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Abstract: Cisplatin and other platinum-based chemotherapeutic drugs have been used 
extensively for the treatment of human cancers such as bladder, blood, breast, cervical, 
esophageal, head and neck, lung, ovarian, testicular cancers, and sarcoma. Cisplatin is 
commonly administered intravenously as a first-line chemotherapy for patients suffering 
from various malignancies. Upon absorption into the cancer cell, cisplatin interacts with 
cellular macromolecules and exerts its cytotoxic effects through a series of biochemical 
mechanisms by binding to Deoxyribonucleic acid (DNA) and forming intra-strand DNA 
adducts leading to the inhibition of DNA synthesis and cell growth. Its primary molecular 
mechanism of action has been associated with the induction of both intrinsic and extrinsic 
pathways of apoptosis resulting from the production of reactive oxygen species through lipid 
peroxidation, activation of various signal transduction pathways, induction of p53 signaling 
and cell cycle arrest, upregulation of pro-apoptotic genes/proteins, and down-regulation of 
proto-oncogenes and anti-apoptotic genes/proteins. Despite great clinical outcomes, many 
studies have reported substantial side effects associated with cisplatin monotherapy, while 
others have shown substantial drug resistance in some cancer patients. Hence, new formula-
tions and several combinational therapies with other drugs have been tested for the purpose 
of improving the clinical utility of cisplatin. Therefore, this review provides a comprehensive 
understanding of its molecular mechanisms of action in cancer therapy and discusses the 
therapeutic approaches to overcome cisplatin resistance and side effects. 
Keywords: cisplatin, molecular mechanisms of action, combination therapy, cancer 
treatment

Introduction
In 1844, Peyrone synthesized cisplatin for the first time. In 1893, Alfred Werner 
contributed towards designing the structure of cisplatin with a firm basis of 
coordination chemistry.1 The identification of cisplatin and its bioactivity evolved 
from laboratory experiments of Professor Rosenberg along with significant con-
tributions by Loretta Van Camp, Tom Krigas, Eugene Grimley, and Andrew 
Thomson from the biophysics department at Michigan State University.2,3

Cisplatin is structurally a coordination compound with square planar geometry. 
It appears as white or deep yellow to yellow-orange crystalline powder at room 
temperature.4,5 Under normal temperature and pressure, cisplatin is found to be 
stable with a water solubility of 2.53g/L at 25°C.6

Cisplatin has been widely used against human cancers following its first usage 
by the National Cancer Institute for clinical trials.7 It is well established as an anti- 
cancer drug agent based upon its therapeutic implications. The molecular structure 
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of cisplatin determines the anticancer activity in a dose- 
dependent fashion inhibiting Deoxy Ribonucleic Acid 
(DNA) synthesis. However, therapeutic efficacy has been 
challenging beyond the comprehensive drug development 
as neurotoxicity, ototoxicity and renal toxicity, etc., have 
been observed. Thus, strategies need to be developed to 
address cisplatin-related toxicities and drug resistance. An 
extensive search for less toxic analogs of cisplatin, com-
bination therapy with other cancer drugs and nanotechnol-
ogy can be used to combat the side effects. This review 
provides a perspective on the advances in our understand-
ing of the molecular mechanisms of action of cisplatin for 
targeted cancer therapy.

Molecular Mechanisms of Action
Overview of Mechanisms
Cisplatin’s cytotoxicity has been attributed to DNA bind-
ing, tailed by single-stranded DNA breaks.8 Cisplatin is 
activated upon its entry into the cytoplasm by displacing 
chloride atoms with water molecules forming an electro-
phile with affinity towards sulfhydryl groups on proteins 
and nitrogen donor atoms on nucleic acids.9 This selective 
binding to 1, 2-intrastrand cross-links of purine bases with 
cisplatin triggers blockage in cell division and induces 
apoptotic cell death.10 The most common cisplatin-DNA 
adduct formation through covalent binding has been 
observed at the N7 positions of the imidazole ring of two 
adjacent guanines.11 Inter and intrastrand crosslinks and 
nonfunctional adducts have been reported to contribute to 
cisplatin’s toxicity.12,13 As shown in Figures 1 and 2, 
research conducted in our laboratory has demonstrated 
that cisplatin inhibits cell growth, induces DNA adducts 
and causes cytotoxic effects in leukemia cells in a concen-
tration-dependent manner.14

