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Abstract: Background: Opportunistic prostate cancer (PCa) screening is a controversial topic.
Magnetic resonance imaging (MRI) has proven to detect prostate cancer with a high sensitivity
and specificity, leading to the idea to perform an image-guided prostate cancer (PCa) screening;
Methods: We evaluated a prospectively enrolled cohort of 49 healthy men participating in a dedicated
image-guided PCa screening trial employing a biparametric MRI (bpMRI) protocol consisting of
T2-weighted (T2w) and diffusion weighted imaging (DWI) sequences. Datasets were analyzed both by
human readers and by a fully automated artificial intelligence (AI) software using deep learning (DL).
Agreement between the algorithm and the reports—serving as the ground truth—was compared on a
per-case and per-lesion level using metrics of diagnostic accuracy and k statistics; Results: The DL
method yielded an 87% sensitivity (33/38) and 50% specificity (5/10) with a k of 0.42. 12/28 (43%)
Prostate Imaging Reporting and Data System (PI-RADS) 3, 16/22 (73%) PI-RADS 4, and 5/5 (100%)
PI-RADS 5 lesions were detected compared to the ground truth. Targeted biopsy revealed PCa in six
participants, all correctly diagnosed by both the human readers and AI. Conclusions: The results
of our study show that in our AI-assisted, image-guided prostate cancer screening the software
solution was able to identify highly suspicious lesions and has the potential to effectively guide the
targeted-biopsy workflow.

Keywords: prostatic neoplasms; early detection of cancer; magnetic resonance imaging; deep learning

1. Introduction

Opportunistic prostate cancer (PCa) screening is a controversial topic in the urological literature.
Large prostate-specific antigen (PSA)-based screening programs in Europe (European Randomised
Study of Screening for Prostate Cancer (ERSPC)) and the U.S. (Prostate Cancer Screening in the
Randomized Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO)) were able
demonstrate that early diagnosis and early treatment can help to reduce prostate-cancer-specific
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mortality [1,2]. However, screening programs are associated with relevant rates of overdiagnosis of
27–56% [3] and overtreatment of clinically insignificant cancers [4]. Furthermore, between 15% and
44% of biopsy-proven cancer occurs in patients with PSA levels below 4 ng/mL, which represents
the accepted cutoff value to perform prostate biopsy [5]. Omitting biopsy due to low PSA level can
ultimately lead to missing clinically relevant cancer.

For more than a decade, magnetic resonance imaging (MRI) has been established as a powerful
tool for prostate cancer diagnosis. The PROMIS study has demonstrated that prostate MRI is a suitable
triage tool for biopsy-naïve men, reducing the number of unnecessary biopsies by a quarter while
improving the detection of clinically significant cancer [6]. The PRECISION study randomized patients
to either systematic biopsies or MRI with no biopsy if MRI was negative, and targeted biopsy if MRI
was positive. Targeted biopsies guided by MRI detected significantly more clinically significant cancers
while reducing the number of clinically insignificant cancers [7]. Because of these findings, MRI for
prostate cancer diagnosis has been integrated into established guidelines [8].

In order to overcome the outlined weaknesses of PSA-based prostate cancer screening programs,
the incorporation of the diagnostic strengths of imaging techniques into an image-guided prostate cancer
screening, analogous to breast cancer screening, has already been discussed in the literature [9,10].

The dilemma of an increased workload due to such an image-guided, opportunistic prostate
cancer screening may be addressed with technological advances: (i) shortening scan protocols and (ii)
automatization of the image acquisition and reporting processes. There is growing evidence [11–13] that
biparametric MRI (bpMRI) protocols consisting of T2w and diffusion weighted imaging yield a similar
diagnostic performance compared to the conventional multiparametric MRI (mpMRI) approach while
reducing scan times in selected patients to as low as 5 min is theoretically possible [14]. Embedding
these standardized imaging sequences in automated acquisition and processing environments
represents an essential step to make prostate MR imaging a best clinical practice tool for either
screening or diagnostic procedures. Concerning the automatization of reporting, artificial intelligence
(AI)-supported workflows have been shown to achieve similar performances in detecting suspicious
lesions in prostate MRI examinations compared to human readers [15] and to provide valuable
assistance if used as a concurrent reader [16].

