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Abstract: Complex and high levels of various pollutants in high-strength wastewaters hinder efficient
and stable biological nutrient removal. In this study, the changes in pollutant removal performance
and microbial community structure in a laboratory-scale anaerobic/aerobic sequencing batch reactor
(SBR) treating simulated pre-fermented high-strength wastewater were investigated under different
influent loading conditions. The results showed that when the influent chemical oxygen demand
(COD), total nitrogen (TN), and orthophosphate (PO4

3−-P) concentrations in the SBR increased to
983, 56, and 20 mg/L, respectively, the COD removal efficiency was maintained above 85%, the TN
removal efficiency was 64.5%, and the PO4

3−-P removal efficiency increased from 78.3% to 97.5%.
Partial nitrification with simultaneous accumulation of ammonia (NH4

+-N) and nitrite (NO2
−-N)

was observed, which may be related to the effect of high influent load on ammonia- and nitrite-
oxidising bacteria. The biological phosphorus removal activity was higher when propionate was
used as the carbon source instead of acetate. The relative abundance of glycogen accumulating
organisms (GAOs) increased significantly with the increase in organic load, while Tetrasphaera was
the consistently dominant polyphosphate accumulating organism (PAO) in the reactor. Under high
organic loading conditions, there was no significant PAO–GAO competition in the reactor, thus the
phosphorus removal performance was not affected.

Keywords: high-strength wastewater; partial nitrification; enhanced biological phosphorus removal;
polyphosphate accumulating organisms; nitrifying bacteria

1. Introduction

High-strength wastewaters, mainly originating from livestock and poultry farming
and food processing, have higher pollutant concentrations and ecological risks than con-
ventional domestic wastewater [1]. The chemical oxygen demand (COD) concentration in
high-strength wastewater can be as high as tens of thousands of milligrams per litre, total
nitrogen (TN) levels can reach 800–23,000 mg/L, and total phosphorus (TP) levels can reach
50–230 mg/L [2–5]. If discharged directly into receiving water bodies without treatment,
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such large amounts of organic matter and nutrients in the wastewater will consume dis-
solved oxygen (DO) and cause eutrophication, promoting algal growth. This can lead to the
death of aquatic organisms and the deterioration of the water environment [6]. Therefore,
the treatment of high-strength wastewater is an urgent matter. Anaerobic digestion (AD)
is one of the preferred methods, as it can economically and effectively treat highly con-
centrated organic wastewater, promoting carbon neutrality through energy recovery [7–9].
However, AD does not address the problem of excess nitrogen and phosphorus in high-
strength wastewater. The removal of phosphorus from wastewater, in particular, is less
studied, making the AD effluent still at risk of causing eutrophication in the receiving water
body [4,10].

The enhanced biological phosphorus removal (EBPR) process has been widely used to
remove phosphorus from domestic wastewater. This process relies on the enrichment of
polyphosphate accumulating organisms (PAOs) in activated sludge [11]. Under anaerobic
conditions, PAOs assimilate volatile fatty acids (VFAs), such as acetic acid and propionate
acid, and break down stored polyphosphates and glycogen to generate energy and reducing
power, whereas under aerobic conditions, they take up an excessive amount of phosphorus,
thus achieving phosphorus removal from the wastewater [12]. In addition to PAOs, the
main microorganisms in the EBPR system are glycogen accumulating organisms (GAOs),
which behave similar to PAOs but do not have the ability to store polyphosphate [13].
Therefore, GAOs compete with PAOs for carbon sources during the anaerobic phase of the
EBPR system but are unable to remove phosphate from the wastewater. Deterioration of the
EBPR system is also attributed to an increase in the abundance of GAOs. Previous studies
on EBPR systems have generally focused on optimally tuning the phosphate removal
performance under relatively low organic loading conditions to give PAOs a competitive
advantage over GAOs [14–17], while studies on medium-to-high-strength wastewaters
containing high concentrations of organic matter (>400 mg/L) and phosphorus have been
very limited [18].

EBPR process can be used to treat high-strength wastewater with different influent
COD/P ratios (25:1 to 10:1), and the phosphorus removal efficiency could be maintained
above 70% [19,20]. The phosphorus removal efficiency in EBPR systems treating wastewater
containing high concentrations of phosphorus (30–280 mg P/L), such as dairy and manure
wastewater, could be 60–90% [21,22]. However, these studies lacked a comprehensive anal-
ysis of the changes in the nitrogen and phosphorus removal performance, microbial activity
and community structure in the systems. Previous studies showed that an excessively
high influent COD/P ratio (>50:1) in the EBPR process treating low-strength wastewater
promotes the proliferation of GAOs, which in turn affects the EBPR performance [12]. Ran-
dall and Chapin found that high influent carbon source concentrations (>740 mg COD/L)
reduced the phosphorus removal stability and EBPR activity, and attributed to the fact
that high organic loads favoured the growth of non-PAO and led to PAO being screened
out of the system [23]. However, it is still unknown whether a carbon source competition
between PAOs and GAOs occurs in high-strength wastewaters wherein various types of
available carbon sources are sufficient. Therefore, it is necessary to evaluate the relationship
between different functional microorganisms and the metabolic activity of different carbon
sources in the EBPR process treating high-strength wastewater to ensure efficient and stable
system performance.

