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ABSTRACT: A novel approach is reported for the enantioselective
flow synthesis of rolipram comprising a telescoped asymmetric
conjugate addition−oxidative aldehyde esterification sequence followed
by trichlorosilane-mediated nitro group reduction and concomitant
lactamization. The telescoped process takes advantage of a polystyrene-
supported chiral organocatalyst along with in situ-generated persulfuric
acid as a robust and scalable oxidant for direct aldehyde esterification.
This approach demonstrates significantly improved productivity
compared with earlier methodologies while ensuring environmentally
benign metal-free conditions.

Due to their varied biological activities as well as structural
diversity, chirally branched pyrrolidones are of out-

standing importance among pharmaceutically relevant hetero-
cycles.1 Of these compounds, rolipram exhibits an unusually
wide range of pharmaceutical effects which attracts significant
attention of research.2 The best characterized biological
activity of rolipram is the selective inhibition of the cyclic
adenosine monophosphate (cAMP)-specific phosphodiesterase
family known as Type IV (PDE4).3 It has therefore primarily
been employed as an anti-inflammatory as well as anti-
depressant agent in numerous clinical trials4 but has also been
reported to bear antipsychotic, antitumor, and immunosup-
pressive effects,5 and has shown potential as a treatment for
multiple sclerosis.6 Most recently, among other PDE4
inhibitors, rolipram has actively been investigated in the
treatment of COVID-197-induced severe pneumonia and
associated cytokine storms.8 Although it has often been
employed as a racemate in biological studies, the pharmaceut-
ical activity of rolipram enantiomers was found to be divergent
in many cases,3,6 thereby necessitating enantioselective syn-
thesis routes.
Numerous synthetic strategies have been reported that

deliver single enantiomers of rolipram. Earlier methodologies
utilized homochiral building blocks from the chiral pool or
employ various resolution techniques, such as chiral
chromatography or enzymatic resolution.9 Recently, enantio-
selective synthetic approaches have been suggested to facilitate
a more direct and atom economic access to the enantiopure
substance. These typically harness chiral-coordination-com-
plex-catalyzed asymmetric hydrogenations or conjugate

additions to introduce asymmetry,10 but metal-free organo-
catalysis has also proven useful in the enantioselective synthesis
of rolipram.11 Despite the fact that enantioselective strategies
exhibit remarkable benefits over classical synthetic processes,
high costs of chiral catalysts, limited productivity and
scalability along with the need for multiple rounds of work-
up and purification as well as the difficult handling of certain
chiral intermediates still significantly hamper their practical
usefulness.
Despite the well-established advances of continuous flow

chemistry in the multistep syntheses of active pharmaceutical
ingredients (APIs),12 there is only one example reported for
the asymmetric flow synthesis of rolipram,13 in which a
polymer-supported chiral calcium catalyst was exploited in a
nitrostyrene−malonate conjugate addition as a key step to
establish asymmetry.14 This pioneering process afforded
approximately 1 g of enantio-enriched rolipram in 1 day over
four telescoped steps.
As a continuation of our ongoing interest in flow synthesis of

chiral APIs and their advanced intermediates,15 we sought for a
novel approach for the enantioselective flow synthesis of
rolipram demonstrating improved productivity and scalability
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while ensuring environmentally reliable metal-free conditions
and generating low amounts of waste. In view of the fact that
only very limited asymmetric strategies are available for the
direct activation of α,β-unsaturated ester substrates,16 the
synthetic route to reach our goal relied on the enantioselective
Michael-type addition of nitromethane to an appropriately
substituted cinnamaldehyde derivative (1) in the presence of a
diphenylprolinol-type organocatalyst,17 followed by oxidative
esterification, nitro reduction, and lactamization (Scheme 1).

Considering that the chiral γ-nitroaldehyde product of the
Michael-type addition is labile and may decompose during
workup or purification, we envisioned that a telescoped
enantioselective flow synthesis of the corresponding γ-nitro-
ester as a chiral key intermediate could be accomplished by
merging the asymmetric conjugate addition with a suitable
esterification protocol. Based on a step-economy-driven
process-design, we were aiming for a direct oxidative approach
for ester formation, thereby eliminating the need for the
generation of the free carboxylic acid intermediate.18

