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Aggregating information across multiple variants in a gene or region can improve power for
rare variant association testing. Power is maximized when the aggregation region contains
many causal variants and few neutral variants. In this paper, we present a method for the
localization of the association signal in a region using a sliding-window based approach to
rare variant association testing in a region. We first introduce a novel method for analysis of
rare variants, the Difference in Minor Allele Frequency test (DMAF), which allows combined
analysis of common and rare variants, and makes no assumptions about the direction of
effects. In whole-region analyses of simulated data with risk and protective variants, DMAF
and other methods which pool data across individuals were found to outperform methods
which pool data across variants. We then implement a sliding-window version of DMAF,
using a step-down permutation approach to control type I error with the testing of multiple
windows. In simulations, the sliding-window DMAF improved power to detect a causal
sub-region, compared to applying DMAF to the whole region. Sliding-window DMAF was
also effective in localizing the causal sub-region. We also applied the DMAF sliding-window
approach to test for an association between response to the drug gemcitabine and vari-
ants in the gene FKBP5 sequenced in 91 lymphoblastoid cell lines derived from white
non-Hispanic individuals.The application of the sliding-window test procedure detected an
association in a sub-region spanning an exon and two introns, when rare and common
variants were analyzed together.
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INTRODUCTION
Traditional genome-wide association analysis approaches, which
analyze a single variant at a time, are underpowered to detect
associations with rare variants (Bansal et al., 2010). Small to mod-
erate effects at multiple rare variants could play an important role
in explaining the missing heritability observed for many com-
plex traits (Manolio et al., 2009). Several proposed methods have
sought to improve power by aggregating information across a set
of variants, for example, in a gene (Bansal et al., 2010). Many meth-
ods assume all rare variants have the same direction of effect; such
methods are subject to loss of power in the presence of both risk
and protective variants. There is a need for flexible methods which
can detect associations with both risk and protective variants.

Power to detect association is reduced when the region includes
many non-causal variants, which decrease the signal-to-noise ratio
(Li and Leal, 2008). Therefore, when causal variants are clustered
in a sub-region within a larger region of interest, power would
be maximized by analyzing only that sub-region, because neu-
tral variants outside the sub-region would be excluded. However,
because the location of the causal sub-region (if any) is unknown
for real data, it is necessary to test multiple sub-regions. There is a
need for methods which analyze sub-regions – potentially increas-
ing power to detect association through exclusion of some neutral
variants – while minimizing power loss due to multiple testing.

A sliding-window based approach could meet this need. Sliding
windows have been shown to improve power for detection of an
association due to 1–3 causal variants, compared to single-marker
analysis (Li et al., 2007; Tang et al., 2009) and haplotype block
partitioning (Guo et al., 2009), even after multiple-test correc-
tion. However, there is a need for region-based sliding-window
approaches to enable the analysis of longer windows containing
more than three causal variants of small effect. In addition, one
challenge of region-based association methods is that detecting an
association in a large region is not informative about the specific
functional elements within the region that may be causal. Sliding-
window based analysis is a means of localizing the association
signal to a smaller sub-region, such as an exon within a candidate
gene or a gene within a candidate pathway.

In this paper, we present a sliding-window, region-based
approach for rare variant association testing which makes no
assumptions about the direction of effects. Our approach uses a
novel method for analysis of rare variants, the Difference in Minor
Allele Frequency test (DMAF). DMAF allows combined analysis
of common and rare variants, and can be extended to the analy-
sis of pooled sequencing data, for which many collapsing methods
are not applicable. Our method allows weighting of markers based
on minor allele frequency (MAF; Madsen and Browning, 2009) or
functional information (Price et al., 2010). We compared DMAF
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with eight other methods for whole-region analysis on a com-
prehensive set of simulations, and found that DMAF’s use of a
positive function of the difference in MAF between cases and con-
trols is effective in retaining power across simulations involving
risk and protective variants, as well as the scenarios with only risk
variants. We then applied the sliding-window DMAF to simulated
regions containing a cluster of approximately 65 causal variants.
For a wide range of window sizes, the sliding-window approach
improved power compared to the whole-region analysis and was
effective in localizing the causal sub-region. Finally, we applied
this method to a cell based model system to localize an association
between the gene FKBP5 and response to the drug gemcitabine.