In this study, a laboratory-scale anaerobic/aerobic sequencing batch reactor (A/O-SBR)
was constructed to treat pre-fermented high-strength wastewater. The main objectives of
our study were to (1) investigate the pollutant removal performance, microbial activity, and
community structure in the reactor under different influent loading conditions; (2) evaluate
the impact of organic load on nitrogen and phosphorus removal activity/populations, and
(3) reveal whether the carbon source competition among different functionally relevant
microorganisms occurs in high-strength wastewater. The outcome will provide support for
the design and optimisation of the biological treatment of high-strength wastewater.
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2. Materials and Methods
2.1. Reactor Setup and Operation

An SBR with a working volume of 4.62 L (Figure S1) was constructed in the labora-
tory. The seed sludge was taken from the No.4 wastewater treatment plant (WWTP) in
Xi’an, Shaanxi Province, washed three times with tap water, and aerated before inoculating
in the reactor. The reactor was operated under ambient temperature (20 ± 5 ◦C) without
pH control. The variations in pH in the reactor (median: 7.4; range: 7.0–8.5) were possibly
related to the protein hydrolysis during the experiment, yet the values are still in the suit-
able range for PAO activity [13,24], and the previously reported range for typical livestock
wastewater (6.8–8.9) [25]. The cycle time was 8 h (anaerobic: 2.5 h; aerobic: 4.5 h; settling
and draining: 1 h), and the sludge retention time (SRT) was ~14 d. In each cycle, 2.41 L of
synthetic wastewater was pumped into the SBR, resulting in an exchange ratio of 0.52 and
a hydraulic retention time (HRT) of 15.3 h.

The pollutant components and concentrations in the synthetic pre-fermented high-
strength wastewater were defined based on the real wastewater from a local livestock farm
in Xi’an, Shaanxi Province, which are also within the reported range of high-strength dairy
and manure wastewater (Table S1) [26–28]. A mixture of complex (casein acid hydrolysate)
and simple organic matter (sodium acetate and sodium propionate) in a COD ratio of
2:7:7 was used as the carbon source. Ammonium chloride and monopotassium phosphate
were used as the inorganic nitrogen and phosphorus sources, respectively. During the
start-up period (60 days), the influent COD (CODinf) concentration was gradually increased
from ~200 to ~330 mg/L, while the influent ammonia (NH4

+-Ninf) and orthophosphate
(PO4

3−-Pinf) concentration was ~20 and ~8 mg/L, respectively. During Phases I, II, and III,
the CODinf concentrations were ~400, ~700, and ~1000 mg/L; the NH4

+-Ninf concentra-
tions were ~20, ~35, and ~50 mg/L; and the PO4

3−-Pinf concentrations were ~8, ~15, and
~20 mg/L, respectively, resulting in a COD/N ratio of ~20:1 and a COD/P ratio of ~50:1
(Table 1). The concentrations of other trace elements (Table S2) [29] were kept constant
during the experiment. To evaluate the pollutant removal performance during experiments,
the influent and effluent concentrations of COD, TN, NH4

+-N, nitrate (NO3
−-N), nitrite

(NO2
−-N), TP, and PO4

3−-P were regularly monitored.

Table 1. Main components of synthetic pre-fermented high-strength wastewater.

Influent
Concentration

Start-Up Phase Phase I
Days 61–142

Phase II
Days 143–183

Phase III
Days 184–224Days 1–16 Days 17–40 Days 41–60

COD (mg/L) 192 ± 27 289 ± 20 333 ± 55 388 ± 25 696 ± 27 983 ± 49
TN (mg/L) 23.1 ± 4.3 22.1 ± 2.0 24.1± 1.0 23.3 ± 3.1 43.5 ± 7.3 56.1 ± 10.4

NH4
+-N

(mg/L) 21.4 ± 0.7 19.8 ± 2.3 19.3 ± 0.9 19.8 ± 1.1 35.4 ± 2.9 49.9 ± 1.3

PO4
3−-P

(mg/L)
8.2 ± 1.5 7.6 ± 2.3 8.3 ± 0.4 8.1 ± 0.6 13.9 ± 1.0 19.2 ± 1.5

COD/N ratio 9.0 14.6 17.2 19.6 19.7 19.7
COD/P ratio 23.4 38.0 40.1 47.9 50.1 51.2