This work focuses on specific cohort: a true MRI screening population consisting of healthy,
biopsy-naïve men enrolled in a prospective trial. The purpose of this trial was to evaluate the efforts
and resources required to implement a solely bpMRI-based prostate cancer screening program and to
employ a state-of-the-art deep learning for detection and classification purposes in order to test the
capabilities of this technology for automatization.

Therefore, we investigate whether a deep-learning-based algorithm in combination with
biparametric imaging can be used for detection and classification of Prostate Imaging Reporting
and Data System (PI-RADS) lesions in asymptomatic men enrolled in this prospective, MRI-based
prostate cancer screening trial. We hypothesize that a deep-learning-based algorithm would provide
a high-accuracy solution, potentially allowing to integrate this technology in an image-guided
screening workflow.

2. Materials and Methods

2.1. Screening Program and Prospective Trial Information

The study was approved by the local ethics committees (ethics committee Northwest and Central
Switzerland; EKNZ 2018-01965, approved: 26 November 2018) and all patients gave informed consent.
Participants were prospectively enrolled in a national registered trial (NCT03749993). The primary
purpose of this trial is to evaluate the efforts and resources required to implement a solely bpMRI-based
prostate cancer screening program. The presented results are part of a post hoc analysis. Participants
were included when the following inclusion criteria were met: biopsy-naïve men >45 years with no
history of or suspicion for prostate cancer and a life expectancy >10 years. Exclusion criteria comprised
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the following: acute urinary tract infection, clinical suspicion of severe voiding disorders and/or
chronic inflammation of the prostate, and contraindications for MRI examinations. For the present
proof-of-concept investigation, participants were eligible for inclusion during a 6-month observation
period ranging from December 2018 to June 2019. Within this time period, 49 participants were
recruited and enrolled into the study population.

2.2. Artificial Intelligence Software Solution

A deep-learning-based, not commercially available, prototype AI solution (ProstateAI, Siemens
Healthineers, Erlangen, Germany, termed in the following text: algorithm) was used for fully automatic
prostate lesion detection and classification. A detailed visualization of the network architecture can
be found in Figure 1. As illustrated in Figure 2, ProstateAI contains two parts: a preprocessing
pipeline and a deep-learning-based lesion detection and classification component. The preprocessing
pipeline directly takes the acquired bpMRI sequences and generates the required well-formatted and
transformed data volumes. In particular, the preprocessing pipeline first parses and filters the acquired
Digital Imaging and Communications in Medicine (DICOM) files loading only the T2w and diffusion
weighted imaging (DWI) series. From DWI series, a logarithmic extrapolation method [17] is adopted
to compute a new DWI volume with b-value of 2000 s/mm2. This step can simultaneously eliminate the
b-value variances among the datasets and also improve lesion detection performance [18]. Moreover,
apparent diffusion coefficient (ADC) maps are computed. Next, whole-organ gland segmentation is
performed on T2w volumes using a learning-based method as presented in [19]. After segmentation,
a rigid registration [20] is conducted to align all other sequences (DWI-2000 and ADC) to T2WI.

ProstateAI then automatically detects clinically relevant lesions and classifies each detected lesion
according to PI-RADS categories. This is achieved by a sequence of coupled deep neural networks that
were trained separately. First, a fully convolutional localization net (Candidate Localization Network in
Figure 1) is able to generate a semantic lesion candidate heatmap (see examples in D1 and D2 of Figure 3);
then, a sub-volume-based, false-positive-reduction net (Candidate Qualification Network in Figure 1)
further improves the detection accuracy by removing false positives; last, another sub-volume-based
PI-RADS scoring net (Classification Network in Figure 1) stages the level of malignancy for each
detection by assigning them to the corresponding PI-RADS categories. The detailed description of the
architectures of Candidate Localization and Candidate Qualification Networks can be found in [21].

