Review article

Climate change impacts on plant pathogens, food security and paths forward

In the format provided by the authors and unedited

Supplementary Table 1 Examples of major plant pathogens, their damages and how they are likely to respond to climate change. For each pathogen, we provide the diseases caused, plant hosts and geographical distribution (global or restricted to particular regions). Here, we focused on bacterial, fungal and oomycetous pathogens.

Domain	Pathogen	Host	Disease	Symptoms	Distribution	Responses to the climate change
Bacteria	Agrobacterium	Grapevines,	Crown gall tumour;	Induces neoplastic	Global	The effect of climate change is largely
	tumefaciens	stone and pome	spread via aerial	growths at wound sites		unknown.
		fruit trees, nut	dispersal of spores	on host plants and		
		trees, and a few		severely limits crop yield		
		ornamentals		and growth vigour.		
Bacteria	Xanthomonas	Rice	Bacterial blight;	Water-soaked lesions that	Rice growing	Disease more severe at high temperatures,
	oryzae pv.		spread through	expand into yellowish-	areas of Asia	particularly in humid conditions. Most
	oryzae		irrigation water,	brown lesions with	and Africa.	single resistance genes lose efficacy at high
			wind, rain splash.	uneven edges. Thrives in		temperatures.
				xylem vessels.		
						Ref: 1, 2
Bacteria	Xylella	A wide range of	Pierce's disease, leaf	Interacts primarily with	Endemic to	The effect of climate change is largely
	fastidiosa	host plant	scorch, wilt and die-	nonliving tissues in both	Americas, and	unknown on a global scale. However,
		species,	back. Vector-	its insect and plant hosts.	recently	Europe-based models suggest that, as the
		including	transmitted	Causes significant	introduced in a	minimum winter temperatures might
		almond, citrus	(transmission by	economic losses due to	restricted	increase, the bacterium could spread to
		and olive.	xylem-sap feeding	limited control options.	range in	other suitable regions.
			insects)		Mediterranean	
					regions	Ref: ³

Fungi	Magnaporthe oryzae	Rice, 50 species of grasses and sedges	rice blast disease; spread via aerial dispersal of spores, or via water splash.	Spores infect plants, particularly when humidity is high, often killing young plants. In older plants, the fungus can spread and prevent seed formation.	Global	In the areas where climatic conditions are already suitable for rice blast disease, climate change can reduce the disease risk due to increased air temperatures above the optimal ranges for pathogen infectivity (17-28 °C). However, the disease impact can increase in areas with more favourable thermal regimes, leading to earlier host infection and colonization. Precipitation increase positively correlates with leaf blast severity and incidence, with values over 200 mm corresponding to high disease impact. Refs: 4
Fungi	Alternaria solani	Solanaceae, including potato, tomato, eggplant	Early blight; spread via aerial dispersal of spores	Overwinters on infected crop debris or weedy hots and needs warm and moist environment to germinate. Infects mature plants through wounds in the roots, and spread to the entire plant causing defoliation	Global	Warm, humid (24-29°C) environmental conditions are conducive to infection. Range is likely to increase at the global scale with warmer temperatures. Refs: ⁵
Fungi	Botrytis cinerea	Over 200 crop hosts worldwide. Vegetables (i.e. cabbage, lettuce, broccoli, beans)	Botrytis bunch rot; spread via aerial dispersal of spores	Most destructive on mature or senescent host tissues, but can infect at all growth stages. Infection of plant tissue typically requires	Global	Changes in seasonal weather patterns causing prolonged wet and warm (18-30C) growing seasons are likely to increase disease risk and severity. Models available mostly for grapes. Refs: ⁶

		T		Γ		
		and small fruit		moisture and wet		
		crops (grape,		growing seasons.		
		strawberry,				
		raspberry,				
		blackberry) are				
		most severely				
		affected.				
Fungi	Fusarium	Wheat, barely,	Fusarium head blight;	Infects plants at the	Global	Increases in relative humidity favour both
rungi		, ,	<u> </u>	<u> </u>	Giobai	,
	graminearum	oat	spread via aerial	flowering stage.		inoculum production and infection. Range
	species		dispersal of spores	Overwinters on infested		is likely to increase with warming, with
	complex			crop residues and needs		European, Middle Eastern and North
				warm and moist		African countries at higher risk of
				environment to		outbreaks. Quantitative information on the
				germinate. Produces		differential responses among FGSC
				mycotoxins that make		members is lacking.
				grain unsuitable for use		
				as food or feed		Refs: 5,7
Fungi	Penicillium	Many species	Green mold disease	Infects fruit through	Global	Can grow in relatively wide temperature
C	digitatum	of Citrus		wounds. It is one of the		range (6–37°C) and is drought resistant.
	O			most severe postharvest		Fruit pH and metabolic composition are the
				pathogens, especially in		main drivers of colonisation and infection;
				arid zones and tropical		Likely to change with changes in
				subclimates		temperature and rainfall patterns.
				subclimates		temperature and ramian patterns.
						Refs: ⁸
Fungi	Puccinia	Cereals	Stem (black) rust;	Most destructive	Global	A warmer and drier climate is predicted to
_	graminis f. sp.	(including	spread via aerial	Puccinia sp. for wheat. It		benefit the spore production and spread,
	tritici	wheat, rye and	dispersal of spores	can attack all above-		and more severe diseases can be expected
		barley)	1	ground parts of the plant,		in cold regions, where the fungus will have
		- 3 /		including the stem,		better chances of overwintering due to
				leaves and inflorescence.		expected subfreezing temperature.
				Can result in 100% yield		However, projected drier conditions will
				Can result in 10070 yield		Trowerer, projected arter conditions will