2.2. Typical Cycle Study and Biological Phosphorus Removal Batch Tests

Samples were taken at different time points during one operating cycle of the reactor
to analyse the changes in COD, TN, NH4

+-N, NO3
−-N, NO2

−-N, and PO4
3−-P, in order to

determine the pollutant removal kinetics and activities of the reactor during a typical cycle.
To assess the EBPR activity of the sludge, anaerobic/aerobic batch experiments were

conducted as described previously [11]. Briefly, sludge samples at the end of the aerobic
period in the reactor were taken and washed three times with a washing solution without
carbon and phosphorus sources [29]. Allyl-N-thiourea (ATU) was added into the mixed
liquor to inhibit nitrification, and the air was pumped in for 1 h of pre-aeration [30]. Then,
after the residual organic matter had been consumed, nitrogen gas was pumped in to bring
down the DO level to <0.1 mg/L to attain anaerobic conditions. Then, carbon (acetate or
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propionate) and phosphorus sources were added to the COD concentration of 100 mg/L
and the PO4

3−-P concentration of 10 mg/L for 1 h of anaerobic condition. Thereafter,
nitrogen gas was stopped and the air was pumped to obtain the aerobic condition for 2 h.
During the test, pH was manually maintained at 7.0 ± 0.1 by the addition of NaOH or HCl.
Temperature were maintained at 20 ◦C. Samples were periodically collected throughout
the test and filtered through 0.45 µm filter membranes to determine COD and PO4

3−-P
concentration. Sludge samples collected at the beginning and end of the test were collected
to measure sludge concentration (i.e., mixed liquid suspended solids (MLSS) and mixed
liquids volatile suspended solids (MLVSS)). The specific kinetic rate, such as anaerobic P
release rate, substrate uptake rate, and aerobic P uptake rate, is expressed as the slope of the
linear regression equation for the concentration–time plot (i.e., volumetric rate), dividing
by MLVSS concentration. The P release–substrate uptake ratio is calculated as the mass of
phosphorus released divided by the mass of substrate removed from the bulk solution.

2.3. Microbial Community Analysis

During the experiment, activated sludge samples were collected from the reactor
at each phase for DNA extraction and 16S rRNA gene amplicon sequencing. Genomic
DNA was extracted from each sample using the DNeasy PowerSoil Kit (QIAGEN, Inc.,
Hilden, Germany). Primers 338F (5′-ACTCCTACGGGAGGCAGCA-3′) and 806R (5′-
GGACTACHVGGGTWTCTAAT-3′) were used for PCR amplification of the bacterial 16S
rRNA gene. After the amplification, products were purified using Agencourt AMPure
beads (Beckman Coulter, Indianapolis, IN, USA) and quantified using a PicoGreen ds-
DNA Assay Kit (Invitrogen, Carlsbad, CA, USA). Sequencing libraries were created and
the Illumina MiSeq platform was used for 16S rRNA gene amplicon sequencing (Shang-
hai Personal Biotechnology Co., Ltd., Shanghai, China). Finally, bioinformatics analysis
of the sequencing data was performed using QIIME (v1.8.0) software. The analysis of
the relative abundance of the nutrient removal-related functional microorganisms was
conducted by analyzing the sequencing data with the assistance of the Activated Sludge
Microbial Database (MiDAS) [31] linking the taxonomy with multiple metabolic functions
(e.g., nutrient removal, fermentation, etc.) [32].

2.4. Chemical Analyses

COD was determined by the potassium dichromate method. NH4
+-N was determined

using the Nessler reagent (Hach, Loveland, CO, USA). NO3
−-N and NO2

−-N were deter-
mined using ultraviolet spectrophotometry. PO4

3−-P was determined using ammonium
molybdate reagent (Hach, Loveland, CO, USA). TN and TP were determined by the alka-
line persulfate digestion method. Removal efficiency (%) is calculated as the difference
between the pollutant (COD, NH4