For this study, the algorithm was trained using 2170 bpMRI prostate examinations consisting of
944 lesion-free cases and 1226 positive cases; all of which had lesion-based PI-RADS information and
pixel-based annotations of the lesion boundaries. The anonymized datasets were acquired and labeled
at eight different institutions; each institutions’ review board (IRB) provided either exemptions from
further review—due to the anonymized nature of the data sets—or full-board IRB approval after review.
Using a multicenter approach with standardized reporting, data inhomogeneity for efficient AI training
was ensured. Furthermore, we obtained the central processing unit (CPU)-based computational time
per case, including the preprocessing and deep-learning component. The CPU-based approach has
been chosen in order to most accurately simulate a clinical environment. In this study, we used an
Intel® Core™ i7-8850H CPU@2.60 GHz.
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Figure 1. Network architecture of the autonomous Prostate Imaging Reporting and Data System (PI-
RADS) lesion detection and classification software solution consisting of a sequence of coupled deep 
neural networks: a localization network (CanLoc), a candidate qualification network (CanQual)—
named false-positive-reduction (FPR) network in Figure 2—and the classification network. 

Figure 1. Network architecture of the autonomous Prostate Imaging Reporting and Data System
(PI-RADS) lesion detection and classification software solution consisting of a sequence of coupled deep
neural networks: a localization network (CanLoc), a candidate qualification network (CanQual)—named
false-positive-reduction (FPR) network in Figure 2—and the classification network.



Diagnostics 2020, 10, 951 5 of 14Diagnostics 2020, 10, 951 5 of 14 

 

 
Figure 2. Image acquisition workflow using the automated day optimizing throughput (DOT) engine 
and biparametric imaging (in orange) as well as the deep learning architecture with the preprocessing 
pipeline (in blue) and the deep-learning-based lesion detection and classification component (in 
green). DOT = day optimizing throughput, FOV = field of view, 3D = three-dimensional, TA = time of 
acquisition, DICOM = Digital Imaging and Communications in Medicine, ADC = apparent diffusion 
coefficient, FP = false positive, PI-RADS = Prostate Imaging Reporting and Data System. 

Figure 2. Image acquisition workflow using the automated day optimizing throughput (DOT) engine
and biparametric imaging (in orange) as well as the deep learning architecture with the preprocessing
pipeline (in blue) and the deep-learning-based lesion detection and classification component (in green).
DOT = day optimizing throughput, FOV = field of view, 3D = three-dimensional, TA = time of
acquisition, DICOM = Digital Imaging and Communications in Medicine, ADC = apparent diffusion
coefficient, FP = false positive, PI-RADS = Prostate Imaging Reporting and Data System.
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Figure 3. Figure showing the visualization of the automated detection of PI-RADS 5 lesions with 
positive biopsy results in the peripheral zone in two exemplary cases. The left-hand-side image 
visualizes the spatial distribution of lesions in our study cohort with a positive biopsy result. Case 1 
(A1–D1) demonstrates a PI-RADS 5 lesion in the left mid-gland PZpl/PZa with a maximum diameter 
of 35.0 mm and a mean ADC value of 758 s/mm2 for 62-year-old men, using the deep learning 
algorithm. Biopsy results revealed a Gleason 4 + 3 = 7 pattern. Case 2 (A2–D2) demonstrates a PI-
RADS 5 lesion in the right apical PZpl with a maximum diameter of 15.5 mm and a mean ADC value 
of 961 s/mm2 for 51-year-old men, using the deep learning algorithm. Biopsy results revealed a 
Gleason 3 + 3 = 6 pattern. (A) are showing the T2-weighted images, (B) the ADC maps, (C) the high-
b value images (b value of 800), and (D) the T2-weighted sequences with overlaying heatmaps 
displaying the probability of a lesion with red being highly probable and green being less probable 
as predicted from the algorithm. Both lesions were scored as PI-RADS 5 lesions. 

2.3. MRI Examination 

All MRI examinations were performed on a single 3T scanner (MAGNETOM Prisma, Siemens 
Healthineers, Erlangen, Germany, see Table 1 for a detailed study sequence description). The 
sequences were embedded into a day optimizing throughput (DOT) workflow, which automatically 
centers the prostate in the field of view, adapts the size of the field of view, and performs a three-
dimensional correction of spatial axes. After coil placement, the DOT workflow does not require 
further adaptations by technicians while at any time allowing interruptions of the scan process. The 
total scan time per patient from the start of the first sequence to the end of the last sequence was ~9 
min and 30 s, while the scan time for the workflow-relevant series (T2w turbo-spin echo (TSE) tra 
and DWI) was ~6 min and 20 s. A detailed workflow visualization is outlined in Figure 2.  