		<u> </u>		Τ		T
				losses on susceptible		reduce substantially the probability of an
				wheat cultivars and		infection starting from deposited spores,
				reduced grain quality.		except in irrigated fields.
						Refs: ^{9,10}
Fungi	Puccinia psidii	Myrtaceae	Guava rust,	Infects, impacts, and	Tropical	Disease severity is likely to increase with
			eucalyptus rust or	often kills newly	fungus,	annual precipitation >1500 mm and high
			myrtle rust; spread	expanding leaves and	endemic to	foliage projective cover, and decrease with
			via aerial dispersal of	stems as well as fruit and	South and	increasing temperature (>32C). Wet tropics
			spores	flowers, resulting in	Central	are identified as highly susceptible regions
				shoot dieback, reduced	America,	under future climate scenarios.
				recruitment, and adult	recently	
				plant mortality. Major	introduced in	Ref. ¹¹⁻¹³
				threat to native plant	Australia, New	
				communities and	Zealand, USA	
				plantations	and South	
				promote in the second	Africa	
Fungi	Ralstonia	Major diseases	Bacterial wilt	Infects via wounds, root	Wet tropics,	The effect of climate change is not
1 0.1181	solanacearum	of tomato and	disease; spread via	tips or cracks at the sites	subtropics and	quantified and few models exist. However,
		other	aerial dispersal of	of lateral root emergence.	some	the pathogen is favoured by high
		vegetables	spores	Thrives in the water-	temperate	temperatures, and global warming is likely
		, egetaeres	spores	transporting xylem	regions of the	to increase disease risk.
				vessels of its host plants.	world	to mercuse disease risk.
				Causes important losses	Wolld	Ref: 14, 15
				in many developing		Rot.
				countries.		
Fungi	Verticillium	>150 crop	Verticillium wilt;	Infects the roots of	Global	Favoured by moist soils and a temperature
- 41161	dahliae	hosts, including	spread via aerial	plants, directly or	C100u1	range of 21-27° C. Climate change is
		cotton, grapes,	dispersal of spores	through wounds; Causes		expected to stimulate fungal growth by
		almonds,	dispersur of spores	premature foliar chlorosis		increasing soil temperatures towards the
		strawberries,		and necrosis and vascular		biological optimum in colder soils or by
		suawociiics,		discoloration in stems		biological optimum in coluct sons of by
				discoloration in stells		

		lettuce,		and roots. Major		extending the infection period. Global
		tomatoes		economic losses in crops		models are not available
				are in temperate regions		
				of the world		Refs: 16
Fungi	Zymoseptoria tritici	wheat	Septoria tritci blotch; spread via aerial dispersal of spores, or via water splash.	Infects host is via leaf stomatal openings, causing necrosis and reduction in photosynthetic capacity, which affects grain yield.	Temperate regions	Thrives in climates with rain during the development of wheat (e.g., European temperate regions). Increases in humidity favour an increase in infection rate and pathogen growth. Changes in seasonal rainfall patterns are likely to affect distribution and infectivity. However climatic models are not available. Refs: 17, 18
Oomycetes	Phytophthora infestans	potato	Potato late blight; spread via aerial dispersal of spores, or via water splash.	Infects all parts of the potato plant and, under moderate temperature (16–22°C) and high humidity (over 97%), can destroy entire crops within a few days of infection	Global	P. infestans has a low optimal growth temperature (13-22C) and global warming will have small effect on infection risk in most of the growing regions of the Northern Hemisphere, except for the very coolest potato-growing areas. Ref: 19
Oomycetes	Phytophtora ramorum	Many oak species and woody ornamentals	Sudden oak death and ramorum blight; spread via aerial dispersal of spores, or via water splash.	Highly persistent in soil, infects root tips via wounds causing stem cankers, tip and shoot dieback and leaf blight. Recently emerged, it is responsible for extensive mortality of trees and shrubs in both natural	Europe and North America	Adapted to cool temperatures with optimal growth at 20 °C. Requires seasonally high moisture to germinate. Likely to be affected by changes in seasonal rainfall patterns, but climatic models are not available. Refs: 20