+-N, TN, and PO4
3−-P) concentration in the influent and

effluent, divided by the pollutant concentration in the influent. The acetate or propionate
concentration in the single carbon-feeding batch tests was determined via measuring COD
in the supernatant and calculated based on the theoretical COD equivalents (i.e., 1.07 mg
COD/g acetate and 1.52 mg COD/g propionate). MLSS and MLVSS were determined
according to Standard Methods [33]. The modified thermal extraction method described by
Domínguez et al. [34] was used to extract soluble microbial products (SMP) and extracel-
lular polymeric substances (EPS) from the mixed liquor. The concentrations of proteins,
polysaccharides, lipids, humic acids, and DNA in SMP; loosely bound EPS (LB-EPS);
and tightly bound EPS (TB-EPS) were measured. A modified Lowry method [35,36] was
employed to quantify proteins and humic acids. The anthrone method [37] was used to
analyse polysaccharide concentration. The lipid concentration was determined using the
sulfo-phospho-vanillin method [38], and DNA concentration was determined using the
diphenylamine colorimetric method [39]. All samples were analysed in triplicate.
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3. Results
3.1. Pollutant Removal Performance
3.1.1. COD Removal Performance

The variations in the COD removal performance in each phase during the experiment
are shown in Figure 1a. In the initial start-up phase (0–16 days), fluctuations in the
COD removal performance were observed. The effluent COD (CODeff) concentration
was 97 ± 51 mg/L with an average removal efficiency of 47.3%. On days 17 and 41, the
CODinf concentration increased from 193 ± 30 mg/L to 289 ± 20 and 333 ± 55 mg/L,
respectively, and the removal performance gradually improved, which is possibly related
to the consequently increased microbial growth and substrate degradation rates [40]. In
Phase I, II, and III when the CODinf concentrations increased to 388 ± 25, 696 ± 27, and
983 ± 49 mg/L, respectively, the average removal efficiencies still reached 89.0%, 89.8%,
and 94.5%, respectively. As the easily biodegradable matter, the VFAs (i.e., acetate and
propionate) in the influent are expected to be fast degraded during the SBR cycle. While for
the complex carbon source that is mainly composed of proteins and amino acids (i.e., casein
acid hydrolysate) and commonly exists in dairy wastewater [41], its biodegradation would
be slower and relies on the specific microorganisms capable of utilising amino acids [42].
Our results showed that the A/O-SBR was effective in degrading different organic matter
under high influent loading conditions. This is possibly related to the increase in active
biomass, as the sludge concentration increased from ~5 to ~7 g/L during the experiment.

 

Figure 1. The removal performance of (a) COD, (b) NH4+-N, (c) TN, and (d) PO43−-P during the 
experiment. 

  

Figure 1. The removal performance of (a) COD, (b) NH4
+-N, (c) TN, and (d) PO4

3−-P during
the experiment.

3.1.2. Nitrogen Removal Performance

During the start-up phase, the average NH4
+-N removal efficiency of the SBR was

93.1%, indicating that the reactor achieved good nitrogen removal performance (Figure 1b).
NH4

+-N removal was also consistently good in Phase I and II, with removal efficien-
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cies of 97.2% and 98.2%, respectively. As the NH4
+-Ninf concentration increased to

49.9 ± 1.3 mg/L in Phase III, the effluent NH4
+-N (NH4

+-Neff) concentration increased
obviously to 5.1± 1.8 mg/L, with a declined average removal efficiency of 89.8%. This may
be related to the excessive organic matters in influent that were not completely degraded
during the anaerobic phase (Figure 2). The residual organic matter could promote the
proliferation of other heterotrophic organisms (OHOs) during the aerobic phase, lead-
ing to intense competition between nitrifying and heterotrophic bacteria for oxygen and
space [43]. The organic loading condition would also lead to inhibited nitrification due
to the inactivation of enzymes in the nitrification process [44]. Meanwhile, the increased
NH4

+-N load in Phase III may exceed the removal capacity of nitrifying bacteria in the
reactor, thus leading to an increase in the NH4

+-Neff concentration. The denitrification
performance of the SBR gradually increased under the three different loading conditions
(Figure 1c), with the average removal efficiencies of 51.8%, 63.5%, and 64.5%, respectively,
which should be attributed to the increased organic loads providing sufficient electron
donors to denitrifiers [45].

 
 
 
 

 

Figure 2. Profiles of COD, TN, NH4+-N, NO3−-N, NO2−-N, and PO43−-P concentrations in a typical cycle of 
SBR: (a) Phase I, (b) Phase II, and (c) Phase III. 

  

Figure 2. Profiles of COD, TN, NH4
+-N, NO3

−-N, NO2
−-N, and PO4

3−-P concentrations in a typical
cycle of SBR: (a) Phase I, (b) Phase II, and (c) Phase III.