Figure 3. Figure showing the visualization of the automated detection of PI-RADS 5 lesions with
positive biopsy results in the peripheral zone in two exemplary cases. The left-hand-side image
visualizes the spatial distribution of lesions in our study cohort with a positive biopsy result. Case 1
(A1–D1) demonstrates a PI-RADS 5 lesion in the left mid-gland PZpl/PZa with a maximum diameter of
35.0 mm and a mean ADC value of 758 s/mm2 for 62-year-old men, using the deep learning algorithm.
Biopsy results revealed a Gleason 4 + 3 = 7 pattern. Case 2 (A2–D2) demonstrates a PI-RADS 5 lesion
in the right apical PZpl with a maximum diameter of 15.5 mm and a mean ADC value of 961 s/mm2 for
51-year-old men, using the deep learning algorithm. Biopsy results revealed a Gleason 3 + 3 = 6 pattern.
(A) are showing the T2-weighted images, (B) the ADC maps, (C) the high-b value images (b value of
800), and (D) the T2-weighted sequences with overlaying heatmaps displaying the probability of a
lesion with red being highly probable and green being less probable as predicted from the algorithm.
Both lesions were scored as PI-RADS 5 lesions.

2.3. MRI Examination

All MRI examinations were performed on a single 3T scanner (MAGNETOM Prisma, Siemens
Healthineers, Erlangen, Germany, see Table 1 for a detailed study sequence description). The sequences
were embedded into a day optimizing throughput (DOT) workflow, which automatically centers the
prostate in the field of view, adapts the size of the field of view, and performs a three-dimensional
correction of spatial axes. After coil placement, the DOT workflow does not require further adaptations
by technicians while at any time allowing interruptions of the scan process. The total scan time per
patient from the start of the first sequence to the end of the last sequence was ~9 min and 30 s, while the
scan time for the workflow-relevant series (T2w turbo-spin echo (TSE) tra and DWI) was ~6 min and
20 s. A detailed workflow visualization is outlined in Figure 2.
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All participants underwent a routine clinical reading process in an academic institution with
two board-certified radiologists with at least 5 years of experience in prostate imaging reading the
cases; at our institution, all prostate imaging studies are read by two independent radiologists as
consensus read and the resultant report is highly structured—as suggested by the PI-RADS v2.0
guidelines [22]—including: number of suspicious lesions separated for the peripheral zone (PZ) and
transition zone (TZ) with exact locations using series and image number descriptions and reference
to the PI-RADS sector map, and PI-RADS score/lesion based on the PI-RADS assessment per zone;
especially, the index lesion with the highest PI-RADS score specifically was highlighted per zone.

Table 1. Biparametric examination protocol of the prostate.

Parameter Localizer T2w tra (TSE) DWI T1w tra (TSE)

TA (in min) 0.13 3:37 2:43 2:45
TR (in ms) 3.51 7000 3500 700
TE (in ms) 1.53 104 66 12
ST (in mm) 6 3 3 2

Voxel size (in mm) 1.6 × 1.6 × 6.0 0.3 × 0.3 × 3.0 0.9 × 0.9 × 3.0 0.4 × 0.4 × 3.0
AF / 3 / 3

b-values (in s/mm2) / / 0, 800 /

Note that T2-weighted coronal and sagittal orientations were re-sliced from the transversal orientation.
TA = acquisition time, TR = repetition time, TE = echo time, ST = slice thickness, AF = acceleration factor,
TSE = turbo-spin echo, DWI = diffusion-weighted imaging.

2.4. Histopatholgical Analysis

The biopsies were prepared in the following standardized manner by a uropathologist with more
than 3 years subspecialty experience: After fixation in 10% buffered formalin, the biopsy probes were
embedded in paraffin wax and sectioned and stained with hematoxylin and eosin according to the
pathology committee of the European Randomized Study of Screening for Prostate Cancer. Every
biopsy with pathologic prostate parenchyma was attributed a specific Gleason grade on the basis of
the underlying glandular pattern. Biopsies with benign prostatic tissue were graded as “normal” if
anatomically adjacent cores were tumor free and, additionally, did not show any significant signs
of inflammation.

2.5. Comparison between Ground Truth and AI

For all lesions with a PI-RADS lesion score of ≥3, targeted transrectal MRI-TRUS Fusion biopsies
were performed by a board-certified urologist. Systematic biopsies were not performed. A minimum
of 3 cores per lesion were obtained (median number of cores: 3, range: 2–5).