MATERIALS AND METHODS
DMAF RARE VARIANT TESTING APPROACH
For each single nucleotide variant (SNV) j, j = 1, . . ., J, let
Dj represent the absolute value of the difference in MAF
between cases and controls, Dj= |Xj−Yj|. An alternative function,
Dj= (Xj−Yj)2, was also compared; these approaches are distin-
guished as DMAFabs and DMAFsq. By using a positive function
of the difference in MAF, our method places equal importance on
risk variants (which are expected to have Xj >Yj) as on protective
variants (which are expected to have Xj <Yj). The test statistic is
then computed as the weighted sum over the variants of interest,
V =

∑
j∈A wj Dj , where wj is the weight for variant j and A is the

set of variants of interest. A may include all variants in a window or
only rare variants. We used a threshold of MAF≤ 0.05 to classify
variants as rare. When using DMAFsq with equal numbers of cases
and controls, the test statistic V is equivalent to Q, the test statis-
tic of SKAT (Wu et al., 2011). Unlike SKAT, DMAF places equal
weight on cases and controls, regardless of their relative sample
sizes, to emphasize information available from potentially limited
numbers of cases. The significance of V is determined empiri-
cally by permuting case-control status n times and recalculating V
for each permutation. We used n= 1000. For the sliding-window
analysis, multiple-test correction for windows of a given size was
performed using a step-down approach based on a second set of
permutations (see below).

Various choices exist for wj, such as weights based on func-
tional information (Price et al., 2010). However, there are many
situations in which functionally based weights are unreliable or
unavailable, such as intergenic regions. For this reason, we used
weights based on the MAF: wj = 1/

√
nj qj(1− qj), where nj is the

number of individuals genotyped (or imputed) for variant j and
qj is the overall MAF for the variant. This model places greater
emphasis on rare alleles, which are a priori believed to be more
likely to have larger effect sizes (Manolio et al., 2009). It also pri-
oritizes large relative differences in MAF, even for small absolute
differences at rare variants. This model is similar to that used by
Madsen and Browning (2009); however, we base qj on cases and
controls, rather than controls only, to put equal emphasis on risk
and protective alleles.

STEP-DOWN PERMUTATION-BASED CORRECTION FOR MULTIPLE
TESTING
For sliding-windows of a given size (number of variants),
multiple-test correction was performed using a step-down

permutation-based approach (Westfall et al., 1999). For each win-
dow, an empirical distribution of the test statistic V was generated
from 1000 permutations of the phenotype. This distribution was
used to produce an empirical p-value for the test statistic V for
each window. The phenotype was then permuted an additional
1000 times, and an empirical p-value for V was determined for the
second set of permuted phenotypes. These p-values comprised a
p-value matrix M, consisting of m rows by 1000 columns, where
m is the number of windows of the given size. The p-values based
on the observed phenotype were then ordered from smallest to
largest in the vector p, and the rows of M were reordered in the
same order. Then, the first element (smallest p-value) of p was

compared to Mmin =

{
min

1≤i≤m
Mi,j : 1 ≤ j ≤ 1000

}
, the set of col-

umn minimums of M. The multiple-test corrected p-value for the
window corresponding to the element p1 is the proportion of ele-
ments of Mmin that are smaller than p1. The first row of M was
then removed and p2 was compared to the column minimums of
the smaller M to achieve the step-down correction, which is less
conservative than a Bonferroni correction. To preserve monoto-
nicity of p-values, the multiple-test corrected p-value for pj, j > 1
was calculated as max

(
pj−1,

∣∣{Mmin < pj}
∣∣ /1000

)
. One goal of

the current study was to assess the robustness of results to the
window size. Therefore, no correction was made for the multiple
window sizes tested.

