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Abstract

One of the aims of high-throughput gene/protein profiling experiments is the identification

of biological processes altered between two or more conditions. Pathway analysis is an

umbrella term for a multitude of computational approaches used for this purpose. While in

the beginning pathway analysis relied on enrichment-based approaches, a newer genera-

tion of methods is now available, exploiting pathway topologies in addition to gene/protein

expression levels. However, little effort has been invested in their critical assessment with

respect to their performance in different experimental setups. Here, we assessed the perfor-

mance of seven representative methods identifying differentially expressed pathways

between two groups of interest based on gene expression data with prior knowledge of path-

way topologies: SPIA, PRS, CePa, TAPPA, TopologyGSA, Clipper and DEGraph. We per-

formed a number of controlled experiments that investigated their sensitivity to sample and

pathway size, threshold-based filtering of differentially expressed genes, ability to detect tar-

get pathways, ability to exploit the topological information and the sensitivity to different pre-

processing strategies. We also verified type I error rates and described the influence of over-

expression of single genes, gene sets and topological motifs of various sizes on the detec-

tion of a pathway as differentially expressed. The results of our experiments demonstrate a

wide variability of the tested methods. We provide a set of recommendations for an informed

selection of the proper method for a given data analysis task.

Introduction

High-throughput gene expression technologies (microarrays or next-generation sequencing)

allow the estimation of the expression levels of thousands of genes in a single experiment.

Often these experiments are just a first step in a broader biological investigation and serve gen-

erating hypotheses based on identified differentially expressed genes and pathways. A biologi-

cal pathway is a collection of genes or molecules that act synergistically by means of chemical

reactions, molecule modifications or signal transduction to execute a biological function.

Thus, from a computational analysis perspective, a pathway is a set of genes (proteins) and

their associated pairwise interactions. Pathway analysis aims to discover those pathways whose
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activation/inactivation is associated with a group of interest. This type of analysis requires inte-

grating information about gene ontology and pathway structure.

Generally, there are two main approaches: one that relies only on the expression levels of

the constituent genes (of the pathway)—and is epitomised by the GSEA family of methods—

and a second one that additionally exploits the pathway topology. The second group of meth-

ods represents a more recent evolution of pathway analysis methods that try to improve both

specificity and sensitivity of the findings.

The application of topology-based methods is facilitated by the existence of public databases

which gather information about gene/protein interactions, such as the well-known Kyoto

Encyclopedia of Genes and Genomes (KEGG) database which provides access to hundreds of

pathways representing state-of-the-art knowledge about molecular interactions. Prior to per-

forming a topology-based pathway analysis, the pathway of interest must be pre-processed

into a simple interaction network.

Each new topology-based pathway method usually compares its performance to an enrich-

ment-based method (most often GSEA [1]) on a set of benchmark datasets. Sometimes, the

underlying mathematical model is verified by simulations. The reviews that include topology-

based pathway analysis methods either examine their algorithms from mathematical perspec-

tive [2–4] or their performance on both real and simulated data [5, 6]. The latter approach

revealed that topology-based methods outperform enrichment-based methods in accuracy and

sensitivity only for non-overlapping pathways [5] and that the FCS variant of CePa [7] method

exhibits the best cross-study concordance [6]. However, there are multiple limitations to the

existing comparisons which hamper the identification of actionable information about the

most appropriate method for a given analytical problem. First, the comparison of a topology-

based method with enrichment-based methods is oversimplistic as it does not investigate the

topological aspects of pathway deregulation (position and biological importance of a gene in a

pathway, deregulation of topological motifs etc.). Second, the existing reviews do not examine

the effect of pathway topology pre-processing strategy or whether the inclusion of the pathway

topology information in the analysis has actually any effect at all. Third, multiple other effects,

such as sample size (crucial aspect in biological experiments) or the effect of a deregulation of

a single or very few genes, are not explored either.

Given the proliferation of methods (see [8] for a review of 22 methods) and with limited

insight into their performance, data analysts are confronted with the difficult task of selecting

the best-suited method for analysing the data at hand. We propose a systematic investigation

of several prominent recently proposed methods and provide a simple guideline for decision-

making.

In this work, we consider a number of parameters that influence the quality of the results

obtained by topology-based pathway analysis. These parameters are varied in controlled exper-

iments in order to study the sensitivity of the methods and—when possible—to quantify it.

These experiments are performed on both artificial and real-world data, thus resulting in a

comprehensive characterisation of the behaviour of each considered method. From the begin-

ning, we did not expect to identify a single method that would fit all possible applications,

thus, in our investigations, we tried to capture most of the standard scenarios. The methods

under investigation were selected based on the following criteria: (i) the aim is to detect differ-

entially expressed pathways (DEPs) between two groups of interest based on gene expression

data; (ii) the pathway topology is a priori known and is modeled as simple interaction network

or graph G = (V, E), where V is a set of vertices/nodes represented by products of genes and E
is a set of edges representing interactions between them; (iii) the pathways are modeled and

analyzed individually (without cross-pathway interactions). The typical input data for these

methods consists of a gene expression data matrix (log2-transformed normalised expression
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profiles from a high-throughput technology after standard pre-processing), group member-

ship labels (as a vector) and the list of pathway topologies. Based on these criteria we selected

the following methods: SPIA [9], PRS [10], CePa [7], TAPPA [11], TopologyGSA [12], Clipper

[13] and DEGraph [14]. Each method assigns a test-statistic and a p-value to each pathway

(possibly other parameters like the number of differentially expressed genes, pathway size etc.)

and pathways with extreme test-statistic or low p-value are called‘differentially expressed’.

Materials and methods

We performed eight distinct experiments to provide comprehensive insight into the topology-

based pathway analysis methods (Fig 1, Table 1, S1 Text). In these experiments, we examined

the influence of the number of parameters on the results obtained by topology-based pathway

analysis methods. A detailed description of the experiments can be found in the S1 Text.

The first group of parameters are data set-centric (sample size, pathway size, number of

DEGs in the dataset and thresholds used to detect DEGs; Experiment 1) and helped us to

describe the performance of a method under various conditions and to guide the selection of

Fig 1. Overview of the eight controlled experiments (Ex. 1-8) performed.

https://doi.org/10.1371/journal.pone.0191154.g001
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the optimal method for a specific dataset. The methods’ ability to control type I error was stud-

ied in Experiment 2. The influence of overexpression of particular gene(s) (Experiments 3-5),

the influence of discarding the topological information (Experiment 7) and the effect of the

pre-processing of pathway topologies (Experiment 8) tested the topology-based nature of the

methods. If no effects were observed, the method should not be considered as topology-based

pathway analysis method. The increased sensitivity and specificity expected from the incorpo-

ration of the topological information were examined by the identification of biologically rele-

vant pathways (Experiments 6-8) since no proper method for identifying truly differentially

expressed pathways is known.