3.1.3. Phosphorus Removal Performance

The biological phosphorus removal performance in SBR during the experiment is
shown in Figure 1d. The average PO4

3−-P removal efficiency at the early stage of the
start-up phase (days 1–16) was only 42.0%, and the effluent PO4

3−-P (PO4
3−-Peff) concen-

tration was 4.7 ± 1.3 mg/L with large fluctuations. This may be related to the relatively
long sludge age (~25 d). In the middle stage of the start-up phase (days 17–40), the SRT
of the reactor was reduced to ~14 d by increasing the amount of waste sludge, which
lead to ascending phosphorus removal performance. During the subsequent phases, as
the influent loads elevate, the average PO4

3−-P removal efficiencies steadily increased
to 77.4%, 92.3%, and 97.5% in Phase I, II, and III, respectively. The highest and most
stable PO4

3−-P removal performance occurred in Phase III, with an average PO4
3−-Peff
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concentration of 0.56 mg/L (Figure S2), which is superior to another study treating dairy
manure wastewater (PO4

3−-Pinf: 51.1 ± 23.0 mg/L; PO4
3−-P removal efficiency: 59%) [46].

Yuan et al. [18] also obtained similar effective performance in a lab-scale SBR treating
synthetic wastewater (PO4

3−-Pinf: 40.0 mg/L; PO4
3−-P removal efficiency: 99.5 ± 0.8%),

yet only used simple organic matter (i.e., acetate and propionate) as carbon sources. The ef-
fective PO4

3−-P removal in this study should be attributed to the high influent organic load,
which reduced the competition for carbon sources between PAOs and other heterotrophic
bacteria (e.g., denitrifying bacteria and OHOs), making more available carbon sources
to PAOs.

In addition, the amounts of proteins, polysaccharides, and humic acids in the EPS of
the activated sludge also largely increased with the increase in the CODinf load (Figure S3).
Recent studies have demonstrated that EPS plays an important role in P removal by
EBPR sludge, mainly due to its large specific surface area and abundant functional groups
(e.g., hydroxyl, carboxyl, sulfonate, etc.) capable of adsorbing phosphorus [47,48]. Mean-
while, EPS was considered to have a positive effect on sludge flocculation, promoting cell
aggregation during the sludge granulation process [49]. Therefore, the contribution of EPS
to the EBPR process treating high-strength wastewater needs further investigation.

Considering the removal performance for each pollutant, the A/O-SBR used in this
study could effectively treat different levels of pre-fermented high-strength wastewater.
Although the NH4

+-Neff concentration increased in Phase III, it should be possible to
achieve improved nitrification performance via extending HRT and reducing residual
organic matter in the aerobic phase. Further optimisation studies of the A/O-SBR are
warranted to enhance its pollutant removal performance and expand its application range
in treating wastewaters with varying influent loads.

3.2. Microbial Activities
3.2.1. Nitrogen Removal Activity

The effects of different influent loads on the pollutant treatment process during a
typical cycle of SBR (anaerobic: 2.5 h; aerobic: 4.5 h) were analysed in different phases
(Figure 2). The TN concentration decreased gradually throughout the typical cycle, and
the effluent TN (TNeff) concentration decreased with an increase in the concentrations of
CODinf and influent TN (TNinf), indicating that the sludge had efficient denitrification
capacity under high-strength influent conditions. The NH4

+-N concentration decreased
during the aerobic period of the typical cycle, and the NO3

−-N concentration increased
accordingly. Along with the gradually elevated NH4

+-N supply in the influent, the average
specific ammonia oxidation rate (AOR) increased from 0.51 mg N/(g VSS·h) in Phase I
to 0.72 mg N/(g VSS·h) in Phase III (Table S1). Notably in Phase III, a higher NH4

+-N
concentration (5.4 mg/L) was detected at the end of the aerobic period. This incomplete
oxidation of NH4

+-N should be related to the high NH4
+-Ninf load and the relatively low

ammonia-oxidising bacteria (AOB) activity [50]. Regarding the specific nitrite oxidation
rate (NOR), the average value decreased largely from 0.61 mg N/(g VSS·h) in Phase I to
0.18 mg N/(g VSS·h) in Phase III (Table S1), which is much lower than the AOR in Phase
III (0.72 mg N/(g VSS·h)). Both AOR and NOR detected in this study are much lower than
the values exhibited in other activated sludge systems (Table S3), which is probably due to
the pretty low AOB and NOB abundance (See Section 4.1).