SIMULATION STUDY I: ASSESSMENT OF DMAF TESTING FRAMEWORK
Simulated data
The coalescent simulators ms (Hudson, 2002) and msHOT (Hel-
lenthal and Stephens, 2007) were used to simulate sequence
data under no natural selection for three regions. Each
region was 50 kb in length and had a mutation rate of
µ= 10−8 mutations/bp/generation, an effective population size
of 10,000, and a recombination rate of 1 cM/Mb. Regions 2 and
3 also had a hotspot of length 2 kb in which the recombination
rate was 15 cM/Mb. We simulated 100,000 diploid individuals and
generated phenotypes according to a null model and six models
with causal SNVs (Table 1). All of the models used a multiplica-
tive model for genetic effect: Pr(yi= case|genotype)=Πj cjORij,
where ORij is the odds ratio of the variants carried by individ-
ual i for variant j and cj is a constant of proportionality. For
each region and genetic model, cj was chosen to produce a pop-
ulation prevalence of 10%. To test the sensitivity of DMAF and
other methods of rare variant analysis, we sampled 100 sets of 200
cases and 200 controls from each simulated data set to mimic a
small but realistic sample size for sequencing studies (Wang et al.,
2010; Jeoung et al., 2012; Silva et al., 2012), in which detection of
rare variant associations is more challenging than in larger stud-
ies. We included causal effects at both rare and low-frequency
variants to permit sufficient power for discrimination among
analysis methods using realistic effect sizes for a sample size of
400 subjects.

In models A–F, half of the rare variants were risk alleles, and
half were neutral or protective; different thresholds were used to
classify variants as rare (Table 1). The DMAF method is expected
to have greater power for models D and F than A and E, respec-
tively, because models D and F contain more causal variants. In
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Table 1 | Summary of models used in Simulation study I and II.

Simulation study Model Type of causal variants MAF of

causal variants

I (Entire region) A Risk ≤0.05

B Risk ≤0.04

C Risk ≤0.06

D Risk and Protective ≤0.05

E Risk ≤0.05, 0.10

F Risk and Protective ≤0.05, 0.10

II (Sub-Region) G Risk ≤0.05

H Risk and Protective ≤0.05

contrast, methods that do not accommodate protective variants
are expected to have reduced power for models D and F, as
the signal from risk variants will be canceled out by protective
variants in the same region. Like previous simulations for rare
variant analysis (Liu and Leal, 2010; Neale et al., 2011), we applied
smaller ORs for more common alleles: OR= 1.5 for risk variants
with MAF > 0.01, OR= 1.7 for 0.001≤MAF≤ 0.01; OR= 2.0 for
MAF < 0.001. The ORs for protective variants were the recipro-
cals of the effect sizes for the risk variants. In contrast to many
previous simulations, we have simulated large regions with many
causal variants (Table 2). Due to the low MAF of the causal vari-
ants and the low population prevalence, the proportion of trait
variance (Nagelkerke, 1991) explained by the set of causal vari-
ants ranged from 3.8 to 13.6%, with a mean of 7.9%. These
values are consistent with the proportion of variation explained
by individual linkage groups for growth-related phenotypes in
brook charr (Sauvage et al., 2012) and the proportion explained
by the set of known loci for type 2 diabetes in humans (Taneera
et al., 2012). Therefore, our simulations realistically model com-
plex traits influenced by a large number of variants of small effect,
a situation that has been observed and hypothesized in humans
and other species (Manolio et al., 2009; Ai et al., 2012; Marian,
2012).

Rare variant association methods assessed
We compared DMAF to eight other rare variant association test-
ing methods (Table 3). Both DMAFabs and DMAFsq were used
to analyze all variants or variants with MAF≤ 0.05, denoted as
DMAFabs,all, DMAFsq,all, DMAFabs,rare, or DMAFsq,rare, respec-
tively. The C-alpha test, like DMAF, was applied to all variants
or to rare variants only (MAF≤ 0.05), denoted as C-alphaall or C-
alpharare. All other methods, except Variable Threshold (VT), were
applied to variants with MAF≤ 0.05. KBAC was applied using
software obtained from the authors; VT was applied using soft-
ware obtained1. All other approaches were implemented in R (R
Development Core Team, 2011).

The nine rare variant association testing approaches differed in
the dimension across which information is pooled. For example,
DMAF computes the frequency difference for each variant; thus
information from all subjects is pooled into a single piece of infor-
mation for the variant. In addition to DMAF, the methods C-alpha,

1http://genetics.bwh.harvard.edu/rare_variants

Table 2 | Number of risk (protective) variants per region in each

simulation model.

Model Region 1

(262 variants)

Region 2

(237 variants)

Region 3

(233 variants)

A 100 (0) 96 (0) 100 (0)

B 97 (0) 95 (0) 98 (0)

C 105 (0) 97 (0) 102 (0)

D 100 (100) 96 (95) 100 (99)

E 101 (0) 97 (0) 101 (0)

F 101 (100) 97 (95) 101 (99)

G 67 (0) 64 (0) 67 (0)

H 34 (33) 32 (32) 34 (34)

Hotelling’s T2, and CMC also pool information across subjects. In
contrast, the other methods examined pool information across
variants.