Following the categorization of GSEA methods, the topology-based pathway analysis meth-

ods can be grouped based on three main criteria: (i) the null hypothesis (competitive and self-
contained); (ii) the (non)identification of differentially expressed genes (DEGs) prior pathway

analysis (over-representation analysis (ORA) and functional class scoring (FCS)) and (iii) the

number of variables in the model (univariable and multivariable) (see S1 Text for the details).

We will use these categories in methods evaluation.

For each experiment we applied selected methods (Table 2) on gene expression datasets,

looking for differentially expressed pathway(s) between two groups of interest from a collec-

tion of pathways. In ORA methods we detected differentially expressed genes with moderated

t-test [15] and significance level α = 0.05, unless stated otherwise. For all methods estimating

significance threshold using permutations, the number of permutations was set to 1000. The

pathways were considered differentially expressed if their p-value was below the significance

threshold α = 0.05. All the analyses were performed in R statistical framework [16] and Bio-

conductor [17]. There are multiple freely-available implementations of the selected topology-

based pathway analysis methods: (i) original implementation (all but TAPPA), (ii) graphite

Table 1. Overview of the experiments performed to evaluate methods’ performance.

Experiment Parameter(s) under study Varied parameter(s)� Datasets Pathway

topologies

Evaluation

criterion †

1 Effect of sample size, pathway size and significance

thresholds for DEGs

n1, n2, |V|, θ Simulated,

Real

graphite Prop. DEPs

2 Type I error rate y Simulated graphite Prop. DEPs,

histogram

3 Single gene overexpression Xij, i 2 I� V, |I| = 1, j 2 1, 2, 3, . . ., n such

that yj = 1

Simulated graphite Prop. DEPs

4 Multiple genes overexpression Xij, i 2 I� V, |I| 2 2, 3, 4, 5, j 2 1, 2, 3, . . .,

n such that yj = 1

Simulated graphite Prop. DEPs

5 Topological motif overexpression Xij, i 2 I� V, |I| 2 3, 4, 5, j 2 1, 2, 3, . . ., n
such that yj = 1

Simulated graphite Prop. DEPs

6 Target pathway detection Xij, i 2 I� V, |I| = 1, j 2 1, 2, 3, . . ., n such

that yj = 1

Simulated,

Real

graphite Median p-value,

rank

7 Inclusion of topological information PT Simulated,

Real

graphite ‡ Prop. DEPs

8 Pre-processing of pathway topologies PT Simulated,

Real

ToPASeq Prop. DEPs

�X is a normalized log2-transformed gene expression data matrix of expression profiles of p genes (rows) and n1 + n2 samples (columns), n1 and n2 denote number of

samples in two compared groups, y is a vector of 1’s and 2’s assigning samples into the groups, PT is a set of pathway topologies (graphs) G = (V, E), where V is a set of

vertices/nodes represented by products of genes and E is a set of edges representing interactions between them, θ is the threshold used for detection of DEGs;
†Prop. DEPs denotes Proportion of Differentially Expressed Pathways;
‡without interactions

https://doi.org/10.1371/journal.pone.0191154.t001
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package (SPIA, TopologyGSA, Clipper, DEGraph) [18] and (iii) ToPASeq package [19] (all

methods). ToPASeq package is our previous work in which we either de novo implemented or

optimised existing implementations of a number of existing topology-based pathway analysis

methods. For the sake of access uniformity for method application and access to method-spe-

cific pre-processing, we chose to use the ToPASeq package in our work.

The following section describes gene expression data matrices and pathway topologies used

in each experiment. We do not define the basic terms from graph theory, since they are

explained in many textbooks, for example [22]. Statistical details of individual experiments

and key properties of the compared methods are described in the S1 Text.

Real datasets

In our study we used real gene expression microarray datasets from three public collections:

Gene Overexpression Data Collection [23, 24], Breast Cancer Data Collection [25] and Disease

Control Data Collection [26, 27]. These collections were obtained and pre-processed as

described in the S1 Text. For each real dataset, we can anticipate one or several pathways that

are expected to be differentially expressed or their identification is of particular interest due to

experimental design. However, those pathways cannot be called ‘true positive’. The Gene

Overexpression Data Collection was selected because it allows us to study the effect of one per-

turbed gene. The Breast Cancer Data Collection represents a collection of datasets related to

the same biological problem, and we focus on the reproducibility of the results. In the Disease-

Control Data Collection, datasets cover various biological problems (cancer, metabolic, neuro-

degenerative diseases etc.) in a unified experimental design in which expression profiles of

patients are compared to healthy controls. Additionally, we can identify a single pathway (tar-
get pathway) which is directly related to the particular disease and hence very likely to be dif-

ferentially expressed. These datasets were used in Experiments 1, 6, 7 and 8.

Simulated datasets

Since the proper statistical distribution of the pathway expression data is unknown, we decided

to use a real dataset (a dataset from Breast Cancer Data Collection denoted as VDX) as a base

for the generation of simulated data. It contains 344 expression profiles of breast tumours

obtained on an Affymetrix Human Genome U133A Array platform with 22 283 probesets

Table 2. Overview of the selected methods.

SPIA PRS CePa TAPPA TopologyGSA Clipper DEGraph

Reference [9, 20, 21] [10] [7] [11] [12] [13] [14]

Null hypothesis C C C � SC SC SC

ORA/FCS ORA ORA ORA FCS FCS FCS FCS

Type U U U U M M M

Pathway model DG DG UG, DG UG DAG DAG UG

Node statistic Log FC Log FC Log FC - - - -

Topology usage Perturbation factor Downstream DEG Centrality PCI GGM, IPS GGM, IPS GL, FT

Pathway statistic Impact factor Sum Sum � T2 T2 T2

Statistical significance Gene perm. Gene perm. Gene perm. � Sample perm. Sample perm. F-distribution

SC = self-contained, C = competitive, ORA = over-representation analysis, FCS = functional class scoring, M = multivariable, U = univariable, DAG = directed acyclic

graph, UG = undirected graph, DG = directed graph, PCI = Pathway Connectivity Index, GGM = Graphical Gaussian Models, IPS = Iterative Proportional Scaling,

GL = Graph Laplacian, � = various statistics are possible, for detection of differentially expressed pathways between two conditions authors suggests Mann-Whitney test.

https://doi.org/10.1371/journal.pone.0191154.t002
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corresponding to 13 091 unique Entrez IDs. We used estrogen receptor status as the main

parameter dividing samples into two clinical groups. The simulated datasets were used in all

experiments. The datasets for particular experiments were generated as shown in S1 Text.