Meanwhile, substantially increased NO2
−-N concentrations were observed at the

end of the aerobic period in Phase II (5.4 mg/L) and III (10.3 mg/L) (Figure 2), with
the corresponding NO2

−-N accumulation rates (NAR) of 36% and 68%. This indicates
that the high-strength influent conditions had a more pronounced inhibition effect on
nitrite-oxidising bacteria (NOB) than on AOB, resulting in the NO2

−-N accumulation in
the effluent.
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3.2.2. Phosphorus Removal Activity

EBPR characteristics were observed during the typical cycle of SBR (Figure 2). The
COD concentration in the SBR decreased sharply from 376.0–1020.8 mg/L to 55.4–95.1 mg/L
within the first 60 min of the anaerobic period, indicating that most of the organic matter in
the influent could be rapidly degraded under the anaerobic conditions. Correspondingly,
the PO4

3−-P concentration largely increased to 49.7–100.0 mg/L and decreased obviously
to 0.1–2.3 mg/L in the subsequent aerobic period. The anaerobic P release amount (PRA)
were 40.4, 61.2, and 81.2 mg/L and the aerobic P uptake amount (PUA) values were
45.6, 71.0, and 99.9 mg/L for Phase I, II, and III, respectively, indicating that the increase
in organic load promoted the P release and uptake capacities of the activated sludge in
all phases.

To further investigate the effects of different carbon sources on EBPR activity, the
batch tests fed with acetate or propionate were conducted using sludge samples from
different phases (Figures S4 and S5). All the specific kinetic rates and stoichiometric ratios
were within the range observed in other EBPR systems treating conventional low-strength
municipal wastewater (Table 2). The anaerobic P release to acetate uptake (P/HAc) ratio,
which is an indicator of PAO activity and abundance [51], decreased from 0.64 P-mol/C-
mol in Phase I to 0.38 P-mol/C-mol in Phase III (Table 2). This indicates the presence
of competition between PAOs and GAOs for carbon sources, potentially leading to de-
creased abundance of acetate-utilising PAOs (e.g., Accumulibacter) (as shown in Section 4.3).
In contrast, the anaerobic P release to propionate uptake (P/HPr) ratio increased from
0.73 P-mol/C-mol in Phase I to 0.81 P-mol/C-mol in Phase III, and the P/HPr ratio in each
phase was higher than the P/HAc ratio.

Table 2. Specific kinetic rates and stoichiometric ratios observed in the P release and uptake batch
tests fed with different carbon sources during the experiment.

Carbon Source P Release Rate
[mg P/(g VSS·h)]

Substrate
Uptake Rate

[mg C/(g VSS·h)]

P Uptake Rate
[mg P/(g VSS·h)]

P Re-
lease/Substrate
Uptake Ratio

(P-mol/C-mol)

Reference

Acetate

Phase I 10.3 6.2 4.1 0.64 This study
Phase II 4.7 6.4 1.2 0.30 This study
Phase III 7.0 7.3 3.2 0.38 This study

Full-scale sludge 5.6-31.9 16.1-42.5 2.4-9.7 0.29-0.75 [52]
Full-scale sludge 2.8-5.3 7.7-24.9 0.6-2.6 0.16-0.54 [53]
Lab-scale sludge 4.4-50.6 7.7-32.7 9.8-23.8 0.22-0.60 [54]

Propionate

Phase I 9.8 5.2 3.7 0.73 This study
Phase II 7.3 4.7 1.5 0.60 This study
Phase III 6.4 3.0 2.6 0.81 This study

Lab-scale sludge 13.6 36.7 18.6 0.27 [55]
Full-scale sludge - - - 0.38-0.60 [56]

3.3. Microbial Community Structure
3.3.1. Microbial Diversity

The 16S rRNA gene amplicon sequencing data were analysed to obtain operational
taxonomic units (OTUs) based on clustering at a similarity level of 0.97. Alpha diversity
indices, including the Chao1, ACE, Shannon, and Gini–Simpson indices, were calculated
for each activated sludge sample based on the OTUs (Table 3) [57]. The Good’s coverage
index was higher than 0.99 for all 4 samples, indicating the current sequences represented
the majority of the bacterial community. The sludge sample in Phase III had the highest
diversity index, which is probably due to the increased influent load providing sufficient
nutrients for the growth of microorganisms, as well as mitigating the competition between
different microorganisms to a certain extent.
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Table 3. Alpha diversity indices in activated sludge samples during the experiment.

Samples Observed
Species

Good’s
Coverage

Pielou’s
Evenness Chao1 Gini–

Simpson Shannon

Raw sludge 2768 0.990 0.792 3024 0.994 9.063
Phase I 3035 0.995 0.736 3090 0.984 8.515
Phase II 3070 0.996 0.698 3085 0.968 8.090
Phase III 3065 0.990 0.723 3208 0.986 8.378