SIMULATION STUDY II: SLIDING-WINDOW DMAF ANALYSIS
Using the sequence data from simulation study I, we simulated
two sets of phenotypes with causal variants clustered in a sub-
region of regions 1, 2, and 3. In both models, the set of rare
variants (MAF≤ 0.05) was subdivided into thirds based on posi-
tion. The first and last third of rare variants and all common
variants were neutral. The middle third of rare variants were all
risk variants (model G) or half risk, half protective (model H).
The effect sizes for risk variants were OR= 1.7 for variants with
MAF > 0.01, OR= 2.0 for 0.001≤MAF≤ 0.01, and OR= 2.2 for
MAF < 0.001. We analyzed 1000 simulated data sets based on
models G and H for regions 1, 2, and 3 using window sizes
ranging from 10 SNVs to the entire region, in increments of
10 SNVs. For the longest window sizes, fewer than 1000 sim-
ulations were analyzed since not all simulations included more
than 110 polymorphic variants. Window sizes that were ana-
lyzed for 700 or more simulations were included in the power
calculations.

While models G and H included effects at rare variants only,
both rare and common variants were analyzed together to reflect
realistic circumstances under which the MAF threshold for causal
“rare” variants is unknown. DMAFabs was used for the analysis
since it outperformed DMAFsq for a majority of the scenarios in
simulation study I when rare and common variants were analyzed
together. The window position was shifted in increments of 5 SNVs
or 10% of the window length, whichever was greater. In addition
to the analysis of models G and H, we analyzed 1000 simulations
based on a null model for each region and window size to check
that type I error was controlled.

An analysis for a given simulation and window size was consid-
ered to have detected an association if the multiple-test corrected
p-value for any window was less than 0.05. In addition to assessing
power, we were interested in the effectiveness of sliding windows
for localizing the causal sub-region. For each simulation and win-
dow size, we determined whether the window (or set of windows)
with the most significant p-value overlapped the causal sub-region
by at least half the length of the window or set (measured by the
number of markers).
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Table 3 | Rare variant association methods.

Method First author, reference Protective Pooling Implementation

DMAF Brisbin Y Subjects

CMC Li (Li and Leal, 2008) N SNVs, then

Subjects

SNVs with MAF≤0.01 collapsed (default); variants with

MAF > 0.01 analyzed with Hotelling T2

RVT1 Morris (Morris and Zeggini, 2010) N SNVs Logistic regression

KBAC Liu (Liu and Leal, 2010) N SNVs Default

WSS Madsen (Madsen and Browning, 2009) N SNVs Empirical p-value from 500 permutations

VT Price (Price et al., 2010) N SNVs 10,000 permutations, variant weights=1

Hotel Hotelling (Hotelling, 1931), Xiong

(Xiong et al., 2002)

Y Subjects Blocks of 10 SNVs were analyzed with manova, combined

with Fisher’s method

aSum Han (Han and Pan, 2010) Y SNVs Empirical p-value from 500 permutations; α0=0.1 (default)

C-alpha Neale (Neale et al., 2011) Y Subjects Empirical p-value from 500 permutations; singletons pooled

“Protective” column indicates whether the method is designed to accommodate protective variants; “pooling” indicates the dimension across which information is

pooled.

APPLICATION OF DMAF TO A PHARMACOGENOMIC STUDY
Gemcitabine is a chemotherapy drug used to treat pancreatic,
breast, and other solid tumors. A previous expression study iden-
tified FKBP5 as a candidate gene for association with gemcitabine
resistance (Li et al., 2008). Using Illumina’s Genome Analyzer, we
resequenced FKBP5 in 91 lymphoblastoid cell lines derived from
Caucasians in the Human Variation Panel (Li et al., 2008), and
identified 641 variants. The quantitative drug response pheno-
type of gemcitabine IC50 (effective dose that kills 50% of the
cells) was estimated using a four parameter logistic model per cell
line (Gallant, 1987), followed by the adjustment of log(IC50) for
sex, age, and batch of cell lines (Tan et al., 2011). We defined a
binary endpoint, with the top 50% of adjusted log IC50 values
considered “resistant,” and the bottom 50% considered “sensi-
tive.” All SNVs in FKBP5 were analyzed using DMAF and the
other methods listed in Table 3. Subsequently, a sliding-window
analysis was performed using DMAF in windows of length 10–
50 SNVs, with window size and position adjusted in increments
of 5 SNVs.