Pathways and their topologies

We used human pathways from the KEGG database as the source of pathway topologies. For

our comparison we used graphite’s pre-processed pathways as a default set of pathway

topologies for the following reasons: (i) they are claimed to be superior to original imple-

mentation [28]; (ii) they allowed us to compare only the methods’ algorithms regardless of

the pre-processing strategy; (iii) the details of the pre-processing strategy are rarely described

in the corresponding publication; (iv) the graphite implementation is readily available

and widely used. In ToPASeq one can choose either graphite pre-processed pathways

(+GPT) or pathway pre-processing as in the original implementation (MSPT) (if available)

and hence evaluate the effect of different pre-processing strategies. The +GPT topologies

were used in all experiments, and the MSPT was used in Experiment 8 only. In Experiment 7

we also used non-topological variants of the compared methods corresponding to pathway

topologies without interactions (-GPT). To reduce computational complexity, we filtered

out pathways with more than 150 genes and with less than two genes with available expres-

sion data.

Results

Experiment 1: Effect of sample size, pathway size, platform density and

number of differentially expressed genes

Fig 2 shows the influence of sample size on the proportion of DEPs in both real and simulated

data. In the simulated datasets (Fig 2A), an increase in sample size results in an increase in the

proportion of DEPs for TAPPA and all the multivariable methods (TopologyGSA, Clipper,

DEGraph). For each of these methods, we observed a breakpoint (sample size) beyond which

the proportion of DEPs stabilised. For TopologyGSA and Clipper, this breakpoint was at 68

samples, with 94.9% and 93.4% DEPs, respectively. For the complete dataset (344 samples),

DEGraph and TAPPA identified 94.2% and 68.7% of pathways to be differentially expressed,

respectively. On the other hand, SPIA, PRS and CePa reported a rather stable proportion of

differentially expressed pathways across all sample sizes (medians between 4.7% and 14.2%).

Interestingly, there is a trend of decreasing number of DEPs with increasing sample size in

CePa.

Similar observations were made in the analysis of real datasets from the three real data col-

lections. Across all data collections, the highest proportion of DEPs was observed in Clipper

(median: 92.5%), followed by TopologyGSA (median: 73.7%), DEGraph (median: 48.0%) and

TAPPA (median: 36.1%). CePa, SPIA and PRS reported the smallest median proportion of

DEPs (27.9%, 16.5% and 13.9%, respectively). Results for individual disease collections are

shown in (Fig 2B). Although the Gene Overexpression Data Collection comprised of relatively

small datasets (Table 3), multivariable methods still reported a large proportion of DEPs, simi-

lar to the case of generally larger datasets in the Breast Cancer Data Collection. The smallest

dataset (with overexpressed c-Src) had the lowest proportion of DEPs in all methods.

The Breast Cancer Data Collection contained datasets of various microarray platform sizes

(probes representing between 2 780 and 20 389 unique Entrez IDs). For competitive methods

(SPIA, PRS and CePa), the statistical significance of the differential expression of a pathway

depends on the set of genes measured in the experiment. A smaller number of genes outside a
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Fig 2. The effect of sample size. (A) The selected dataset from Breast Cancer Data Collection (denoted as VDX) was reduced to 20 random subsets representing 5%,

10%, . . . 95% of its original sample size (while preserving the proportion of samples in the clinical groups) leading to sample sizes from 16 to 326. Differentially expressed

pathways between estrogen receptor positive and negative samples were detected. The lines show the median proportion of significant pathways (p< 0.05) over 20

subsets for each sample size. (B-D) Graphs indicating the percentage of differentially expressed pathways (DEPs) in the respective data collections. k denotes the number

of datasets. See Table 3 for the summary of sample sizes. The datasets from the Breast Cancer Data Collection were divided by platfrom densities into: low-density

platforms (2780-5486 EntrezIDs), medium-density platforms (9041-13091 EntezIDs) and high-density platforms (17779-20389 EntrezIDs).

https://doi.org/10.1371/journal.pone.0191154.g002
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pathway leads to reduced variability of the random sets of DEGs which results in lower proba-

bility of extreme pathway-statistic and, as consequence, higher p-value. Hence, we split the col-

lection into low-, medium- and high- density platform datasets, based on the number of

unique EntrezIDs their probes mapped to (from 2780 to 5486 EntrezIDs for low-density, 9041

to 13091 EntrezIDs for medium-density and 17779 to 20389 EntrezIDs for high-density plat-

forms) (Fig 2C and S1 Fig). Indeed, all the competitive methods reported fewer DEPs in the

datasets from low-density platforms. On the other hand, one self-contained method—

DEGraph also reported fewer DEPs. In DEGraph, each pathway is divided into connected

components which contain only the measured genes. In case of low-density microarray plat-

form, this results in the small size of the individual components which tend to have higher p–

values.

The Disease-Control Data Collection contained small to medium size datasets in which

patients with various diagnoses were compared to healthy controls. The proportion of DEPs

varied greatly between datasets from this collection (Fig 2B). However, when we divided the

datasets into cancer-related and non-cancer-related, all the methods reported more DEPs for

the cancer-related datasets (Fig 2D). We hypothesised that this was a consequence of the larger

number of differentially expressed genes (it is known that tumours have highly deregulated

gene expression in comparison to healthy tissue). The proportion of DEPs as a function of the

number of DEGs is shown in S2 Fig. Indeed, the percentage of DEPs depended on the number

of DEGs in multivariable methods and TAPPA, but not in SPIA, CePa and PRS. Since in ORA

methods (SPIA, PRS, CePa), fixed thresholds were used to identify DEGs, we assessed the

effect of three thresholds (p< 0.05, p< 0.01 and p< 0.001) on the proportion of DEPs (S4

Fig). For stricter thresholds (p< 0.01 and p< 0.001), in all methods, the number of DEPs

increased with increasing sample size, as one would expect based on statistical properties of

hypothesis testing. For p< 0.05, however, this trend holds only until a breakpoint in sample

size, which is method specific: between 85-120 samples in CePa, between 222-257 samples in

PRS and between 257-291 samples in SPIA. After the breakpoint, the number of DEPs rapidly

decreases for p< 0.05.

To study the effect of pathway size, we divided pathways into small (<35 nodes) and large

(�35 nodes) (following [29]). S3 Fig shows the median p-value of pathways within each group

as a function of dataset sample size for individual methods. Large pathways achieved lower

median p-values in comparison to small pathways, independently on the dataset sample size,

except PRS. In PRS, we observed the opposite effect starting at 137 (40%) samples. In multivar-

iable methods, median p-values decreased very rapidly with increasing sample size, dropping

below 0.01 at 33 (10%) and 51 (15%) for Clipper and TopologyGSA.

Experiment 2: Type I error rate

For all methods, the observed type I error rate was close to the expected 5% threshold, except

for CePa (12.8%), see Table 4 and S5 Fig.

Table 3. Overview of the data collections.

Data Collection Number of datasets Sample size Number of gene IDs

Median Min Max Median Min Max

Gene Overexpression 3 17 17 20 23 521 23 521 23 521

Breast Cancer 27 129 49 856 13 091 2 780 20 389

Disease-Control 36 21 8 153 20 535 12 438 20 535

https://doi.org/10.1371/journal.pone.0191154.t003
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Experiment 3: Effect of mean expression, difference in expression and

topology of a single gene

In this experiment, we studied the effect of group-specific increase of expression of single

genes in three selected pathways (increments of 0.1 to 2 in log2 fold change with step size 0.1

in 200 simulated datasets). The influence of a gene was quantified as a proportion of identified

differentially expressed pathways across all simulations and increments. For simplicity, we

divided the gene influence into five categories: very low influence (0%-20% DEPs), low influ-

ence (20%-40% DEPs), medium influence (40%-60% DEPs), high influence (60%-80% DEPs)

and very high influence (80%-100% DEPs) (S6 Fig), respectively.