In order to evaluate the agreement between the ground truth extracted from the written reports
with histopathologic correlation and the automatically computed output of the AI software solution,
every dataset was manually annotated by a radiology fellow (D.J.W) using a proprietary software
(Annotator Tool, V03_B41). The written report contained detailed information about the reported
lesions, especially mentioning series numbers on either T2w or ADC with accompanying image
numbers and were further visualized as lesions in a PI-RADS sector map. Each lesion was then
carefully identified on the DWI series and corresponding ADC maps, using the T2-weighted images as
morphological reference. All confirmed lesions were subsequently segmented three-dimensionally on
the T2-weighted images in a slice-by-slice fashion and labeled according to the PI-RADS assessment
score from 3 to 5 on the ADC map for PZ lesions. In order to evaluate the agreement between the
radiologists who identified the lesions in the academic reading process and the annotating fellow,
all annotations were reviewed by a senior radiologist (D.T.B.).

The criterion for a true positive labeling of a lesion, defined by the PI-RADS assessment score,
was that the detection point of the deep learning software was localized less than 10 mm away from
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the centroid of the lesion in the annotation in 3D, analogously to (9). False negatives (FN) were defined
as lesions annotated by the human reader but not detected by the AI algorithm.

2.6. Statistical Testing

Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) on
a case level were calculated based on the algorithm’s results compared to the histologically proven
ground truth defined by the radiologists’ reports. A case was classified as positive when a PI-RADS
lesions ≥3 was mentioned in the imaging report. Accordingly, a case was evaluated as negative when
only PI-RADS 1 and 2 scores were reported. On a per-lesion and index level, sensitivities were calculated.
Kappa statistics were applied to compare the agreement concerning the PI-RADS classification. The k
coefficients were assessed as follows: 0.01–020, slight agreement; 0.21–0.40, fair agreement; 0.41–0.60,
moderate agreement; 0.61–0.80, substantial agreement; and 0.81–0.99, almost perfect agreement.
p values <0.05 were considered significant. All statistical evaluations were performed using Python
(version 3.5, Python Software Foundation; https://www.python.org/).

3. Results

From the 49 participants, 1 participant was excluded due to distortion artifacts from the gas-filled
rectum and consecutive failure of the image registration between the T2w sequence and ADC map.
In total, 48 screening cases were included in the analysis (see Figure 4). The mean age ± standard
deviation was 58 ± 8 years (range: 45–75) and the mean PSA value was 2.68 ± 5.48 µg/mL (median:
1.07). The demographic and clinical information is summarized in Table 2. Detailed information
concerning the metrics of diagnostic performance can be found in Table 3. The mean CPU-based
computational time including image preprocessing, lesion detection, and classification was 14 s per
case. All 3D lesion annotations done by the fellow were confirmed by another senior radiologist.
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Table 2. Demographic and clinical information. PI-RADS = Prostate Imaging Reporting and Data
System, PSA = prostate-specific antigen.

Variable Participants (n = 48)

Demographic and clinical information

Mean age (mean ± SD, in years) 58 ± 8 (range: 45–75)
PSA in µg/mL (median, mean ± SD) 1.07, 2.68 ± 5.48

Algorithm detection rate *

PI-RADS 1 and 2 5/10 (50)
PI-RADS 3 14/18 (78)
PI-RADS 4 14/15 (93)
PI-RADS 5 5/5 (100)

Positive histopathology results per PI-RADS score

PI-RADS 3 1/28 (3)
PI-RADS 4 2/22 (9)
PI-RADS 5 3/5 (60)

* Data represent results on a case level with counts for PI-RADS 3, 4, and 5 categories representing the index lesion
score per patient and nested PI-RADS 1 and 2 categories if no or clearly benign lesions were reported. Values in
parentheses are percentages.

Table 3. Algorithm performance on a case and lesion level.

Parameter Sensitivity (%) Specificity (%) PPV (%) NPV (%) Kappa k

Case level 87 50 87 50 0.42
Lesion level

PI-RADS category 3 43 / / / /
PI-RADS category 4 73 / / / /
PI-RADS category 5 100 / / / /
Combined PI-RADS

category 4 and 5 78 / / / /

PI-RADS = Prostate Imaging Reporting and Data System, PPV = positive predictive value, NPV = negative
predictive value.

