patients with chronic obstructive pulmonary
disease. Some of the cytokines impacts are pronounced through the
exacerbated generation of reactive oxygen species such that by
suppressing the signaling molecules that produce the cytokines,
melatonin indirectly reduces the damage caused by the generated
radicals, thereby acting as an antioxidant. These studies suggest
that melatonin can combat the stress-induced from an acute lung
injury.

5. Phytomelatonin prospects in COVID-19 treatment

The global transmission of COVID-19, specifically with the
outrageous increase in the number of exposed individuals and
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targeting drugs for new therapeutic purposes, is the cost-effective
and invaluable approach to treating or preventing the disease.
Recent studies described COVID-19 as a methodic infectious disease
jolting variegated cell types, tissues, and organs. Therefore,
apprehension of the multiplex synergy between the virus and other
diseases is paramount to discerning COVID-19-related complica-
tions and recognizing treatment drugs. Findings from recent
studies have used novel artificial intelligence and other platforms
to identify possible drugs for COVID-19 treatment and have pro-
posed phytomelatonin as a promising adjuvant [83]. Likewise,
Slominski et al. [84] reported the anti-inflammatory potential of
active hydroxyl forms of vitamin D in treating COVID-19 diseases
respiratory distress (ARDS). Besides, very recent findings indicate
that inflammation is a major feature in COVID-19 patients. There-
fore, it is suggested that excessive inflammation, and defective
immune system, considerably contribute to the pathogenesis of
COVID-19. However, the potential benefits of phytomelatonin use
as anti-oxidation, anti-inflammation, immune response regulation
that has frequently manifested in respiratory disorders through
drug discovery trials could be successive in COVID-19 induced viral
infections [85]. The presence of phytomelatonin in large doses in
many plant species has opened the door to its use as a natural
adjuvant. The biosynthesis pathway of phytomelatonin differs from
that in animals, including humans, and its regulation by environ-
mental factors is the basis of the large variability in the phytome-
latonin levels observed in plants [17]. Therefore, large doses of
phytomelatonin would be beneficial to use in the treatment of
COVID-19 infections. Phytomelatonin is synthesized in large
quantities, readily available, inexpensive, easily self-administered,
and has a very high safety profile [7]. Phytomelatonin has been
characterized as a safe adjuvant, but its application in COVID-19 is
imprecise. The recent studies on the application of phytomelatonin
in humans have indicated its effectiveness and immunity in COVID-
19 exposed individuals [85]. For instance, the analysis of patients'
data from the COVID-19 registry revealed that melatonin usage was
associated with a nearly 30 percent reduced likelihood of testing
positive for COVID-19 after adjusting for age, race, employment
history, and various disease comorbidities [86].

The population with the most significant susceptibility to
becoming infected and developing a severe COVID-19 infection
involves the elderly and health workers, patients with hyperten-
sion, diabetes, and various cardiovascular pathologies. One feature
common to these groups of people is their depressing night-time
melatonin rise and exposure. The production of natural melatonin
progressively decreases with increased age, and the lowest levels
are found among the elderly. Impaired nocturnal melatonin
secretion is also observed in hypertensive patients and night-time
workers [87]. The pulmonary effects of phytomelatonin have
been tested in adult animals, and it improved right ventricular
function and reduced cardiac refitting in pulmonary hypertensive
(PAH) rats, suggesting a pressure decrease in the pulmonary artery.
Besides, phytomelatonin vitiated pulmonary hypertension by
alienating the oxidative injury and restoring nitric oxide production
in rats with chronic obstructive pulmonary disease.

Interestingly, the anti-inflammatory effects of phytomelatonin
manifested in the restoration of vascular homeostasis in PAH mice
and improved endothelial probity. Finally, the direct vasodilator
effects of phytomelatonin in pulmonary arteries and veins on adult
animals have also been reported [88]. Based on the foregoing, it is
pertinent to cipher that the use of phytomelatonin has great po-
tential as a therapy for COVID-19-exposed individuals both at
physiological and pharmacologic dosages (Fig. 3). Therefore, the
search for and study of phytomelatonin as an adjuvant should be
prioritized.
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Fig. 3. Potential application of phytomelatonin on COVID-19-exposed individuals.

6. Conclusion

A large body of evidence has proven the multiple roles of
melatonin in hormonal, physiological, and biological processes at
different levels of cell organization. Therefore, it is imperative to
evaluate its potentials since its sources are readily available and
relatively cheap compared to other orthodox active ingredients in
the current COVID-19 drugs, making it cost-effective. We, therefore,
suggest that phytomelatonin, just like melatonin, will find exten-
sive application in the management and possibly treatment of
COVID-19-exposed individuals. The search for and study of phyto-
melatonin as an adjuvant should be prioritized.
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