An induced change in a single gene had a much stronger influence on the results of multi-

variable methods than on the results of univariable methods. The median proportion of DEPs

(combined across all induced differences) for multivariable methods was 82.5% for Topolo-

gyGSA, 82.3% for Clipper and 42.7% for DEGraph, compared to 29.3% for PRS, 25.9% for

CePa, 15.4% for TAPPA and 12.8% for SPIA.

We further examined the effect of relative change of gene expression between the groups,

the effect of gene mean expression and the effect of gene topology in a pathway (S6 Fig).

Fig 3 shows the proportion of DEPs across all genes in the Non-small cell lung cancer path-

way as a function of the induced change, for each method separately. TopologyGSA and Clip-

per were very sensitive to the increase in the induced log2 fold-change of a gene. The higher

the fold change, the higher the proportion of DEPs. In fact, both methods marked 96% of the

simulations as DEPs at log2FC = 1. In all the other methods, the effect of the increased induced

change was less dramatic, although monotone, except CePa that reached its plateau at the

induced change of 0.6 (28.3%).

The influence of gene topology was in agreement with methods’ algorithms (S6 Fig). In

TopologyGSA and Clipper, all the tested genes had a high or very high influence on the detec-

tion of DEPs, regardless of their topological properties (Table 5). The proportion of DEPs was

instead correlated with mean expression of the individual genes. The mean expression had no

significant effect on the proportion of DEPs in other methods. In DEGraph, the genes with the

highest influence were those without incoming interactions (root nodes). In SPIA, the most

influential genes had none or only neutral (e.g. binding) incoming interactions and many

downstream genes. In PRS, most of the genes had low influence on the pathway detection,

except for RIG-I-like receptor signalling pathway, which contained four genes with medium

influence. One of these genes was a common subunit of two multiprotein complexes. We

observed a correlation of the gene influence with the number of gene interactions in PRS and

TAPPA (Table 5). Although the number of interactions is one of the centralities (see S1 Text,

Table 4. Type I error rates: For each method the number (N) and the proportion (%) of rejected hypotheses out of

1000 tested is shown.

Method Rejected hypotheses N(%)

SPIA 30 (3.0%)

PRS 38 (3.8%)

Clipper 45 (4.5%)

TopologyGSA 47 (4.7%)

DEGraph 55 (5.5%)

TAPPA 57 (5.7%)

CePa 128 (12.8%)

https://doi.org/10.1371/journal.pone.0191154.t004
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section Materials and methods) used in CePa, the most influential genes were the nodes with

the highest betweenness centrality.

Experiment 4: Effect of overexpression of multiple genes

Here, we assessed the combined impact of overexpression of multiple genes (gene sets),

regardless of the possible topological motif. In all methods, the number of DEGs in a pathway

positively correlated with the number of DEPs. Within the same gene set size, the influence of

a gene set increased with the cumulative effect of individual genes as measured in Experiment

3 (S7 Fig).

Fig 3. Proportion of differentially expressed pathways (DEPs) combined across all genes as function of the induced change. The proportion of

differentially expressed pathways combined across all tested genes in the Non-small cell lung cancer pathway at different induced expression

changes. Each line represents one method. Results were very similar for TopologyGSA and Clipper, and the respective lines are overlapping. Solid

lines refer to pathway topology from graphite package (+GPT), dashed to pathway topology from graphite package without interactions (-GPT)

and dotted to method-specific pathway topology (MSPT).

https://doi.org/10.1371/journal.pone.0191154.g003
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Experiment 5: Effect of overexpression of topological motifs

In this experiment, we overexpressed three, four and five genes, respectively, representing one

of the 18 topological motifs present in the Non-small cell lung cancer pathway (see S1 Text).

Similarly to the previous experiments, the proportion of DEPs increased with the induced

change and with the number of genes in the motif.

For the multivariable methods, we did not observe the influence of the motif on the propor-

tion of DEPs when compared to the gene set effect from Experiment 4 (Fig 4). In all univari-

able methods, except SPIA, motif overexpression resulted in the increased proportion of DEPs

in comparison to gene set overexpression. This difference in overexpression was independent

of the number of overexpressed genes for TAPPA but diminished with the increasing number

of overexpressed genes in PRS and CePa. In contrast, motif overexpression resulted in the

decreased proportion of DEPs in SPIA in comparison to gene set overexpression.

The effect of the motifs in the context of previous findings and the motifs’ properties (size,

topology, the sum of effects of individual genes) is shown as a heatmap with information from

Experiment 3 overlaid (S8 Fig, Fig 5). The heatmap shows clustered proportions of DEPs at

different increments of log2 fold-changes (rows) in all tested topological motifs (columns).

The proportion of DEPs increased with the induced change, and this effect separated the ana-

lysed motifs into multiple clusters. We categorised the motifs based on their overall effect (the

proportion of DEPs from all the simulations and induced changes). We were also further inter-

ested to see how the clusters correlated with the size (3, 4 or 5 genes) and the topology of the

motif. For all methods but TopologyGSA and Clipper, we observed a clustering of the motifs

according to motif size (S8 Fig). Since Experiment 4 showed that effect of multiple genes is

directly dependent on the sum of effects of individual genes, we plotted the effect of individual

genes (as measured in Experiment 3) involved in the individual topological motifs in the panel

below the heatmap. Here, the gene-specific influence is indicated by color (white means gene

was not present in the motif). Clearly, in all methods, the impact of topological motif positively

correlated with the impact of individual genes of the motif (S8 Fig).

Experiment 6: Identification of target pathways

In this experiment, for each real dataset we identified a pathway that was related to the disease

or a biological problem and, in an ideal situation, this pathway should be detected as differen-

tially expressed with very low p-value in comparison to other pathways.

During the analysis, we encountered multiple method-specific problems that resulted in the

impossibility to analyse all available pathways. First, TopologyGSA requires the dataset to have

Table 5. Spearman’s correlations coefficients between the gene influence and the number of interactions stratified by interaction type.