3.3.2. Microbial Community Composition

The relative abundance of microorganisms at the phylum levels in different phases
during the experiment is shown in Figure 3a. In the raw sludge, Proteobacteria and Bac-
teroidetes were the dominant groups, with the relative abundance of 26.6% and 9.6%,
respectively. After running under different loading conditions, the relative abundance
of Proteobacteria and Bacteroidetes increased significantly, reaching 34.4%–54.1% and
28.1%–45.8%, respectively. Proteobacteria are dominant in many activated sludge sys-
tems, and include many microorganisms associated with organic matter degradation and
nutrient cycling (e.g., some known denitrifying bacteria and PAOs) [58,59]. Lawson and
Strachan [60] found that certain bacteria in Bacteroidetes also play an important role in
denitrification. At the genus level, Thauera, Terrimonas, and Haliangium were the dominant
genera in Phase I, while Saccharimonadaceae, Defluviicoccus, Flavobacterium, Competibacter,
and Tetrasphaera were dominated in Phase II and III when the influent load reached higher
levels (Figure 3b). This indicates that the microbial community structure changed largely
and continuously from the raw sludge after reactor operation, which is probably related to
the elevated organic and nutrient loads providing selection pressures to the community.

 
 

 

Figure 3. Relative abundances of microbial community composition at the (a) phylum and (b) genus 
levels during the experiment. 

  

Figure 3. Relative abundances of microbial community composition at the (a) phylum and (b) genus
levels during the experiment.

4. Discussion
4.1. Impact of Organic Load on Nitrogen-Removal-Related Microorganisms

The changes in functional microorganisms during the experiment (Figure 4) revealed
that the relative abundance of AOB (i.e., Nitrosomonas) increased from 0.02% in Phase I
to 0.09% in Phase III, whereas the relative abundance of NOB (i.e., Nitrospira) decreased
substantially from 0.50% in Phase I to 0.05% in Phase III, which is consistent with the
results obtained in the batch test (see Section 3.2.1). This distinct shift of the nitrifying
bacterial population was possibly related to the increased influent load. For the typical
WWTPs treating municipal wastewater, the COD level in the aerobic zone is often low
since the influent organic matters were mainly degraded in the ahead anaerobic/anoxic
zone. Therefore, less attention has been paid to the effect of organic loads on nitrifying
bacteria. However, the organic matter concentration is significantly higher in high-strength
wastewater, and their residues in the aerobic zone may impact nitrifying bacteria [44]. It
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has been found that the addition of small-molecule VFAs (i.e., formic, acetic, propionic,
or butyric acid) in the aerobic phase inhibits NOB activity without affecting AOB activity,
whereas the addition of valeric or capric acid negatively affects both AOB and NOB
activities [61]. In this study, the gradual increase in acetate/propionate-dominated organic
load might lead to higher suppression and out-selection of NOB populations compared
to AOB.

 
 

 
Figure 4. Relative abundance of known functionally relevant microorganisms for nitrogen and 
phosphorus removal during the experiment. 

 

Figure 4. Relative abundance of known functionally relevant microorganisms for nitrogen and
phosphorus removal during the experiment.

The novel shortcut nitrification-denitrification (SND) and partial nitrification/anammox
(PN/A) processes in the mainstream system have been receiving much attention due to
the great savings in oxygen/energy consumption and carbon source utilisation [62,63].
However, studies on these processes have mainly focused on their application in wastew-
ater treatment with low concentrations of carbon sources and/or low COD/N ratios,
and very limited research has been conducted on the potential application of shortcut
nitrification-based processes in high-strength wastewater treatment [64–66]. The simul-
taneous accumulation of NO2

−-N and NH4
+-N in the A/O-SBR treating high-strength

wastewater (Figure 2c), as observed in this study, provides a preliminary basis for the de-
velopment of a mainstream SND- or PN/A-based process, which requires further in-depth
and systematic studies.

4.2. Impact of Carbon Sources on Phosphorus Removal Activity

Previous studies have shown that acetate (49%–71% of total VFA) and propionate
(24%–33% of total VFA) are the two most representative VFAs in domestic wastewater [67].
The propionate uptake rate of typical GAOs (i.e., Competibacter), which compete with typical
PAOs (i.e., Accumulibacter) for carbon sources, was much lower than that of acetate [68],
which explains the better EBPR activity in the reactor when propionate was used as the
carbon source [69–71]. The differential PAO activities observed in the batch tests with
different carbon sources (Table 2) suggest that the sludge may contain a large number
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of Competibacter GAOs that primarily utilise acetate (as shown in Figure 4), which to
some extent affects the uptake of acetate by Accumulibacter PAOs and thus reduces the
corresponding EBPR activity. However, compared to those in other studies [29,72,73], the
P/HAc and P/HPr ratios in this study were consistently high, indicating that the presence
of GAOs did not have a significant negative effect on the EBPR activity. In addition, the
complex substrate (casein acid hydrolysate) in the influent was also available to other PAOs
(e.g., Tetrasphaera) [74,75] and thus contributed to the overall EBPR activity.