Taking into account practical and environmental aspects,19

we selected a cross-linked polystyrene-supported cis-4-hydrox-
ydiphenylprolinol tert-butyldimethylsilyl (TBS) ether as a
chiral organocatalyst (2) for the enantioselective conjugate
addition.20 In our earlier studies,15 2 was proven as a robust,
reusable, and leaching-free catalyst that would possibly enable
the telescoping of the asymmetric key step. A simple flow setup
was therefore established by using a heated Omnifit glass
column (10 mm ID, adjustable height) filled with 1.0 g of the
immobilized catalyst ( f = 0.445 mmol g−1). The conjugate
addition was performed by pumping a neat mixture of
aldehyde 1 and 5 equivalents (eq) of nitromethane at 65 °C.
Gratifyingly, at 75 μL min−1 flow rate (corresponding to 15
min residence time) and in the presence of 0.6 eq of acetic acid
as additive, 95% of 1 was chemoselectively converted to furnish
the corresponding γ-nitroaldehyde (3) with an excellent ee of
94% (Scheme 2). Importantly, conversion was found to
decrease notably at higher flow rates or by performing the
reaction at room temperature. Furthermore, a reduction of the
nitromethane or the acetic acid amount exhibited a similar
negative effect on the reaction outcome.
With a reliable flow process for the enantioselective

synthesis of chiral γ-nitroaldehyde 3 in hand, the next step
was to establish a suitable method for the subsequent ester
formation. For this, we sought for a simple and easily scalable
protocol that is, most importantly, compatible with the
organocatalytic conjugate addition in a telescoped process.
The direct oxidative esterification of aldehydes is widely
achieved in the presence of various homogeneous or

heterogeneous transition metal catalysts.21 However, consid-
ering that such methodologies typically involve costly ligands,
insoluble catalysts, as well as long reaction times, and in the
case of heterogeneous catalytic sources uncontrollable leaching
issues may also arise, we did not consider transition-metal-
catalyzed approaches. Although metal-free strategies utilizing
N-heterocyclic carbene-based catalysts have also been reported
for oxidative ester formations,22 these were not considered
either due to the relatively high costs and the accompanying
incompatibility issues with larger scale operations.
Inspired by our earlier results on continuous flow aldehyde

to carboxylic acid oxidations,15a,23 we initially attempted the
oxidative esterification by using in situ-generated performic
acid as the oxidant in the presence of MeOH as the alcohol
component. Unfortunately, the selectivity toward the desired
ester was very low, and the reaction furnished the
corresponding carboxylic acid as the major product along
with numerous further side products (see the Supporting
Information for details).
Peroxymonosulfuric acid (or persulfuric acid) is a powerful

oxidizing agent with well-established applications in industrial
scale wastewater treatment, such as purification of cyanide
containing effluents of gold processing plants.24 Given the fact
that, during handling and storage, its tendency toward
explosive decomposition entails a considerable safety risk,25

persulfuric acid is typically manufactured on site using
concentrated (cc) H2SO4 as a stable precursor in the presence
of H2O2.

26 As a consequence of its difficult handling and
hazardous nature, the synthetic usefulness of persulfuric acid in
organic chemistry remained largely underexplored.27 Consid-
ering that continuous flow reactors are well-suited for the safe
generation of highly reactive reagents,28 we anticipated that, by
means of in situ formation and concomitant consumption
within a closed continuous flow environment, safety hazards
could be minimized and persulfuric acid could be exploited as a
cost-efficient and scalable oxidant for the direct oxidative ester

Scheme 1. Enantioselective Synthetic Strategy

Scheme 2. Effect of Reaction Conditions on the
Organocatalytic Flow Synthesis of γ-Nitroaldehyde 3
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formation.29 In order to test our hypothesis, hydrocinnamal-
dehyde as a simple model substrate together with H2SO4 and
35 wt % aq H2O2, both in MeOH as solvent, were pumped as
separate feeds, and the combined mixture was directed through
a heated reaction coil where simultaneous persulfuric acid
generation and oxidative esterification took place (Scheme
3A). Since sulfonic peracids were shown to have potential for

the selective oxidation of various substances,30 p-toluenesul-
fonic peracid generated following the same strategy was also
investigated as an oxidizing agent in the direct ester formation
(Scheme 3A). To our delight, at 100 °C and 30 min residence
time, both in situ-generated reagents ensured high selectivity
toward oxidative esterification with only small amounts of

carboxylic acid 5 as the only side product. The corresponding
dimethyl acetal (6), which is known as an intermediate during
oxidative ester formation from aldehydes,18 was detected only
in the case of lower reaction temperature or shorter residence
time. Importantly, in the case of the persulfuric acid-mediated
process, sufficiently pure ester could be achieved by simple
extractive workup of the quenched reaction mixture, whereas,
for the quantitative removal of residual p-toluenesulfonic acid,
chromatographic purification was required. Therefore, oxida-
tive esterification of chiral γ-nitroaldehyde 3 was next
attempted in the presence of in situ-generated persulfuric
acid, and following fine-tuning of the most important reaction
conditions, the corresponding nitroester (7) was quantitatively
and selectively accessed (Scheme 3B; see also Scheme S9 and
Figure S2 in the Supporting Information).
In order to achieve the chiral γ-nitroester (7) without