Pathway

Bacterial invastion of epithelial cells Non-small cell lung cancer RIG-I-like receptor signaling pathway

Interaction type Interaction type Interaction type

Method Incoming Outgoing Both Incoming Outgoing Both Incoming Outgoing Both

TopologyGSA 0.434 0.149 0.368 0.102 -0.123 -0.005 0.413 -0.063 0.239

Clipper 0.437 0.153 0.374 0.103 -0.120 -0.002 0.414 -0.059 0.244

DEGraph -0.399 0.145 -0.264 -0.608 -0.158 -0.446 -0.585 -0.113 -0.477

SPIA -0.153 0.278 0.096 -0.127 0.070 0.023 0.041 0.314 0.208

PRS 0.220 0.861 0.779 0.355 0.826 0.779 0.610 0.713 0.917

CePa 0.325 0.394 0.648 0.373 0.207 0.493 0.563 0.782 0.916

TAPPA 0.161 0.273 0.403 0.543 0.536 0.747 0.653 0.584 0.873

https://doi.org/10.1371/journal.pone.0191154.t005
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Fig 4. Comparison of the effect of expression change in a single gene, multiple genes and topological motifs.

Combined influence of single gene, multiple genes and topological motifs on the proportion of differentially expressed

pathways (DEPs) at varying induced expression changes is displayed. Sets of multiple genes and topological motifs are

shown in the dashed and solid lines of the same color, respectively.

https://doi.org/10.1371/journal.pone.0191154.g004
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more samples than the number of genes in the largest clique of the pathway and this condition

was met only by several pathways. For large datasets, such as SUPERTAM_HGU133A from

the Breast Cancer Data Collection (N = 856 expression profiles), we were unable to run Topo-

logyGSA on 80GB RAM machine. DEGraph encountered similar but less frequent problems

due to the singularity of pooled covariance matrices.

S9 and S10 Figs, and Tables 4 and 5 in S1 Text show results of the target pathway p-values

and ranks in the Disease-Control Data Collection and Breast Cancer Data Collection. The

results from the Gene Overexpression Data Collection can be found in S11 Fig. Since target

pathways are unique for each dataset from this collection, they were not suitable for trend

estimation.

Overall, multivariable methods assigned lower p–values and ranks to the target pathways

than univariable methods. In the Disease-Control Data Collection, the target pathway was

tested by TopologyGSA in only ten out of 36 datasets, of which nine times it was reported as

differentially expressed. In contrast, the ranks from the DEGraph method were the highest in

multivariable methods and the second largest in all methods. PRS and CePa reported consis-

tently low median p-values (0.031 and 0.034, respectively) and low median ranks (19.5 and

25.5, respectively). Amongst univariable methods, the highest median p-value and rank of tar-

get pathways were observed in SPIA and TAPPA. In the Breast Cancer Data Collection data-

sets, the aim was to detect differentially expressed pathways between the estrogen receptor

positive (ER+) and estrogen receptor negative (ER-) group. The set of target pathways there-

fore comprised of four pathways with estrogen receptor genes: Endocrine and other factor-reg-

ulated calcium reabsorption, Estrogen signalling pathway, Prolactin signalling pathway and

Thyroid hormone signalling pathway. Since estrogen receptor plays different roles in these

pathways and therefore harbours different topological ‘importance’, results for individual

pathways from topology-based pathway analysis may vary. For all these pathways, all multivar-

iable methods (TopologyGSA, Clipper, DEGraph) again reported very low p-values and ranks.

From the univariable methods, TAPPA returned the lowest median p-values (except Estrogen

Fig 5. Effect of topological motifs in SPIA. Proportions of differentially expressed pathways (DEPs) for individual motifs (columns) at variable induced log2 fold-

changes (rows) are displayed as a heatmap. Color bars on the top show influence of the motif, its size and topology (see S1 Text for details). Note, that colors used for

motif topology are unique only among motifs of the same size. The bottom panel shows the influence of the genes in a representation of a topological motif as discovered

in Experiment 3.

https://doi.org/10.1371/journal.pone.0191154.g005

A critical comparison of topology-based pathway analysis methods

PLOS ONE | https://doi.org/10.1371/journal.pone.0191154 January 25, 2018 13 / 24

https://doi.org/10.1371/journal.pone.0191154.g005
https://doi.org/10.1371/journal.pone.0191154


signalling pathway) and the highest ranks (except Endocrine and other factor-regulated cal-

cium reabsorption pathway). The lowest median p-values and ranks of all target pathways

amongst remaining univariable methods were observed in CePa. SPIA reports lower p-values

and ranks than PRS only for the Endocrine and other factor-regulated calcium reabsorption

pathway. Estrogen receptor is one of the root nodes and has a medium influence on this path-

way in SPIA (47% DEPs) and only low influence in PRS (22% DEPs). On the other hand, Pro-

lactin signalling pathway is the least significant by SPIA, and the estrogen receptor is a leaf

node in this pathway with very low influence (3.5% DEPs). In the original experiments of the

Gene Overexpression Data Collection, an overexpression of three genes (c-Myc, H-Ras, c-Src)

was induced experimentally via adenoviral infection. The fold change of the perturbed genes

ranged from 2.38 to 5.29 (S1 Text). 15, 40 and 14 target pathways were identified, for c-Myc,

H-Ras and c-Src, respectively. The results of the analysis of this collection are summarized

in Table 6. TopologyGSA was able to analyse only the Bladder cancer pathway, which was

detected as differentially expressed. Clipper identified all target pathways as differentially

expressed. Results of DEGraph, PRS, CePa and TAPPA, varied greatly between the three sets

of pathways, ranging from 21% to 80% target pathways as differentially expressed. All univari-

able methods reported a higher percentage of target pathways as differentially expressed in the

dataset with deregulated c-Myc in comparison to other datasets. When individual target path-

ways were assessed separately, DEGraph and univariate methods agreed on differential expres-

sion of the most biologically relevant pathways (S11 Fig).

Experiment 7: Effect of the exclusion of topological information

To assess the effect of exclusion of topological information, we studied the effect of individ-

ual genes on the proportion of differentially expressed pathways in the simulated datasets.

We hypothesised that, in the non-topological setting, individual genes influence the final

result equally. We applied the non-topological variants of the methods on both simulated

(from Experiment 3) and real (from Experiment 6) datasets and Non-small cell lung cancer

pathway was used as a model pathway for simulated data. Then we quantified the effect of

genes in simulated datasets and computed the corresponding p–values and ranks of target

pathways. The results were compared to the results obtained in Experiment 3 and the Experi-

ment 6 (Fig 3).

The effect of the individual genes in simulated data is shown in S12 Fig. In TopologyGSA

and Clipper, no difference between the topological and non-topological variant of the method

was found. In all other methods, we did observe, in agreement with our hypothesis, the equal

redistribution of the effect of the genes across the pathway in the non-topological variant. For

DEGraph and PRS, the non-topological variant resulted in an overall increase of the individual

gene effects, while in CePa and SPIA, the individual effects of the genes diminished. In the Dis-

ease-Control Data Collection (S9 Fig), we observed increased p-values and ranks for target

Table 6. Proportion of significant target pathways in the Gene Overexpression Data Collection.

