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Abstract

This paper presents a phase detection algorithm for four-dimensional (4D) cardiac

computed tomography (CT) analysis. The algorithm detects a phase, i.e. a specific

three-dimensional (3D) image out of several time-distributed 3D images, with high

contrast in the left ventricle and low contrast in the right ventricle. The purpose is to

use the automatically detected phase in an existing algorithm that automatically

aligns the images along the heart axis. Decision making is based on the contrast

agent distribution over time. It was implemented in KardioPerfusion – a software

framework currently being developed for 4D CT myocardial perfusion analysis.

Agreement of the phase detection algorithm with two reference readers was 97%

(95% CI: 82–100%). Mean duration for detection was 0.020 s (95% CI: 0.018–

0.022 s), which was 800 times less than the readers needed (16+7s, pv0:001).
Thus, this algorithm is an accurate and fast tool that can improve work flow
of clinical examinations.

Introduction

An algorithm for detecting a specific phase, i.e. the time point of a single

acquisition, within a four-dimensional (4D) cardiac computed tomographic (CT)

dataset was developed. This algorithm was implemented within a software

framework and its performance was evaluated.

Dynamic (4D) myocardial perfusion analysis can be performed by calculating

perfusion from the time-dependent contrast agent distribution in the myocar-

dium. KardioPerfusion (https://github.com/CardiacImagingCharite/

CardiacPerfusion) is a software in development for this purpose. One early step in
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the analysis is the alignment of the heart. The long axis of the left ventricle (LV),

which is the line through the apex of the LV and the mitral valve, will be rotated

parallel to the coordinate system axis. Hence we included the AutoAlignHeart

code (https://github.com/CardiacImagingCharite/AutoAlignHeart), which aligns

the heart in that way. This is done by fitting the LV to an ellipsoid and considering

the major ellipsoid axis as the long axis of the LV [1]. However, this algorithm

requires a phase where the LV has high contrast and the right ventricle (RV) has

low contrast for easier detection of the long axis of the LV. In the early stage of

developing the software, the phase was manually selected by the user.

Manual phase selection requires time and concentration of the user – in most

cases the radiologist performing the CT examination. Furthermore, this step needs

to be performed during the examination and the physician will be disturbed. Even

semi-automatic solutions, such as simple bolus tracking with a region of interest

(ROI) in the LV and selecting the phase with maximum attenuation, would

require user interaction at least for marking the ROI in the dataset to ensure that

the ROI actually lies within the LV. Our aim was to develop a fully automatic tool

not disturbing workflow by eliminating the need for physician interaction during

examination. Therefore, we developed an algorithm based on the contrast agent

distribution over time to automatically detect a phase with high contrast in the LV

and low contrast in the RV. This algorithm is called itkFindLeftVetricle (findLV)

within the software framework.

The purpose of the present study is to test if the findLV algorithm is an accurate

and time-saving tool for phase detection in 4D cardiac CT analysis.

Methods

Algorithm Development

The main idea for automatic phase detection is to use time-dependent contrast

agent distribution. The contrast agent flows from the RV through the lung to the

LV. Consequently, attenuation increases over time with the phases in the LV. The

algorithm takes advantage of this. It searches for the phase with the most

pronounced attenuation increase compared with the first phase. Evaluation is

performed in a voxelwise manner, considering only voxel positions an attenuation

between 30 and 150 Hounsfield units (HU) in the first phase. This is due to the

aim to consider only areas with blood and no contrast agent in the first phase.

This should be particularly the case for the LV. For each considered voxel

position, the maximum value of all phases is then compared to the first phase. If a

phase has an attenuation increase of at least 150HU, the phase number of the

maximum value is stored in a one-dimensional histogram (phase histogram) with

one bin for each phase. The phase with the most voxels fulfilling both conditions

is chosen as the phase with high contrast in the LV and low contrast in the RV.
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Algorithm Implementation

The findLV algorithm was implemented in the KardioPerfusion software frame

work. Additionally, a shrink filter was included at the beginning of the algorithm.

This was done to reduce the number of voxels per image by an integer factor

(shrink factor) in each dimension in order to make the algorithm faster. The

shrink filter calculates the output voxel value as the mean of the corresponding

input voxel values. It works multithreaded, again to speed up the algorithm. This

shrink filter was originally developed by us. It was improved, thanks to the

personal communication with Bradley Lowekamp, with an adaption to the

itkBinShrinkImageFilter [2]. The same shrink factor was used for all dimensions.