isolation of the nitroaldehyde intermediate (3), we next
wanted to combine the organocatalytic enantioselective
conjugate addition with the subsequent oxidative esterification
into an uninterrupted flow sequence. To ensure the
compatibility of the reaction steps prior to telescoping, the
conjugate addition was repeated in a MeOH solution
containing 1.0 M aldehyde 1 together with 5 eq of CH3NO2
and 0.6 eq of acetic acid (Scheme 2), and the oxidative
esterification was repeated using a modified three-feed setup to
separately introduce MeOH solutions of all three components
involved (Scheme S10 in the Supporting Information). Besides
these modifications, all other reaction parameters were set to
the previously optimized values, and the individual reaction
segments were simply merged using two Y-mixers and a three-
port valve. The substrate stream exiting the organocatalyst
column was first combined with a 4.0 M H2SO4 feed and then
with a 2.0 M H2O2 feed, both at flow rates that corresponded
to 4 eq with respect to the aldehyde stream. The resulting
mixture was finally directed through a heated coil where
simultaneous persulfuric acid generation and oxidative
aldehyde esterification took place (Scheme 4). The telescoped
system was run for 3 h under steady state conditions ensuring
5.23 g (86% yield, 1.74 g h−1 productivity) of the key nitroester
intermediate in a sufficiently pure form after extractive workup.
Importantly, the ee of the product was 94%, and the process
generated only a small amount of waste, as demonstrated by an
E-factor of 9.3.
To complete the flow synthesis of rolipram, a suitable

method for nitro reduction and concomitant lactamization was
needed. Due to the incompatibility of the telescoped conjugate
addition−oxidative esterification sequence with the nitro
reduction, an interrupted process was targeted. In most
known protocols for rolipram synthesis, similar reductions
are achieved by means of heterogeneous catalytic hydro-
genations.10,11,13 Nevertheless, we instead attempted a
trichlorosilane-mediated approach in order to ensure metal-
free conditions and to eliminate gas handling.31 For this
purpose, γ-nitroester 7 and trichlorosilane, both dissolved in
dry CH2Cl2, were mixed in a Y-piece and the resultant stream
was passed through a residence time coil at room temperature
before being quenched in aq NaOH solution (Scheme 5). The
substrate solution also contained an excess amount of N,N-
diisopropylethylamine (DIEA) required for the generation of
the actual dichlorosilylene reducing species.32 Although, the
reaction performed well in CH2Cl2, a solvent switch was
attempted to environmentally more acceptable CH3CN. For
the trichlorosilane stream, pure CH3CN proved sufficient, but

Scheme 3. Continuous Flow Oxidative Esterifications Using
in Situ-Generated Peracids
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for the substrate/DIEA stream, CH3CN/CH2Cl2 7:1 was used
to ensure a single-phase solution. Further parameter
optimization was conducted to find out that 4 eq of DIEA
and 4 eq of trichlorosilane were necessary to achieve
quantitative and selective nitro reduction/lactamization within
10 min residence time. Finally, a 4 h long run was performed
under the previously optimized reaction conditions to attain
1.10 g (83% yield) of (S)-rolipram with 94% ee.
In summary, a three-step process has been reported for the

enantioselective flow synthesis of rolipram. To access key
intermediate 7 directly from the appropriate cinnamaldehyde
derivative (1), a telescoped asymmetric conjugate addition−
oxidative esterification sequence was developed. The asym-

metric conjugate addition component of this reaction sequence
was achieved using a resin supported cis-4-hydroxydiphenyl-
prolinol organocatalyst, while the subsequent direct aldehyde
esterification was accomplished by employing persulfuric acid
as an effective oxidizing agent. With the purpose of minimizing
safety hazards and ensuring facile scalability, persulfuric acid
was generated in situ from H2SO4 as a stable precursor. The
telescoped organocatalytic conjugate addition−oxidative ester-
ification flow sequence yielded key nitroester intermediate 7 in
a sufficiently pure form after extractive workup and ensured a
productivity of 1.74 g h−1. Finally, rolipram was synthesized by
metal-free nitro reduction/lactamization in the presence of
trichlorosilane under mild conditions.
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de Barcelona (UB), E-08028 Barcelona, Spain;
orcid.org/0000-0003-0195-8846

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.orglett.1c04300

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

We thank the Austrian Science Fund (FWF) for financial
support through Project P 34397-N.