RESULTS
SIMULATION STUDY I: ASSESSMENT OF DMAF TESTING FRAMEWORK
The difference in Minor Allele Frequency test, along with C-alpha,
CMC, and aSum, had slightly elevated type I error rates (Table 4).
For a fair comparison across methods, we computed the power
of each method at an empirical type I error rate of 0.05. When
applied to simulations without protective variants (models A, B,
C, and E), most methods performed well (Figure 1), with WSS
and methods analyzing all variants having lower power. In the
presence of both risk and protective variants (models D and F),
the methods DMAF, C-alpha, Hotelling’s T2, and CMC (warm
colors, Figures 1D,F) had greater power than other methods. This
demonstrates that DMAF is as powerful as or more powerful than
a wide range of frequently used methods, establishing its feasibil-
ity as the base method for a sliding-window analysis approach. As
expected, the methods KBAC, RVT1, VT, and WSS, which assume
that all causal variants have the same direction of effect, suffered
reduced power on models D and F compared to models A and E,

respectively, while DMAF, C-alpha, and Hotelling’s T2 experienced
increased power or no significant change in power (Table 5).
CMC did not suffer reduced power, although it is not specifically
designed to accommodate protective variants, while aSum suffered
reduced power despite its intended accommodation of protective
variants.

Models A,B,and D had no causal variants with MAF > 0.05. For
these simulations, DMAFrare consistently outperformed DMAFall.
This is consistent with previous findings that including neu-
tral variants in the analysis decreases power (Li and Leal, 2008).
Models C, E, and F included causal variants with MAF > 0.05.
For these models, DMAFall was not consistently superior to
DMAFrare (Figure 1). This contrasts with the results of Li
and Leal (2008), who found that excluding causal variants
from analysis was more detrimental to power than includ-
ing excess neutral variants. When rare and common vari-
ants were analyzed together, power for DMAFabs was better
than or equal to DMAFsq in 15 out of 18 scenarios. For
this reason, DMAFabs was used for the analysis of Simulation
study II.

SIMULATION STUDY II: SLIDING-WINDOW DMAF ANALYSIS
At α= 0.05, the type I error rates for the sliding-window analyses
were between 0.037 and 0.058 for all window sizes that allowed
analysis of at least 700 simulations. Therefore, the step-down per-
mutation procedure adequately controlled type I error. For region
1, most sizes of sliding window gave power similar to the whole-
region analysis. For regions 2 and 3, the sliding-window analysis
outperformed the whole-region analysis for all window sizes from
30 to 110 SNVs (Figure 2). This demonstrates that sliding-window
DMAF can improve power compared to a whole-region analy-
sis, and the improvement is robust to choice of window size. The
sliding-window approach was also effective in localizing the causal
sub-region. The window with the most significant p-value over-
lapped the causal sub-region by at least half the window’s length
in a majority of simulations (Table 6), particularly for regions
2 and 3.

Frontiers in Genetics | Statistical Genetics and Methodology September 2012 | Volume 3 | Article 173 | 4

http://www.frontiersin.org/Statistical_Genetics_and_Methodology
http://www.frontiersin.org/Genetics
http://www.frontiersin.org/Statistical_Genetics_and_Methodology/archive


Brisbin et al. Localizing rare variant associations

Table 4 |Type I error rates for rare variant association methods.

Method Type I error rate

DMAF sq rare 0.067

DMAF abs rare 0.057

DMAF abs all 0.053

C-alpha rare 0.067

C-alpha all 0.053

Hotel 0.020

CMC 0.067

aSum 0.053

KBAC 0.030

RVT1 0.043

VT 0.040

WSS 0.037

Type I error rate calculated for null simulations across regions 1, 2, and 3 at a

nominal α=0.05.

FIGURE 1 | Power at empirical type I error = 0.05 for each method and
region. (A–F) show results from corresponding models (A–F).