3.1. Case-Level Performance

All detected lesions were peripheral zone lesions. With regard to the ground truth, 38/48 (80%)
cases had a ≥3 PIRADS score and 10/48 (20%) cases were defined as lesion free based on the radiologists’
reports. The AI solution achieved a case-level sensitivity of 87% (33/38) with a PPV of 87%. The case-level
specificity was 50% (5/10) with an NPV of 50%. The case-level k was 0.42.

3.2. Lesion-Level Performance

In total, 28 PI-RADS 3, 22 PI-RADS 4, and 5 PI-RADS 5 lesions were assigned in the written reports.
Moreover, 22 participants had 1 lesion, 15 participants had 2 lesions, and 1 participant had 3 lesions.
The AI solution detected all the PI-RADS 5 lesions (100%), 16/22 PI-RADS 4 lesions (73%), and 12/28
PI-RADS 3 lesions (43%). Overall, 33 of 55 lesions were detected (60%). The mean false-positive rate
per patient was 0.875.

3.3. Index-Level Performance

In total, 38 index lesions were assigned by the human readers, according to the total number of
positive cases. Of these, 18 index-lesions were classified as PI-RADS 3, 15 as PI-RADS 4, and 5 as
PI-RADS 5. The algorithm detected 14/18 PI-RADS 3 (78%), 14/15 PI-RADS 4 (93%), and 5/5 PI-RADS 5
(100%) lesions, resulting in an overall 87% sensitivity on an index-lesion level.
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3.4. Biopsy Results

Transrectal biopsies revealed a positive result in histopathology in a total of 6 patients (see Figure 4).
Three participants had a Gleason grade group (GGG) of 1 (corresponding PI-RADS scores in these
locations were 3, 4, and 5), two had a GGG of 2 (PI-RADS scores: 4 and 5) and one participant had a
GGG of 3 (PI-RADS score: 5), see Table 4. All these lesions were detected by the human readers and
the AI software solution.

Table 4. Detailed clinical information for the six participants with histopathologically proven tumor.

Participants GGG PI-RADS PSA (µg/mL) Maximum Diameter (mm)

1 1 5 3.99 15.7
2 1 3 2.18 6.3
3 2 4 6.47 12.1
4 1 4 0.81 9.05
5 2 5 5.52 21.1
6 3 5 39.70 35.0

The PI-RADS score was derived from the written reports. The PSA value was determined before the biopsy.
The maximum diameter of the lesions was derived from the axial slice of the ADC map with the largest tumor
diameter. PI-RADS = Prostate Imaging Reporting and Data System, PSA = prostate-specific antigen, GGG = Gleason
grade group.

4. Discussion

With the ongoing success of deep learning techniques in medical image analysis, those techniques
have been used for the detection of prostate cancer. A recent study of Schelb et al. [15], investigating
a deep learning system for the detection of suspicious lesions in prostate MRI examinations in men
suspected of having clinically significant prostate cancer, showed sensitivity and specificity values
of 96% and 31% at a U-Net probability cut-off ≥0.22, and 92% and 47% using a cut-off ≥0.33 in their
test set, respectively. The performance metrics in our MRI screening population are very similar,
however, our setting is defined by the screening protocol, corresponding to different subject statistics.
The total computational time per case in our study was 14 s. It is a known statistical problem that
higher sensitivity comes at a price of higher false-positive (FP) rates. A study conducted by Vos et
al. [23] showed that at a sensitivity of 74% the FP level was at 5 per patient while the sensitivity
dropped to 41% at a FP level of 1. In our study, we opted for a balanced sensitivity and specificity
using a FP-reduction (FPR) strategy as the deep learning algorithm tended to overestimate lesions.
This approach resulted in a very low false-positive rate per patient of 0.875. Experiments without the
FPR strategy yielded sensitivity and specificity values of 97% and 16% on a case level.