The shrink factor could be changed indirectly by the user by setting the number of

voxels in x-direction for the output image. Since quadratic x, y-planes of the

images, with the same number of voxels in x and y-direction, were assumed as

input for the software, this quantity was called matrix size in the user interface of

the software. It is also termed matrix size here.

The algorithm includes four main steps. The first step is shrinking of the input

images, and its complexity increases linearly with the number of input voxels. The

second step is the loop over all voxels of the shrunken images, which is on average

linear with the number of voxels of the shrunken image. For each voxel position,

the maximum values over all phases and the corresponding phase number are

stored in arrays during this step. The third step is analysis of these stored arrays

and is done to verify if the maximum value has an increase of at least 150HU
compared to the value in the first phase. Additionally, the value of the first phase

must be between 30 and 150HU. The phase number of the maximum value is

entered into the phase histogram if both conditions are fulfilled. This step was

linear with the number of output voxels. The last step is the single loop over the

phase histogram, which is linear with the number of phases. The whole procedure

is illustrated in Fig. 1.

The number of input voxels per image was fixed, since it was given by the

images used for analysis. The number of phases was also fixed, since it was given

by the whole dataset. Both parameters are determined by the given dataset and

thus cannot be manipulated to contribute to optimization of the algorithm.

Hence, the shrink factor, i.e. the matrix size of the shrunken images, was the only

parameter to influence the complexity of the algorithm and in turn to optimize

the performance of the algorithm.

Data Preparation

The study included 29 patients with a mean age of 63+11years (range 42–79

years) and a clinical indication. The study was approved by the Charité

Ethikkomission (local IRB), and patients gave written informed consent. CT was

performed on a whole-heart coverage 320-row CT scanner (Aquilion ONE,

Toshiba Medical Systems, Tochigi-ken, Japan) [3]. The contrast agent Xenetix 350

(Iobitridol 0:7678 g=ml) was used. 58ml Xenetix 350 was administered at flow rate

of 7 ml=s, followed by 80ml sodium chloride solution administered at the same
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flow rate. Images were acquired during a dynamic window, with acquisition in

each RR-interval (interval between two successive maxima in the ECG wave),

which was followed by three additional single acquisitions 10 s, 20 s and 35 s after

this window. The specific design of the 4D CT image acquisition is illustrated in

Fig. 2. Mean heart rate was 73+12bpm (range 49–98). The mean number of

phases per patient was 20+3 (range 14–26). Image reconstruction was performed

using Adaptive Iterative Dose Reduction 3D (AIDR-3D) [4]. All images were half

scan reconstructions at 75% of the RR-interval. The default value for the

reconstruction field of view (FOV) of the images was 180mm. This was a standard

value that ensures coverage of the whole heart in the images with highest spatial

resolution [5]. For 12 patients with larger hearts, the images had larger FOVs of

up to 215mm. The mean value was 188+10mm. The original input images had

5126512 voxels in x-, y-direction and between 400 and 560 voxels (mean

480+30) in z-direction.

To improve workflow with the use of the KardioPerfusion software, all images

of each patient were shrunk with factor 4 and stored in project files. This allowed

fast access to all images, although with reduced resolution, without waiting for

loading from harddisk. The original images were then loaded in the background,

after the project file was loaded. These pre-shrunk images with 1286128 voxels in

x-, y-direction and between 100 and 140 (mean 120+7) voxels in z-direction were

kept in memory and considered as the input images for the findLV algorithm.

This reduced the shrinking in the findLV algorithm and improved performance in

terms of speed by a factor of 64.