4.3. Impact of Organic Load on Phosphorus-Removal-Related Microorganisms

The treatment performance of activated sludge systems depends heavily on the coordi-
nation among different functionally relevant microorganisms, and the microbial community
composition and diversity are closely related to the system stability [76,77]. For EBPR-
related functional microorganisms, the relative abundance of Competibacter GAOs with a
higher acetate uptake rate increased significantly from 1.1% in Phase I to 24.3% in Phase III,
whereas the relative abundance of Defluviicoccus GAOs with higher propionate uptake rate
increased from 0.6% to 4.6%. Under low substrate concentration conditions, the presence
of GAOs inhibited the phosphorus uptake activity of PAOs due to their competition for
VFAs [78], while the GAO abundance would increase with the elevated substrate concen-
tration in the influent [51,52]. Therefore, most EBPR studies have focused on how to limit
the proliferation of GAOs through various pathways. The suitable COD/P ratio for EBPR
activity was found to be 15:1–25:1 in low-strength wastewater [23,51], while higher COD/P
ratios (e.g., 50:1) will be detrimental to the growth of PAOs but beneficial to GAOs [12].
However in this study, when the influent organic load was elevated to a sufficiently high
level with a COD/P ratio of 50:1, EBPR activity was not affected (see Section 3.2.2) despite
a significant increase in the GAO abundance. It suggests that there may not be significant
substrate competition between PAOs and GAOs in the systems treating high-strength
wastewater with various types of carbon sources [52,79]. Notably, the relative abundance
of Accumulibacter PAOs decreased from 2.1% in Phase I to 0.6% in Phase III, whereas the
relative abundance of Tetrasphaera PAOs increased from 2.0% to 3.3%. Tetrasphaera is a PAO
that can utilise complex carbon sources (e.g., protein), whereas Competibacter is generally
considered to utilise simple carbon sources only [79]. The different carbon source utilisation
capabilities of the two groups would be beneficial in mitigating the PAO–GAO competition,
and therefore high EBPR activity and phosphorus removal performance could be achieved
in Phase III.

Another study proved that some species of Competibacter are denitrifying GAOs
(DGAOs) [80]. The VFAs produced by Tetrasphaera when fermenting complex carbon
sources would potentially provide additional substrate for Competibacter. The consequently
enriched Competibacter DGAOs would promote nitrogen removal performance. Therefore,
the coexistence of Tetrasphaera PAOs and Competibacter DGAOs, as observed in this study,
may not only avoid competition for carbon sources but also synergistically promote nitro-
gen and phosphorus removal, as observed in a previous study [81]. Further investigation
is warranted to determine how this synergy can be applied in a continuous flow reactor
treating high-strength wastewater and coupled with the shortcut nitrification-based process
discussed in Section 4.1.

5. Conclusions

(1) The anaerobic/aerobic SBR could effectively treat pre-fermented high-strength
wastewater at different levels. The removal efficiencies of COD, TN, and PO4

3−-P were
94.5%, 64.5%, and 97.5%, respectively.

(2) The NOB activity and population were severely suppressed under high-strength
influent loading conditions, achieving partial nitrification with simultaneous accumulation
of NH4

+-N and NO2
−-N in the effluent. Increased organic load promoted the anaero-

bic PRA and aerobic PUA. EBPR activity was higher when propionate was used as the
carbon source.
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(3) Sufficient organic load in the high-strength wastewater obviously mitigated the
competition for substrate among PAOs and GAOs. The coexistence of Tetrasphaera and
Competibacter DGAOs observed in the system would enable a synergistic effect on the
simultaneous nitrogen and phosphorus removal.
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https://www.mdpi.com/article/10.3390/ijerph19095653/s1, Figure S1: Schematic diagram of the
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concentrations in the effluent during the experiment; Figure S3: The concentrations of (a) proteins,
(b) humic acids, and (c) polysaccharides in the soluble microbial products (SMP), loosely bound
(LB-EPS) and tightly bound extracellular polymeric substances (TB-EPS) of the activated sludge
during the experiment; Figure S4: Profiles of PO4

3−-P and COD during P release and uptake batch
tests fed with acetate in (a) Phase I, (b) Phase II, and (c) Phase III; Figure S5: Profiles of PO4

3−-P
and COD during P release and uptake batch tests fed with propionate in (a) Phase I, (b) Phase II,
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elements in the synthetic pre-fermented high-strength wastewater; Table S3: Component and con-
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Table S4: Average specific ammonia oxidation rate (AOR) and specific nitrite oxidation rate (NOR) in
typical cycles of SBR reactor during the experiment.
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