APPLICATION OF ASSOCIATION METHODS TO A PHARMACOGENOMIC
STUDY
When rare variants alone were analyzed, no method found a sig-
nificant association (p < 0.05) between FKBP5 and gemcitabine
sensitivity (Table 7). When rare and common variants were ana-
lyzed together, we found a significant association using DMAF,
along with CMC, Hotelling’s T2, and C-alpha∗, an alternative

version of C-alpha based on heterogeneity of odds ratios (Zelter-
man and Chen, 1988). This suggests that variants with MAF > 0.05
play an important role in the detection of gemcitabine response
associations, at least when sample sizes are small. This possibility
is supported by the fact that the VT method, which utilizes mul-
tiple MAF thresholds, had the next lowest p-value (0.129). The
methods aSum, KBAC, RVT1, and WSS were unable to detect a
significant association even when common variants were included
in the analysis.

Despite the implication of an association with common vari-
ants, a single-marker analysis of the 152 SNVs with MAF > 0.05
found no variants significant at the α= 0.05 level after correc-
tion for multiple testing. This demonstrates the value of methods
which aggregate information from multiple variants even when
common variants may be associated with the trait.

The sliding-window analysis of FKBP5 successfully localized
the association peak to the sub-region spanning introns 1 and 2b
and the exon between them (Figure 3). All window lengths iden-
tified a peak in this region, further demonstrating our method’s
robustness to window size. Analysis using only rare variants local-
ized the peak to approximately the same location, intron 2b;
however, this association was not significant after multiple-test
correction.

DISCUSSION
In this paper, we introduced DMAF, a novel approach for aggre-
gating information across a genetic region to increase power for
association testing. DMAF’s use of a positive function of the dif-
ference in minor allele frequencies between cases and controls
places equal importance on risk and protective variants, and its
accommodation of both rare and common variants, with weights
based on MAF or biological information (e.g., functional variants
given more weight), gives our method flexibility to adapt to a wide
range of traits. DMAF demonstrates improved power compared
to many widely used methods in the presence of both risk and pro-
tective variants. Its sliding-window implementation can increase
power to detect an association due to a causal sub-region relative
to whole-region analysis, and can localize associations within a
gene or region. Both implementations of DMAF are available as
an R package2.

On simulations with both risk and protective variants, rare vari-
ant analysis methods which pooled data from individuals (DMAF,
CMC, Hotelling’s T2, C-alpha) had the greatest power. We also
found that aSum, a method designed to accommodate protective
variants but which pools information from variants, had weaker
power on simulations with protective variants. Taken together,
these results suggest that pooling data from individuals improves
power for analysis of risk and protective rare variants. This indi-
cates that sequencing pooled DNA could be used as a cost-saving
measure in association studies without loss of power due to a
combination of risk and protective variants.

Our simulations of causal variants clustered in a sub-region
demonstrate that by using sliding windows, the power gained from
reducing the proportion of neutral variants in windows which

2http://mayoresearch.mayo.edu/fridley_lab/software.cfm
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Table 5 | Difference in power of each method between models D and A and models F and E.

Region Models DMAF

sq rare

DMAF

abs rare

DMAF

abs all

C-alpha

rare

C-alpha

all

Hotel CMC aSum KBAC RVT1 Price WSS

1 D–A 0.04 0.06 −0.09 0.01 −0.24 0.09 0.09 −0.76 −0.23 −0.73 −0.63 −0.43

1 F–E 0.55 0.42 0.18 0.61 −0.25 0.35 0.44 −0.09 0.32 −0.05 −0.1 0.2

2 D–A −0.02 −0.11 −0.04 0 0.06 0.02 −0.07 −0.9 −0.28 −0.87 −0.86 −0.68

2 F–E 0.03 0.07 0.05 0.06 0.02 0.1 0.04 −0.91 −0.15 −0.91 −0.89 −0.58

3 D–A 0.13 0.31 0.25 0.11 0.28 0.18 0.15 −0.81 −0.29 −0.8 −0.85 −0.41

3 F–E 0.12 0.35 0.18 0.12 −0.04 0.17 0.08 −0.56 −0.18 −0.59 −0.62 −0.44

Positive values (bold) indicate increased power when protective variants are added to the simulations.