Fig. 1. Flowchart for the findLV algorithm. First, the images are shrunk. Second, the maximum value over all phases and the corresponding phase
number are evaluated for each voxel position. The maximum value has to have an increase of at least 150HU compared to the voxel in the first phase.
Furthermore, the value in the first phase has to be between 30 and 150HU for each voxel position. If both conditions are fulfilled, the phase number is
entered in the phase histogram. The phase with the maximum number of voxels in the phase histogram will be selected as the detected phase.

doi:10.1371/journal.pone.0116103.g001
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Test Matrix Size

The PC used to test the performance of the algorithm had an Intel Core i7-2600

3.40 GHz CPU, 16 GB RAM and ran on Linux Mint 14 64-bit operating system.

The software status for this test was tagged with v0.1.2 (https://github.com/

CardiacImagingCharite/CardiacPerfusion/tree/v0.1.2). For each patient, the PC

ran the whole findLV algorithm with different shrink factors. The algorithm was

performed with shrinking the images from 5126512 to 262, 464, 868, 16616,

32632, 64664 and 1286128 voxels in x-, y-direction. The number of voxels in

z-direction was calculated with the same shrink factor, but depended on the

number of voxels in the original image. As the reference standard, two readers

visually identified phases with high contrast in the left ventricle and low contrast

in the RV from the 4D datasets, that should be a sufficient input for the

AutoAlignHeart algorithm. This could be more than one phase per patient. The

intersection of the two readers were considered as the reference phases. The

criteria for the best matrix size were agreement with the readers and a short

duration.

Statistical Analysis

Data were analysed using R (http://www.r-project.org, version 3.0.1). The values

for agreement and the time required for the phase detection are given as mean

values with 95% confidence intervals (CI). Agreement between the detected phase

provided by the algorithm with the reference phases identified by the readers

results in a ratio with values of 0 to 1. Hence, the CIs were calculated with the

inverse of the cumulative beta probability density function. Thus, the error bars

are asymmetric. The calculation of the CIs of agreement was the only part of the

statistical analysis that was done with LibreOffice Calc (http://www.libreoffice.org,

version 3.6.2.2). The CIs for the time needed for phase detection were calculated

assuming normal distribution. The threshold of significance was pv0:05.

Bonferroni correction [6] was applied for evaluation of the time used for phase

detection. Since there are 7 matrix sizes with 21 possible combinations, a

pv0:0024 was defined as significant.

Fig. 2. Image acquisition protocol for 4D CT myocardial perfusion analysis. Image acquisition (gray area) is done in each RR-interval during the first
11–20s. These 11–20s are called dynamic phase. The length depends on the heart rate with the aim to cover up to 20 RR-intervals. Three additional single
acquisitions (late phases) are done 10s, 20s, and 35s after the dynamic phase.

doi:10.1371/journal.pone.0116103.g002
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Results

An example of an image series and the detected phase without shrinking and with

shrinking to a matrix size of 16616 in the same patient is shown in Fig. 3.

Examples of phase histograms for two patients are shown in Fig. 4.

The results for agreement of the findLV algorithm with the reference readers for

each matrix size investigated are shown in Fig. 5. With a matrix size of 262, the

algorithm failed to detect a phase. Accordingly, agreement with the readers was

0% (95% CI: 0–12%). With a matrix size of 464, the algorithm detected a phase

in 28 of 29 cases, with a agreement of 55% (95% CI: 36–77%), including all 29

cases. For matrix sizes of 868 and higher, the algorithm always detected a phase,

and agreement with the readers was over 90% for all cases. The matrix size of

16616 resulted in the best agreement with a value of 97% (95% CI: 82–100%),

which is significantly higher than for 464 and 262 (pv0:001) but not for the

other matrix sizes (p~0:6).

The mean duration of phase detection per patient for different matrix sizes is

shown in Fig. 6. The time needed for phase detection includes the time needed for

shrinking the images from 1286128 to smaller matrices. The longest mean time

was needed with a matrix size of 1286128 and was 0:140s (95% CI: 0.133–

0:147s). Mean time decreased for smaller matrix sizes and was lowest for a size of

868. This minimum mean time was 0:018s (95% CI: 0.016–0:020s). For matrix

sizes of 464 and 262, the mean time was 0:0195s (95% CI: 0.0180–0:0210s) and

0:021s (95% CI: 0.019–0:023s), which was slightly higher compared to the

minimum. The mean time for the matrix size of 16616 with the best agreement

was 0:020s (95% CI: 0.018–0:022s). This mean time was not significantly higher

than for an 868 matrix size (p~0:1). However, it was significantly lower than for

a 32632 matrix size and larger matrix sizes (pv0:001).