Overexpressed gene in the target pathway Method

SPIA PRS CePa TAPPA TopologyGSA Clipper DEGraph

c-Myc 7/15

(46.7%)

8/15

(53.3%)

12/15

(80%)

10/15

(66.7%)

0/0 14/14

(100%)

3/9

(33.3%)

H-Ras 14/40

(35.0%)

6/40

(15.0%)

16/40

(40.0%)

9/40

(22.5%)

1/1

(100%)

39/39

(100%)

18/23

(78.3%)

c-Src 5/14

(35.7%)

3/14

(21.4%)

3/14

(21.4%)

3/14

(21.4%)

0/0 14/14

(100%)

3/6

(50%)

https://doi.org/10.1371/journal.pone.0191154.t006
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pathways in PRS and CePa and decreased p-values and ranks for DEGraph and SPIA. No effect

of exclusion of topological information was found in TAPPA, TopologyGSA and Clipper.

Note that the median p-value of the target pathway was below 0.2 in all methods regardless

pathway topologies. In PRS, the median p-value raised from 0.031 in the topological variant to

0.055 in the non-topological variant. In the Breast Cancer Data Collection (S10 Fig), we

observed the pathway-specific effect of the exclusion of pathway topologies in SPIA where p-

values increased only in the pathway in which estrogen receptor is one of the root nodes

(Endocrine and other factor-regulated calcium reabsorption) and decreased in other pathways.

In all estrogen receptor containing pathways, we observed increased p-values in CePa and

decreased in PRS. No difference was observed in multivariable methods.

Experiment 8: Effect of pre-processing of pathway topologies

To assess the effect of pre-processing of pathway topologies (methods’ original pre-processing

MSPT vs graphite pre-processing +GPT), we first compared effects of the individual genes

in model pathways (Fig 6). The main differences between +GPT and MSPT were in the pre-

processing of multisubunit protein complexes, gene families and interactions related to non-

gene product nodes (e.g. small chemical compounds). These differences had a direct effect on

individual genes by changing their properties or an indirect effect on the genes by altering the

distribution of a particular property in a pathway. No difference in the effects of individual

genes was observed in Clipper. In the DEGraph’s original pathway topology (MSPT) there

were no interactions between subunits of multiprotein complexes. These interactions were

introduced in graphite (S1 Text, [28]) pathway topologies (+GPT). In consequence, the

genes whose products were subunits of multiprotein complexes had a different effect in MSPT

compared to +GPT (see Fig 6, RIG-I-like receptor signalling pathway and Non-small cell lung

cancer pathway). There were no protein complexes in the Bacterial invasion of epithelial cells

pathway, so the gene effects were the same. In PRS, we observed a clear difference in the effect

of individual genes only in the Non-small cell lung cancer, where a group of six genes had

approximately two times higher effect in MSPT compared to +GPT. In this pathway, two

nodes involved each of these genes—either as a member of two different gene families or a sin-

gle node and a member of a gene family. In MSPT of PRS, gene families were processed into

combined nodes (S1 Text), hence possibly increasing the effect of genes present in multiple

nodes. We observed complex differences in gene effects between +GPT and MSPT for CePa.

In CePa’s MSPT, gene families and protein complexes are pre-processed into combined nodes,

thus decreasing their degree centralities (if they interacted with other families or complexes)

or decreasing the total number of nodes in a pathway resulting in the reduced influence of

family members or subunits of protein complexes. At the same time, both the influence and

the degree centrality of the genes interacting with these families was reduced. However, other

genes gained importance as consequence of the different distribution of centralities or pathway

topology. SPIA-specific pre-processing of pathway topologies did not propagate perturbations

of individual genes through as many interaction types (including compound-mediated inter-

actions) as in graphite. Therefore, in MSPT, the number of genes with high influence was

reduced.

In both the Breast Cancer Data Collection and Disease Control Data Collection, with the

agreement to the individual gene overexpression experiment, we observed increased p-values in

CePa; slightly increased ranks in DEGraph and decreased p–values in PRS and no difference in

p-values in Clipper (S10 Fig). For SPIA, we observed no difference in both p–values and ranks

in agreement with the individual gene overexpression experiment only in the Breast Cancer

Data Collection and decreased p–values and ranks in the Disease Control Data Collection.
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Fig 6. Effect of pre-processing of pathway topologies on simulated data—Overexpression of single gene. Each point represents a single gene. Only genes common

for pathway topologies from graphite package (+GPT) and method-specific pathway topologies (MSPT) are displayed. Points on diagonal represent genes with the

same influence in +GPT and MSPT. Points below (above) diagonal represent genes with higher (lower) influence in MSPT.

https://doi.org/10.1371/journal.pone.0191154.g006
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Discussion

We presented a series of eight controlled experiments designed to gauge the suitability of a

number of topological pathway analysis methods to various analytical scenarios. Since topo-

logical information can be used in different ways and for different goals, in our study, we

decided to focus on methods that (i) aim to detect differentially expressed pathways between

two groups of interest, (ii) use a priori known pathway structures (topologies) and (iii) model

each pathway separately. We described the performance of the selected methods on both simu-

lated and real datasets.

We studied the methods’ behavior from several perspectives: the sample size, pathway size,

platform density, effect size, number of differentially expressed genes, gene topologies, plat-

form density, gene sets and their topological motifs, the inclusion of topology information in

the method’s algorithm and different strategies for pre-processing of pathway topologies. The

influence of the tested variables was assessed by comparison of the proportion of differentially

expressed pathways, their p-values and ranks.

Table 7 shows the overall evaluation of the compared methods and summarises the most

important observations from our experiments.

In all the compared methods, large pathways (> 35 genes) were assigned lower p-values

than small pathways. Also, as expected, when a pathway contained more differentially

expressed genes it was more often detected as differentially expressed. The number of

Table 7. Overall assessment of the compared methods.

Parameter SPIA PRS CePa TAPPA TopologyGSA Clipper DEGraph

Median proportion of DEPs in real datasets 16.5% 13.9% 27.9% 36.1% 73.7% 92.5% 48.0%

Effect on proportion of DEPs due to

Increasing sample size ! ! slowly& % rapidly% rapidly% %

Increasing pathway size " " # " " " " "

DEGs threshold p< 0.001 " " " NA NA NA NA

DEGs threshold p< 0.01 " " " NA NA NA NA

DEGs threshold p< 0.05 " # " # " # NA NA NA NA

Single DEG [% DEPs] 12.8% 29.3% 25.9% 15.4% 82.5% 82.3% 42.7%

Characteristics of the most influential genes

Crutial node property root node connected DEGs betweenness degree mean expression mean expression root node

Incoming interactions !! - !! !! - - !!