FIGURE 2 | Power vs. sliding window size. Solid lines depict power for
each window size; dashed lines indicate power for analysis of the whole
region, without sliding windows for (A) model G and (B) model H. Power is
for a nominal α=0.05.

overlap the causal sub-region can outweigh the power loss due
to multiple testing of the various window locations. The superior
performance of the sliding-window approach on regions 2 and
3, compared to region 1, could be due to the hotspots in these
regions, which interrupt linkage disequilibrium (LD) between the
causal sub-region and the rest of the region. This reduced corre-
lation results in a lower signal-to-noise ratio (compared to region
1) when non-causal variants are included in the analysis. The fact
that a wide range of window sizes in the sliding-window analy-
sis performed better than the whole-region analysis demonstrates
that the sliding-window approach is a robust, powerful alternative
for region-based rare variant analysis.

In the sliding-window analysis of FKBP5 for gemcitabine
response, the strongest association was p= 0.019, which was more
significant than the whole-gene association (p= 0.049); however,
multiple tests (window sizes) were required to achieve this. Due to
the robustness of results to the window size that was demonstrated
in our simulations and real data analysis, in the future it would be
possible to perform a sliding-window analysis using a single win-
dow size. This could result in increased power, without the need for
additional multiple-test correction. Sliding-window analyses also
allow localization of region-based association signals, which will
be valuable for understanding the functional regions responsible
for identified associations.

Table 6 | Fraction of simulations in which the window or set of

windows with the most significant p-value overlapped the causal

sub-region by more than half the window or set’s length.

Window size Region and model

1G 1H 2G 2H 3G 3H

10 0.735 0.614 0.942 0.650 0.848 0.906

20 0.704 0.585 0.959 0.715 0.859 0.948

30 0.559 0.548 0.931 0.728 0.882 0.940

40 0.419 0.486 0.868 0.723 0.866 0.920

50 0.378 0.422 0.643 0.718 0.800 0.860

60 0.349 0.367 0.554 0.621 0.755 0.775

70 0.395 0.373 0.485 0.546 0.688 0.667

80 0.484 0.569 0.297 0.158 0.615 0.569

Table 7 | P -values for association between gemcitabine sensitivity and

genotypes at 641 loci in FKBP5.

Method P -value

Rare variants All variants

DMAFsq 0.511 0.030

DMAFabs 0.439 0.049

VT NA 0.129

C-alpha 0.686 0.252

C-alpha* 0.675 0.005

aSum 0.300 0.146

CMC 0.700 0.007

Hotel 0.757 7.12E-05

KBAC 0.414 0.301

RVT1 0.303 0.168

WSS 0.472 0.449

P-values less than 0.05 are in bold. *Indicates modified version based on

heterogeneity of odds ratios.

To highlight the usefulness of region-based association meth-
ods such as DMAF, our simulation studies involved large numbers
of causal variants which explain a modest proportion of the
trait variance. This is a realistic model for sequencing studies of
candidate genes or pathways. In a candidate gene study, many
non-synonymous changes to the gene could affect the shape of
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FIGURE 3 | Corrected-log10 p-value for each window in FKBP5. Colors
differentiate lengths of windows for analysis of (A) all variants and (B) only
rare variants. “Position” is kb from start of gene.

the protein encoded by the gene, and many synonymous vari-
ants could each have a small impact on the protein’s translation
rate. However, if these variants are rare SNVs, or even de novo

mutations, then a region-based analysis method such as DMAF
would be necessary to detect the variants’ combined effect on
a trait influenced by the protein. In candidate pathway stud-
ies, multiple genes are grouped to detect their combined effect
on a trait. If each gene in the pathway contributes a few rare
variants of moderate effect, then the combined whole-region
analysis would include dozens or hundreds of causal variants, as
simulated here.

The results of our simulation studies (Table 6) indicate that
the sliding-window analysis is effective in localizing associations
within a region using a relatively small sample size of 200 cases
and 200 controls. This localization may implicate a fairly large
sub-region, as in the gemcitabine analysis of 91 cell lines, in which
the association peak spanned two introns comprising approxi-
mately 77 kb. In the future, it would be valuable to analyze a larger
sample, as this might enable more precise localization.

The dichotomization of gemcitabine response based on upper
and lower 50% of IC50 values is somewhat artificial, as it results
in assigning distinct phenotypes to individuals with similar inter-
mediate responses. DMAF, like many methods for rare variant
analysis, is currently applicable only to binary traits. In the future,
it would be beneficial to extend DMAF to quantitative traits. It
would also be worthwhile to explore the possibility of determining
window size based on number of base pairs or extent of LD, rather
than number of SNVs. Finally, it would be valuable to explore
other variant-weighting schemes, such as a positional weighting
scheme within each sliding window.
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