The mean time the reference readers needed to find usable phases was 16+7s.

For all matrix sizes, the algorithm was significantly faster than the readers

(pv0:001). The mean time for the matrix size of 16616 with the best agreement

was 800 times smaller compared to the average time needed by the reference

readers.

Discussion

Our aim was to evaluate an algorithm for detecting a specific phase for 4D cardiac

CT analysis. The algorithm is simple, but has good agreement with the phases

manually detected by reference readers and is much faster. Furthermore, we

wanted to identify an optimal matrix size of the images used by the algorithm.

Our results indicate that not only 16616 but even a smaller matrix size of 868

is sufficient for the algorithm to work properly and show good agreement with the

reference readers. Fig. 3 illustrates the simplicity and accuracy of the algorithm.

Matrices with a size of 464 voxels did not provide enough information to

detect any phase in 2 of 29 cases; in another 11 cases the algorithm detected phases

that did not match the reference phases selected by the readers. Matrices with
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262 voxels did not even detect any phase. With matrix sizes of 868 and larger,

the degree of agreement of the algorithm with the readers is mostly independent

of matrix size. The information provided by these, partially very small, matrix

sizes seems to be sufficient for the algorithm to work properly. Nevertheless, the

decision of the algorithm was in a few cases very tight, i.e. depended on a single

voxel, for 868 matrices (cf. Fig. 4). Although the agreement with the readers is

not significantly worse for 868 matrices compared to 16616 matrices, one could

get the impression, that the findLV algorithm would fail more often from time to

time when 868 instead of 16616 would be used. Since accuracy is the most

important criteria for software that is mentioned to be used in clinical routine for

the future, we recommend the use of a matrix size of 16616.

The findLV algorithm is a simple, accurate, and fast tool for the analysis of 4D

cardiac CT datasets. Using a matrix size of 16616 voxels, the algorithm showed

97% (95% CI: 82–100%) agreement with the reference readers. The corre-

sponding mean time per patient was 0:020s (95% CI: 0.018–0:022s) compared

with 16+7s for the reference readers. The time used by the algorithm is 800 times

smaller than the time needed by the readers and is thus negligible. Consequently,

the time used by the readers can be saved with the use of the findLV algorithm.

Furthermore, the algorithm is fully automatic and requires no user interaction.

For these reasons, the findLV algorithm has potential to improve workflow in 4D

cardiac CT analysis.

Cases with physiological deformations such as hearts with an eccentric LV, e.g.

after myocardial infarction with aneurysm, were not included in the patient

population investigated. Hence, it could not be tested if the algorithm would work

properly under such conditions as well.

It was shown that the findLV algorithm provides fast evaluation of 4D datasets.

Other clinical fields of application besides 4D CT myocardial perfusion analysis

might also benefit from the algorithm with or without modifications. Using the

4D analysis described here (cf. Sec. Methods, Algorithm Development), the

Fig. 3. Example of an image series of one patient without shrinking (a) and with shrinking to a matrix
size of 16616 (b). All images are in axial view. The series (from top left to right) starts with already high
contrast in the RV. RV contrast is low again when the LV has high contrast. The algorithm also provides a
suitable phase when information in the input images is marked reduced as in (b). The 10th phase (red border)
is the phase detected by the findLV algorithm.

doi:10.1371/journal.pone.0116103.g003
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Fig. 4. Example of phase histograms for two patients with different matrix sizes. The reference phases for the first patient (a–f) were number 9 and 10.
The algorithm always detected phase number 10, in agreement with the two readers. The reference phases for the second patient (g–l) were number 16–18.
The algorithm detected a wrong phase (10) for the 464 matrix size (g) and phase number 17 or 18 for all other matrix sizes, which agreed with the readers.
The decision for the matrix size of 868 (h) was very tight, because the detected and matched phase number 17 counted only one voxel more than the non-
agreed number 12. Accordingly, a matrix size of 16616 is recommended.

doi:10.1371/journal.pone.0116103.g004
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algorithm could be modified to detect other phases such as a phase with only high

contrast in the RV and low contrast in the LV or with low contrast in both

ventricles. Moreover, 4D magnetic resonance imaging (MRI) myocardial

perfusion datasets [7] could potentially be analyzed with the algorithm. To be

used for MRI, the algorithm must be adjusted to select a phase based on signal

intensities rather than attenuation. Furthermore, the algorithm could be modified

to detect a specific phase based on contrast enhancement in 4D CT [8–13] or MRI

[14–17] acquired after contrast agent administration.