Outgoing interactions !! !! !! !! - - -

Mean expression - - - - !! !! -

Impacts of individual genes as observed on simulated data

+GPT [% DEPs] 4.2 - 82.6 23.4 - 44.0 16.9 - 86.4 3.5 - 71.2 51.2 - 94.5 51.2 - 94.5 4.0 - 92.6

-GPT vs. +GPT # " # l " " "

MSPT vs. +GPT # " l NA NA ! "

Preferred scenario for hypotheses generation

Number of DEGs Many Many Many Any Few Few Few

Sample size Any Any Any Any Small Small Small

Pathway of interest Any Any Any Any Small Small Small

Experiment scale Genome Genome Genome Any Any Any Any

! - stable,& - decrease,% - increase, " - higher, more, # - lower, less, "# - trend changes at certain point, NA - not applicable, root node - node without incoming

interactions, !! - important, - - not important, l - both effects observed

https://doi.org/10.1371/journal.pone.0191154.t007
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differentially expressed genes usually surpassed their topological influence. None of the meth-

ods showed a preference for a particular differentially expressed topological motif.

The most striking difference was found between multivariable and univariable methods.

Multivariable methods (TopologyGSA, Clipper and DEGraph) overall reported larger propor-

tions of differentially expressed pathways in comparison to univariable methods (SPIA, PRS,

CePa and TAPPA). Although all tested multivariable methods are derived from Hotelling’s T2

statistic, they differed significantly in their performance. TopologyGSA and Clipper assigned

very low p-values and ranks to all the target pathways. However, this seems to be the result of

overall low specificity, since they reported many other pathways (if not all) as differentially

expressed. These methods were also sensitive to the increase in the sample and pathway size,

the number of differentially expressed genes and the mean gene expression. The higher the

increase, the lower the p–values and the larger the proportion of differentially expressed path-

ways, independent of the platform density. These findings indicate that in the scenario where

(i) many differentially expressed genes are expected (e.g. cancer-related experiments); (ii) the

dataset contains more than a few tens of samples (> 68 samples in our experiments); (iii) a

pathway contains a gene with at least a subtle random change in the expression, the pathway

will be identified as significant. This behavior agrees with the self-contained nature of the meth-

ods, which is known to have higher sensitivity. However, many differentially expressed path-

ways identified by these methods might be false positives and therefore not useful for selection

of biological hypotheses for further research. Interestingly, in TopologyGSA and Clipper, the

exclusion of the topological information made no difference in the results. Therefore, despite

well-established mathematical background (Graphical Gaussian models), these methods do

not appear to fit the definition of topology-based methods for identification of differentially

expressed pathways.

In contrast, DEGraph detected fewer differentially expressed pathways compared to Topo-

logyGSA and Clipper, suggesting higher specificity. At the same time, in DEGraph the influ-

ence of individual genes was related to the pathway topology. DEGraph was less sensitive to

sample size, pathway size or the number of differentially expressed genes. The performance of

the non-topological variant of DEGraph was similar to the TopologyGSA and Clipper with or

without topology. Different pathway pre-processing strategies had only limited influence on

both DEGraph and Clipper (not assessed for TopologyGSA).

Univariable ORA methods SPIA, PRS and CePa, assigned low p-values only to some of the

target pathways depending on the topological properties of differentially expressed genes in

the pathway. This behaviour suggests higher specificity and stronger dependency on the topo-

logical information. These methods were less sensitive to the effects of sample size, pathway

size, number of DEGs or thresholds used to identify differentially expressed genes. However,

with increasing number of differentially expressed genes in a pathway, the effect of gene topol-

ogy became less important. Due to the competitive nature of SPIA, PRS and CePa, these meth-

ods reported less differentially expressed pathways on low-density platforms. The univariable

methods also exhibited higher sensitivity to the pre-processing of pathway topologies. Hence

they can be considered true representatives of the topology-based pathway methods. Pre-pro-

cessing of protein complexes, gene families and interactions involving non-gene products

(metabolites such as PIP3) was the key factor in methods’ performance and influence of the

individual genes. Although, our results suggest that, for PRS and CePa, the method-specific

pathway pre-processing seams to be more appropriate and should be preferred to graph-
ite’s approach, further research is needed to identify an optimal pre-processing strategy for

the compared methods. For instance, gene family members may be incomplete, and thus the

observed increased influence of a gene which is a member of two different gene families may

not be biologically sustained. Also, members of a gene family are seen as interchangeable

A critical comparison of topology-based pathway analysis methods

PLOS ONE | https://doi.org/10.1371/journal.pone.0191154 January 25, 2018 18 / 24

https://doi.org/10.1371/journal.pone.0191154


regarding signal transduction, while each subunit of a protein complex is necessary for com-

plex assembly and biological function. Therefore the unified approach, as used in method-spe-

cific pathway pre-processing, may not be optimal. The TAPPA [11] method stands out with its

unique algorithm—a gene expression profile is being transformed into a pathway-level expres-

sion profile. Pathway-expression profiles were then analysed with traditional statistical meth-

ods (e.g. Mann-Whitney test for identification of differentially expressed pathways between

two groups). As a consequence, this method is suitable also for applications with a complex

experimental design. The sensitivity and specificity of TAPPA seemed to be well balanced.

Amongst univariable methods, it was the most sensitive to sample size and usually identified

most of the differentially expressed pathways. However, the proportion of differentially

expressed pathways was never as high as in TopologyGSA or Clipper. At the same time, the

method performance depended on the topological properties of the deregulated genes.

Guidelines for method selection

The increased sensitivity of multivariable methods (mainly TopologyGSA and Clipper) makes

them ideal candidates for pathway analysis of experiments, where subtle changes in expression

or a small number of differentially expressed genes between two conditions are expected—e.g.

as in the case of tumor samples which contain a significant proportion of non-tumoral tissue

(such as supporting stroma), thus confounding and diminishing measured signal of the gene

expression. Since multivariable methods do not use lists of differentially expressed genes based

on pre-defined thresholds but work with a complete list of the tested genes, they can be applied

even in cases where none or very few genes are significant after statistical testing (for instance

due to small sample size). The results of these methods, however, must be taken with caution

and the significance of a pathway of interest must be interpreted in the context of all the results

to ensure it is not just a consequence of overall low specificity of the method. To control for

low specificity of the result, we recommend using DEGraph.

Univariable methods are not sensitive to the sample size or the number of differentially

expressed genes in the datasets. Their ability to identify particular pathway as differentially

expressed is highly dependent on the topological properties of the deregulated genes, the inclu-

sion of the topological information and the pre-processing of the pathway topologies. Univari-

able methods are recommended in most applications and especially when the biological

hypothesis aims at a pathway where genes of certain topological properties (biological func-

tion) are expected to be affected (see below and Fig 7B). However, since SPIA, PRS and CePa

are ORA methods, they require at least some differentially expressed genes, and their applica-

bility on datasets with very subtle changes in gene expression can be limited (in contrast to

multivariable methods). On the other hand, if the differentially expressed genes occupy in the

pathway the “correct” topological positions, the topological properties of the methods help to

categorize this pathway as significant despite a small overall number of differentially expressed

genes in the pathway. TAPPA, in contrast, being the FCS method, is a good choice for applica-

tions with a limited number of differentially expressed genes overall. Since in TAPPA the most

important genes are those with many interactions, pre-processing of gene families and protein

complexes must be carefully considered as their expansion into individual members or sub-

units may unintentionally increase their effect.