Cisplatin-Induced Oxidative Stress
Cancer cells exhibit high metabolism, demanding elevated 
reactive ROS concentrations to facilitate their propagation. 
ROS affect key signaling proteins that are involved in 
biochemical pathways for cell proliferation. Tumor devel-
opment and progression are regulated by ROS production 
by modulating biological pathways such as activation of 
extracellular-regulated kinase 1/2 (ERK1/2) and ligand- 
independent Receptor Tyrosine Kinases (RTK), evasion 
of apoptosis or anoikis through activation of Src, nuclear 
factor kappa-light-chain-enhancer of activated B cells 
(NF-ƙ) and phosphatidylinositol-3 kinase (PI3K), secretion 

of metalloproteinase into the extracellular matrix, Met 
overexpression, and Rho–Rac interaction for tissue inva-
sion, metastasis and angiogenesis by releasing vascular 
endothelial growth factor and angiopoietin.15

Cisplatin has shown to generate ROS directly or indir-
ectly through mitochondria.16,17 Cisplatin cytotoxicity was 
related to lipid peroxidation, confirming the role of oxygen 
free radicals.18 This release of lipid peroxidation by-pro-
ducts such as malondialdehyde (MDA) increases carbony-
lation of proteins, inducing oxidative damage of cell 
membranes, and eventually triggering apoptosis.19 

Similar to other published reports, we have previously 
demonstrated that cisplatin strongly induces oxidative 
stress leading to lipid peroxidation, increased MDA pro-
duction, reduced GSH activity, and DNA damage in acute 
promyelocytic leukemia (APL) cells (Figure 3).14

Cisplatin Modulation of Calcium Signaling
Biological processes like gene regulation, cell prolifera-
tion, migration, death, etc., are influenced by intracellular 
calcium levels. However, intracellular Ca2+ homeostasis is 
altered in cancer cells to enhance cell proliferation, 
increase cell motility and invasion, fight cell death, and 
avoid immune-attack.20 Tumorigenic pathways are asso-
ciated with altered expression level or abnormal activation 
of Ca2+ channels, transporters or Ca2+ ATPases.21

A recent study has shown that calcium efflux from the 
Endoplasmic Reticulum (ER) regulates cisplatin-induced 
apoptosis in human cervical cancer cells.22 Endoplasmic 
reticulum is a cytosolic target of cisplatin via caspase-3 
activation in cytoplasts since they require calcium and the 
activity of the calcium-dependent protease calpain. Cisplatin 
treatment has been reported to increase the expression of 78- 
kDa glucose-regulated protein (Grp78/BiP), biomarker of 
ER stress.23 A dose-dependent increase of Ca2+ was 
observed in cisplatin-treated MCF-7 cells, suggesting the 
fact that the specific pathway responsible for cell death 
depends on the cell type and the treatment conditions.