It should be noted that the algorithm was only tested with images with a FOV

between 180mm and 215mm. These FOVs were adapted to the size of the heart

according to recommendations [5]. Images with larger FOVs, for example with a

diameter of 320mm to cover the thorax, were not tested here. The heart, which is

the decisive region for phase detection, would be a smaller portion in those

thorax images. In turn, such images contain more but less decisive information.

Furthermore, the contrast agent also passes through the lungs with enhancement

varying over time. Hence, during the phase of high lung contrast, this organ might

be mistaken for the LV. This is a possible limitation of the algorithm. On the other

hand, larger FOVs are not suitable for cardiac CT analysis.

Another possible limitation is the acquisition time. The CT scans investigated

here were acquired starting when contrast was already high in the RV (cf. Fig. 3)

in order to reduce radiation exposition. Hence, the voxel positions of the RV have

values larger than 150HU and are not considered by the algorithm (cf. Sec.

Methods, Algorithm Development). If acquisition started before the contrast

Fig. 5. Agreement of the phase number provided by the findLV algorithm with the reference phases
identified by the two readers for each matrix size investigated. The numbers on the x-axis represent the
number of voxels in both the x- and y-direction of the image. The number of voxels in z-direction depends on
the original image, but the same shrink factor was used for all three dimensions. 95% CIs are displayed as
error bars. The readers could choose multiple phases and the intersection of both was the reference for the
algorithm. The matrix size of 16616 resulted in the highest agreement with a value of 97% (95% CI: 82–
100%).

doi:10.1371/journal.pone.0116103.g005
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agent reaches the RV, those voxels would be eligible and could lead to

misdetection of a phase with high contrast in the RV. A possible adaption could

be to identify a phase with a first maximum and to take this phase as reference

instead of the first phase. Consequently, only phases after the first maximum

would then be considered for detection. Earlier acquisition would expose the

patient to a higher radiation dose and should be avoided. Moreover, a benefit of

this would have to be shown in further clinical studies.

The aim of the findLV algorithm is to detect a phase with high contrast in the

LV and low contrast in the RV. Actually, however, the algorithm is only searching

for the phase with the highest increase in attenuation. This would be the phase

with the highest contrast in the LV, assuming that the acquisition starts with high

contrast in the RV, as described above. The algorithm does not check, if the RV

actually has low contrast. The protocol of contrast agent injection used for this

clinical purpose is designed with sufficiently short injection durations (cf. Sec.

Methods, Data Preparation) to ensure low contrast in the RV when the LV has

high contrast (cf. Fig. 3). A contrast agent protocol with longer injection

durations, as used for triple rule-out CT angiography [18], can cause high contrast

in the RV when LV has its highest contrast. This could lead to misdetection of a

phase with high contrast in both ventricles instead of only high contrast in the LV.

However, such protocols are usually only used for triple rule-out CT angiography

and are not recommended for myocardial perfusion. If such a protocol were used,

the algorithm would have to be adapted in a way that it additionally checked for

low contrast in the RV.

Fig. 6. Time required by the findLV algorithm, including shrinking, for each matrix size images were
shrunk to. The numbers on the x-axis represent the number of voxels in both the x- and y-direction of the
image. The number of voxels in z-direction depends on the original image, but the same shrink factor was
used for all three dimensions. 95% CIs are displayed as error bars. The mean time for the matrix size of
16616 with the best agreement (cf. Fig. 5) was 0:020s (95% CI: 0.018–0:020s).

doi:10.1371/journal.pone.0116103.g006
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Conclusion

A phase detection algorithm, the findLV algorithm, for 4D cardiac CT analysis

was developed and implemented in the KardioPerfusion software framework. The

algorithm evaluates time-dependent attenuation to detect a phase with high

contrast in the LV and low contrast in the RV. It was shown that prior shrinking

improves the speed of the algorithm while maintaining very good agreement with

reference readers. The optimal matrix size in terms of accuracy was 16616. The

findLV algorithm is a simple, accurate and time-saving tool.
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