■ REFERENCES
(1) Shorvon, S. Pyrrolidone derivatives. Lancet 2001, 358, 1885.
(2) Sakkas, L. I.; Mavropoulos, A.; Bogdanos, D. P. Phosphodiester-
ase 4 Inhibitors in Immune-mediated Diseases: Mode of Action,
Clinical Applications, Current and Future Perspectives. Curr. Med.
Chem. 2017, 24, 3054.
(3) Beavo, J. A.; Reifsnyder, D. H. Primary sequence of cyclic
nucleotide phosphodiesterase isozymes and the design of selective
inhibitors. Trends Pharmacol. Sci. 1990, 11, 150.
(4) Zhu, J.; Mix, E.; Winblad, B. The Antidepressant and
Antiinflammatory Effects of Rolipram in the Central Nervous System.
CNS Drug Rev. 2001, 7, 387.
(5) (a) Maxwell, C. R.; Kanes, S. J.; Abel, T.; Siegel, S. J.
Phosphodiesterase inhibitors: A novel mechanism for receptor-
independent antipsychotic medications. Neuroscience 2004, 129,
101. (b) Jung, S.; Zielasek, J.; Köllner, G.; Donhauser, T.; Toyka,
K.; Hartung, H.-P. Preventive but not therapeutic application of
Rolipram ameliorates experimental autoimmune encephalomyelitis in
Lewis rats. J. Neuroimmunol. 1996, 68, 1.
(6) Sommer, N.; Löschmann, P. A.; Northoff, G. H.; Weller, M.;
Steinbrecher, A.; Steinbach, J. P.; Lichtenfels, R.; Meyermann, R.;
Riethmüller, A.; Fontana, A.; Dichgans, J.; Martin, R. The
antidepressant rolipram suppresses cytokine production and prevents
autoimmune encephalomyelitis. Nature Med. 1995, 1, 244.
(7) COVID-19 stands for coronavirus disease 2019.
(8) Lugnier, C.; Al-Kuraishy, H. M.; Rousseau, E. PDE4 inhibition
as a therapeutic strategy for improvement of pulmonary dysfunctions
in Covid-19 and cigarette smoking. Biochem. Pharmacol. 2021, 185,
114431.
(9) (a) Mulzer, J. Asymmetric synthesis of the Novel Antidepressant
Rolipram®. J. Prakt. Chem. 1994, 336, 287. (b) Barluenga, J.;
Fernández-Rodríguez, M. A.; Aguilar, E.; Fernández-Marí, F.; Salinas,
A.; Olano, B. First Highly Regio- and Diastereoselective [3 + 2]
Cycloaddition of Chiral Nonracemic Fischer Carbene Complexes
with Azomethine Ylides: An Enantioselective Synthesis of (+)-Roli-
pram. Chem. - Eur. J. 2001, 7, 3533. (c) Diaz, A.; Siro, J. G.; García-
Navío, J. L.; Vaquero, J. J.; Alvarez-Builla, J. A Stereoselective
Synthesis of (R)-(−)-rolipram from L-Glutamic Acid. Synthesis 1997,
1997, 559.
(10) (a) Lang, Q.; Gu, G.; Cheng, Y.; Yin, Q.; Zhang, X. Highly
Enantioselective Synthesis of Chiral γ-Lactams by Rh-Catalyzed
Asymmetric Hydrogenation. ACS Catal. 2018, 8, 4824. (b) Shao, C.;
Yu, H.-J.; Wu, N.-Y.; Tian, P.; Wang, R.; Feng, C.-G.; Lin, G.-Q.
Asymmetric Synthesis of β-Substituted γ-Lactams via Rhodium/
Diene-Catalyzed 1,4-Additions: Application to the Synthesis of (R)-
Baclofen and (R)-Rolipram. Org. Lett. 2011, 13, 788.
(11) (a) Leyva-Pérez, A.; García-García, P.; Corma, A. Multisite
Organic−Inorganic Hybrid Catalysts for the Direct Sustainable
Synthesis of GABAergic Drugs. Angew. Chem., Int. Ed. 2014, 53,
8687. (b) Hynes, P. S.; Stupple, P. A.; Dixon, D. J. Organocatalytic
Asymmetric Total Synthesis of (R)-Rolipram and Formal Synthesis of
(3S,4R)-Paroxetine. Org. Lett. 2008, 10, 1389.
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