				communities and		
				plantations		
Oomycetes	Pythium spp.	Multiple crop	Pythium-induced root	Highly persistent in soil,	Global	Cause disease mostly in range of 20-30oC,
		species (e.g.,	rot is a common	infects root tips. Can		particularly sever infection under wet and
		tabaco,	disease in crops.	survive long periods of		high soil moisture conditions. Likely to be
		tomatoes and	Infested soil or plant	time in soil decomposing		affected by change in temperature and
		other	material can spread	organic matter.		annual rainfall patterns.
		vegetables)	disease.			

Supplementary Methods for Figure 2:

Global maps of the likely distributions of the current and future of the relative abundance of soil-borne plant pathogens were implemented²¹, we performed ordinary least squares models to project each map of the current and future states of the proportion of Phytophthora spp. and Pythium spp. and Penicillium sp. from soil worldwide. Implementation of these models was preceded by exploratory correlation analyses to identify the most important factors associated with the distributions of potential plant pathogens. These included climate; mean annual temperature and mean annual precipitation; vegetation type, forest and grassland; elevation; and soil variables, soil texture, soil carbon and soil pH. To assess the accuracy of the predictions calculated from the model, we calculated how much the parameter space of the predictors differed from the original dataset.

To locate the areas of the projection far from the sampling points, the masking criterion p-value < 0.01 was used to show the areas generated by the model in the projection that are closer to the sampling points. We used the Mahalanobis distance of any multidimensional point of the eight dimensions given by the exogenous variables to the centre of the known distribution that we have previously calculated and the distance of any multidimensional point to the convex hull formed by the all data locations that were used in the model²². Subsequently, we used outlier identification to mask our results and provide more reliable predictions at the 0.99 quantiles of the chi-square distribution with eight degrees of freedom to which each location belongs²³. The variables that were constant in the future projections were elevation and soil variables. Implementation of these models was preceded by exploratory correlation analyses to identify the most important factors associated with potential plant pathogen distributions from available data (Supplementary Table 1).

To map future (2050) projections of the relative abundance of soil-borne plant pathogens, we used climate and land-use datasets²⁴⁻²⁵. We used the historical and future ISMIP2a dataset of Representative Concentration Pathway (RCP)2.6, RCP6.0 and RCP8.5 for 2050 in combination with Shared Socioeconomic Pathways (SSP). We used two different general circulation models (gfdl-esm2m and noresm1-m)²⁶. Each SSP corresponds to a specific RCP; here we select the combinations SSP1-RCP2.6, SSP4-RCP6.0 and SSP5-RCP8.5. For the land-use projections, we relied on the dataset provided by the Land-use Harmonized v2.0 project (http://luh.umd.edu/)²⁷.