The ultimate implementation of such AI-based software solutions in has two prerequisites:
(i) agreement between the human reader and the software solution should be non-inferior to human
interobserver metrics and (ii) accurate guidance of the biopsy workflow. Concerning the first point,
Muller et al. [24] evaluated the interobserver variability of the PI-RADS v2 lexicon in a five-reader
study with varying reader experience. The investigators found a k of 0.46 concerning the overall
suspicion score. Our results show a similar performance comparing human readers and AI with a k
score of 0.42. With regard to the second point, we were able to show that both human readers and
the AI solution were able to identify all biopsy-verified prostate cancer lesions. Interestingly, from a
screening point of view, only 3/6 participants with a positive histopathology demonstrated PSA values
≥4 µg/mL. In fact, the PSA values demonstrated good capabilities to identify a GGG of ≥2. However,
all patients with a GGG = 1 would not have been detected. Therefore, our results may provide new
insights in the sense that an MRI-based screening is better suitable as an early warning system.

We found clinically significant cancers in 3/38 participants (8%). Consequently, in the remaining
35 participants the biopsy did not reveal a clinically significant cancer despite the presence of a
PI-RADS lesion ≥3. This may be due to the low tumor yield in PI-RADS 3 lesions in our cohort (3%),
potentially warranting a change in the biopsy decision workflow in the future. The PI-RADS score
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does not equal a cancer identification score but merely is an ordinal, probability score for the presence
of cancer. With regard to PI-RADS 3, 4, and 5 lesions, cancer has been detected in the following ranges
12–33%, 22–70%, and 72–91%, respectively [25,26], in studies using extended biopsy sampling schemes.
Our values range below these reported values not only because we used targeted biopsies but also due
to our distinct study objects, representing healthy individuals with extremely low PSA values and not
patients with clinical suspicion for prostate cancer; thus, resulting in a much lower pre-test probability
for prostate cancer as compared to a patient cohort with a high level of suspicion for prostate cancer.
With regard to the spectrum of pre-test probabilities as published by Lavelle et al. [27], participants in
our screening cohort would have been found rather on the “exclusion threshold” for prostate cancer.
This fact may explain the slightly lower k values in our screening study compared to data in the
literature: as PI-RADS category 3 lesions represented 51% of the reported lesions in our screening
cohort (versus a reported incidence of 32% to 22% in patient cohorts [28]) and due to the inherent
uncertainty of this PI-RADS category in the guidelines, the detection and classification task presented
here is generally more difficult than findings obvious tumor in patients with suspicion for prostate
cancer. Larger studies will have to reveal whether the PI-RADS classification scheme can be applied on
such a cohort with a certain validity and what management strategies can be developed for those men.

Our study has several limitations. The training data of the algorithm contained more cases
with PI-RADS ≥3 lesions than lesion-free cases. Due to this discrepant distribution, the algorithm is
somehow prone to a certain over-detection, reducing the overall specificity. However, our specificity
ranged between experienced and intermediate/low-experienced readers [29]. Second, all of the lesions
under investigation in the current study were peripheral zone lesions, and thus, the results are not
valid for transition zone lesions. While reported detection rates of peripheral zone lesions—especially
PI-RADS ≥4—are sufficiently high, the detection of transition zone lesions is hampered due to a
difficult differentiation of benign and malignant processes [30,31] due to common image features. Here,
the capability of artificial-intelligence-based software solutions to detect patterns, which potentially
remain invisible to the human eye, hold some promises. Future studies need to investigate the
performance of the present or different algorithm(s) in the transition zone. Third, in this cohort we
performed targeted biopsies of suspicious lesions only, and no random biopsies were taken. Therefore,
it cannot be ruled out completely that lesions not detected in bpMRI and not detected by the algorithm
were missed. Fourth, the sample size in our study is rather small. Reasons for this fact are the difficulty
to establish a screening population and that the study was designed as a first evaluation of the approach
in a proof-of-concept setting.

5. Conclusions

In conclusion, this study demonstrates that a deep-learning-based software solution can
autonomously detect and classify PI-RADS lesions with a high sensitivity on both a lesion and
case level with a moderate classification performance, potentially allowing to use this technology
in a screening setting. Furthermore, the AI was able to detect and correctly classify all lesions that
contained histopathologically proven cancer, allowing to use that technology in a consecutive targeted
biopsy workflow. In an outlook, our approach should be tested in a larger, prospective cohort and the
predicted lesions of the AI and the human PI-RADS assessment scores should be compared with the
histopathology yield per case and core in a prospective manner.
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