Based on our results we propose some guidelines for optimal method selection based either

on (i) design of the experiment (comparison type, input data type, the platform density, sample

size, expected number of differentially expressed genes)—Fig 7A; or (ii) selected (preferred)

deregulation type—Fig 7B. Note, that the presence of many differentially expressed genes in a

pathway surpasses topological effect of individual genes. Fig 7C shows an example of the most
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Fig 7. Guide to selection of topology-based pathway analysis method. (A) Recommended methods for specific scenarios based on experimental design, available

input data, platform density, sample size and expected number of differentially expressed genes. (B) The most important deregulated genes in particular methods.

Individual methods prefer different genes as the most important for pathway deregulation, and these preferences represent another factor for optimal method

selection. The genes are defined mostly by their topological properties (e.g. number of interactions). Examples of genes must be interpreted within specific pathway

(p53 signalling pathway for p53, Non-small cell lung cancer for others), and specific pathway pre-processing (graphite). (C) An illustrative example of the most

important genes in the Non-small cell lung cancer pathway from KEGG database as available in the graphitepackage.

https://doi.org/10.1371/journal.pone.0191154.g007
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influential genes in the Non-small cell lung cancer pathway based on graphite pre-process-

ing of topologies (+GPT). In SPIA, CePa, TAPPA and DEGraph, we colored all the genes with

the highest influence as defined in Experiment 3 for each method. Details of the topological as

well as biological properties of the most influential genes are described in the S1 Text. In Topo-

logyGSA and Clipper, the most influential genes have the highest overall expression (usually

related to the cell cycle regulation [30]). In DEGraph and SPIA, the genes without incoming

interactions have the largest impact. These genes are often represented by ligands, receptors,

or transcription factors (E2F family dissociating from pRB). On the other hand, genes interact-

ing with many other genes (e.g. secondary effectors, such as PIK3CA or KRAS) have the high-

est influence in PRS, CePa and TAPPA.

The observed differences between topological methods should be considered when the

results of pathway analyses are to be compared across experiments in which different methods

were used to detect differentially expressed pathways. Currently, SPIA is the most often cited

method (282 citations from Web of Science Core Collection as of 14 February 2017). The

other compared methods were mainly used in methodological publications, in which the gen-

eral concepts were compared to the new method and only very rarely in applications.

Conclusion

We performed one of the largest studies of topology-based pathway analysis methods pub-

lished to date. In this study, we compared seven methods that aim to detect differentially

expressed pathways from expression data employing a priori known pathway topologies in

their algorithm. The methods were ranked according to their sensitivity to sample and path-

way size, ability to detect target pathways, the proportion of differentially expressed pathways,

benefit from incorporating topological information and sensitivity to different pathway pre-

processing strategies. We also verified type I error rates and described the influence of overex-

pression and topological properties of a single gene or gene sets on the detection of a pathway

as differentially expressed by the selected methods.

We demonstrated that multivariable self-contained methods are very sensitive to the

changes in gene expression within a pathway leading to the uninformative identification of

over 90% pathways as differentially expressed. As a consequence, a significant result can be eas-

ily obtained for a particular pathway. On the other hand, univariable methods (mostly compet-

itive) were less sensitive to subtle changes in gene expression but exhibited stable performance

over a wide range of scenarios and benefited from the inclusion of topological information.

Finally, we proposed guidelines for method selection based on a number of variables con-

nected to experimental design as well as biological hypotheses. Overall, we recommend any of

the multivariable approaches to be used mainly for applications with small sample size and

subtle changes in gene expression, whereas univariable methods should be preferred for

genome-scale applications with large changes in gene expression. The pre-processing strategy

for pathway topologies must be carefully considered for univariable methods, and further

research is required to identify an optimal pre-processing strategy.

Supporting information

S1 Text. Details of the selected methods and used real data collection.

(PDF)

S1 Fig. Effect of the number of Entrez IDs. Proportion of DEPs depending on the number of

Entrez IDs for datasets from Breast Cancer Data Collection. Each point represents one dataset.

(PDF)
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S2 Fig. Effect of the number of DEGs. Proportion of DEPs depending on the number of

DEGs for datasets from Disease-Control Data Collection. Each point represents one dataset.

(PDF)

S3 Fig. Effect of the pathway size.

(PDF)

S4 Fig. Effect of the thresholds used for DEG detection.

(PDF)

S5 Fig. Distribution of p-values from Experiment 2.

(PDF)

S6 Fig. Summarization of the Experiment 3. Dependence of the proportion of DEPs on the

difference in expression induced between groups, the gene mean expression and its postion. In

SPIA, neutral interactions were drawn in grey.

(PDF)

S7 Fig. Effect of expression change in randomly selected multiple genes on the proportion of

differentially expressed pathways. Sets of 2, 3, 4 and 5 genes were randomly selected from

Non-small cell lung cancer pathway. Each circle represents one of those sets. Expression of

genes in the set was modified with increments of 0.1 to 2 with step size 0.1 in 200 simulated data-

sets. Border color indicates number of genes in the set. Vertical axis shows combined influence

of the genes (proportion of differentially expressed pathways across all increments and datasets).

Horizontal axis corresponds to sum of the influence of individual genes. Pie color (from grey to

blue and red) represents the influence of a single gene (see Experiment 3 for details).

(PDF)

S8 Fig. Summarization of the Experiment 5. Heatmaps of the proportion of DEPs for all

compared methods.

(ZIP)

S9 Fig. P-values and ranks of the target pathways—Disease-Control Data Collection

details. Boxplots of p-values and rank of the estrogen receptor-containing pathways in Dis-

ease-Control Data Collection. Ranks are based on p-values. Pathway with the lowest p-value

has rank 1. All pathways with the same p-value recieved same rank. The rank was incremented

by one between subsequent p-values.

(PDF)

S10 Fig. P-values and ranks of the target pathways—Breast Cancer Data Collection details.

Boxplots of p-values and rank of the estrogen receptor-containing pathways in Breast Cancer

Data Collection. Ranks are based on p-values. Pathway with the lowest p-value has rank 1. All

pathways with the same p-value recieved same rank. The rank was incremented by one

between subsequent p-values.

(PDF)

S11 Fig. P-values of the target pathways—Gene Overexpression Data Collection details.

Heatmaps of p-values of the overexpressed oncogene-containing pathways in Gene Overex-

pression Data Collection. Pathways are ordered by the number of methods in which they are

differentially expressed (p< 0.05).

(PDF)

S12 Fig. Effect of individual genes in non-topological variants of the methods. (A) Propor-

tion of differentially expressed pathways for different genes and the difference in expression
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induced between groups. (B) Dependence of the proportion of differentially expressed path-

ways on the difference in the gene position. In the non-topological variants of the methods

(-GPT) we observed reduced proportion of differentially expressed pathways and loss of its

dependence on gene postion in all methods except TopologySGA an Clipper.

(PDF)
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