References

- 1. Webb, K. M. *et al.* A benefit of high temperature: increased effectiveness of a rice bacterial blight disease resistance gene. *New Phytol* **185**, 568-576, doi:10.1111/j.1469-8137.2009.03076.x (2010).
- 2. Horino, O., Mew, T. W. & Yamada, T. The effect of temperature on the development of bacterial leaf blight on rice. *JPN J Phytopathol* **48**, 72-75, doi:10.3186/jjphytopath.48.72 (1982).
- 3. Godefroid, M., Cruaud, A., Streito, J. C., Rasplus, J. Y. & Rossi, J. P. *Xylella fastidiosa*: climate suitability of European continent. *Sci Rep* **9**, doi:10.1038/s41598-019-45365-y (2019).
- 4. Wilson, R. A. & Talbot, N. J. Under pressure: investigating the biology of plant infection by *Magnaporthe oryzae*. *Nat Rev Microbiol* **7**, 185-195, doi:10.1038/nrmicro2032 (2009).
- 5. Dudney, J. *et al.* Nonlinear shifts in infectious rust disease due to climate change. *Nat Commun* **12**, 5102, doi:10.1038/s41467-021-25182-6 (2021).
- 6. Williamson, B., Tudzynski, P. & van Kan, J. A. L. *Botrytis cinerea*: the cause of grey mould disease. *Mol Plant Pathol* **8**, 561-580, doi:10.1111/J.1364-3703.2007.00417.X (2007).
- 7. Backhouse, D. Global distribution of *Fusarium graminearum*, *F. asiaticum* and *F. boothii* from wheat in relation to climate. *Eur J Plant Pathol* **139**, 161-173, doi:10.1007/s10658-013-0374-5 (2014).
- 8. Costa, J. H., Bazioli, J. M., Pontes, J. G. D. & Fill, T. P. *Penicillium digitatum* infection mechanisms in citrus: What do we know so far? *Fungal Biol* **123**, 584-593, doi:10.1016/j.funbio.2019.05.004 (2019).
- 9. Ellis, J. G., Lagudah, E. S., Spielmeyer, W. & Dodds, P. N. The past, present and future of breeding rust resistant wheat. *Front Plant Sci* 5, doi:10.3389/fpls.2014.00641 (2014).
- 10. Morcillo, M. et al. Climate change impacts the spread potential of wheat stem rust, a significant crop disease. Environ Res Lett 14 (2019).
- 11. Carnegie, A. J. *et al.* Impact of the invasive rust *Puccinia psidii* (myrtle rust) on native Myrtaceae in natural ecosystems in Australia. *Biol Invasions* **18**, 127-144, doi:10.1007/s10530-015-0996-y (2016).
- 12. Carnegie, A. J. & Pegg, G. S. Lessons from the incursion of myrtle rust in Australia. *Annu Rev Phytopathol* **56**, 457-478, doi:10.1146/annurev-phyto-080516-035256 (2018).
- 13. Meiklejohn, N. A., Staples, T. L. & Fensham, R. J. Modelling climatic suitability for myrtle rust with a widespread host species. *Biol Invasions* **24**, 831-844 (2022).
- 14. Lowe-Power, T. M., Khokhani, D. & Allen, C. How *Ralstonia solanacearum* exploits and thrives in the flowing plant xylem environment. *Trends Microbiol* **26**, 929-942, doi:10.1016/j.tim.2018.06.002 (2018).
- 15. Ghini, R., Bettiol, W. & Hamada, E. Diseases in tropical and plantation crops as affected by climate changes: current knowledge and perspectives. *Plant Pathol* **60**, 122-132, doi:10.1111/j.1365-3059.2010.02403.x (2011).
- 16. Siebold, M. & von Tiedemann, A. Potential effects of global warming on oilseed rape pathogens in Northern Germany. *Fungal Ecol* **5**, 62-72, doi:10.1016/j.funeco.2011.04.003 (2012).

- 17. Orton, E. S., Deller, S. & Brown, J. K. M. *Mycosphaerella graminicola*: from genomics to disease control. *Mol Plant Pathol* **12**, 413-424, doi:10.1111/j.1364-3703.2010.00688.x (2011).
- 18. Boixel, A. L., Gelisse, S., Marcel, T. C. & Suffert, F. Differential tolerance of *Zymoseptoria tritici* to altered optimal moisture conditions during the early stages of wheat infection. *J Plant Pathol* **104**, 495-507, doi:10.1007/s42161-021-01025-7 (2022).
- 19. Sparks, A. H., Forbes, G. A., Hijmans, R. J. & Garrett, K. A. Climate change may have limited effect on global risk of potato late blight. *Glob Chang Biol* **20**, 3621-3631, doi:10.1111/gcb.12587 (2014).
- 20. Grunwald, N. J., Garbelotto, M., Goss, E. M., Heungens, K. & Prospero, S. Emergence of the sudden oak death pathogen *Phytophthora ramorum*. *Trends Microbiol* **20**, 131-138, doi:10.1016/j.tim.2011.12.006 (2012).
- 21. Delgado-Baquerizo, M., Guerra, C.A., Cano-Díaz, C. et al. The proportion of soil-borne pathogens increases with warming at the global scale. *Nat. Clim. Chang.* 10, 550–554 (2020).
- 22. Feng, Youzhi, et al. Temperature thresholds drive the global distribution of soil fungal decomposers. Global Change Biology 28.8 2779-2789 (2022)
- 23. Mallavan, B. P., Minasny, B., & McBratney, A. B. Homosoil, a methodology for quantitative extrapolation of soil information across the globe. In J. L. Boettinger D. W. Howell A. C. Moore A. E. Hartemink, & S. Kienast-Brown (Eds.), *Digital soil mapping progress in soil science* (pp. 137–150). Springer. (2010)
- 24. Hempel, S. et al. A trend-preserving bias correction—the ISI–MIP approach. Earth Syst. Dyn. 4, 219–236 (2013).
- 25. Lawrence, D. M. et al. The land use model intercomparison project (LUMIP) contribution to CMIP6: rationale and experimental design. *Geosci. Model Dev.* 9, 2973–2998 (2016).
- 26. Dufresne, J.-L. et al. Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. *Clim. Dyn.* 40, 2123–2165 (2013).
- 27. Hurtt, G. C. et al. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. *Clim. Change* 109, 117 (2011).