Cisplatin-Induced Cell Apoptosis
Induction of apoptosis in cancer cells through intrinsic and 
extrinsic pathways, involves regulation of caspase-depen-
dent proteolysis of several cellular proteins, membrane 
blebbing and endonucleolytic cleavage of chromosomal 
DNA.24 In response to various apoptotic stimuli, initiator 
caspases such as caspase-2, −8, −9, or −10 are activated, in 
turn activating zymogenic forms of executioner caspases 
(caspase-3 or −7). These cascades of events result in 
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Figure 1 Cisplatin-induced growth inhibition and formation of DNA-adduct in APL cells.14 APL cells (HL-60, NB4 and KG-1a) were exposed to various concentrations (0, 5, 
10, 20, 40, and 80 μM) of cisplatin for 24 hours and further incubated for 24 hours with tritium labeled thymidine. After incubation, cells were harvested by centrifugation 
and counted using liquid scintillation analyzer. 3H-methyl thymidine incorporation was expressed as cpm/dish. Data represent the means of three independent experiments ± 
SDs. Highly statistically significant decreases (p < 0.01) in cell proliferation were observed in all cisplatin-treated APL cells including HL-60 (A), NB4 (B) and Kg-1a (C) cells. 
Cisplatin–induced formation of DNA adduct was assessed by immunocytochemistry and confocal microscopy analysis. APL cells were treated with various concentrations of 
cisplatin for 48 hours and immunocytochemistry as well as confocal microscopy using FITC filter were performed to confirm DNA adduct formation. The results showed 
that cisplatin caused a significant concentration-dependent increase in DNA-adduct formation in APL cells [D (i–vi)]. Multiple symbol indicators (*, **, #) indicate highly 
significant reductions (p<0.01) in growth between control and cisplatin-treated cells, respectively, for HL-60, NB4, and KG1a cells. Reproduced from Kumar S, Tchounwou 
PB. Molecular mechanisms of cisplatin cytotoxicity in acute promyelocytic leukemia cells. Oncotarget. 2015;6(38):40734–40746. Creative Commons license and disclaimer 
available from: http://creativecommons.org/licenses/by/4.0/legalcode.14
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proteolytic cleavage of explicit cellular substrates and, 
therefore, lead to cell death.25 Apoptosis can be executed 
through either extrinsic or intrinsic pathway. In the 
extrinsic pathway, initiator caspases are activated via 
death-inducing signal complex (DISC) concerning the 
engagement of extracellular ligands like Fas or Tumor 
necrosis factor (TNF). In the intrinsic pathway of apopto-
sis, mitochondrial outer membrane permeabilization leads 
to activation of certain pro-apoptotic proteins like cyto-
chrome c and mitochondria-derived activator of caspases. 
In the cytoplasm, binding of cytochrome c to the adaptor 
protein Apoptotic Protease Activating Factor-1 (APAF-1) 
forms apoptosome.25 Since the balance between pro- and 
anti-apoptotic B-Cell Lymphoma 2 (BCL-2) family pro-
teins is a fundamental determinant for the initiation of 
mitochondrial outer membrane permeabilization, cancer 
cells may escape apoptosis by modulating the apoptotic 

pathways transcriptionally, translationally, and post- 
translationally.25

The apoptotic mechanism via cisplatin therapy varies 
by cell type. The molecular mechanism of cisplatin- 
induced apoptosis involves activation of tumor protein 53 
(p53), phosphorylation of activator protein (AP-1) compo-
nent leading to cell cycle arrest through stimulation of p21 
and downregulation of cyclins and cyclin-dependent 
kinases.14 Studies have been done to show that cisplatin 
induces cell death by mechanisms mediated by p53, p38 
mitogen-activated protein kinase (p38 MAPKs) and/or the 
c-jun N-terminal kinases (JNK) activation suggesting acti-
vation of the intrinsic pathway of apoptosis through altera-
tion of the mitochondrial membrane potential, release of 
cytochrome C, and up-regulation of caspase 3 activity.26–28 

However, research studies suggest that cisplatin-induced 
cell death not only relies on the event of apoptosis but also 
on necrosis29 or autophagy.30

Figure 2 Cisplatin-induced cytotoxic effects in APL cells.14 APL cells were exposed to various concentrations (0, 5, 10, 20, 40 and 80 μM) of cisplatin for 48 hours and LDH 
released in medium was measured using Promega non-radioactive cytotoxicity assay technical bulletin protocol. Then, % cytotoxicity was calculated by dividing the levels of 
released LDH in treated cells over the total LDH released from control cells. Highly statistically significant increases (p < 0.01) in cytotoxicity were observed in all cisplatin- 
treated APL cells including HL-60 (A), KG-1a (B) and NB4 (C) cells in a concentration-dependent fashion. Multiple symbol indicators (*, **, #) indicate highly significant 
increases (p<0.01) in cytotoxicity between control and cisplatin-treated cells, respectively, for HL-60, NB4, and KG1a cells.  Reproduced from Kumar S, Tchounwou PB. 
Molecular mechanisms of cisplatin cytotoxicity in acute promyelocytic leukemia cells. Oncotarget. 2015;6(38):40734–40746. Creative Commons license and disclaimer 
available from: http://creativecommons.org/licenses/by/4.0/legalcode.14
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Cisplatin and Protein Kinase C
Protein kinase C (PKC) is a family of lipid-dependent serine/ 
threonine kinases that have been subdivided into 3 groups 
such as conventional (α, β1, βII andγ), novel (δ, ε, η and θ), 
and atypical (ζ, 1/λ).31,32 PKC shows a fundamental role in 

signal transduction involved in the regulation of cell prolif-
eration, differentiation and apoptosis. Mitochondrial dys-
function via depolarization of the mitochondrial inner 
membrane (decreases the active Na+ transport) leads to cis-
platin-induced apoptosis and these events are mediated by 

Figure 3 Cisplatin-induced oxidative stress and DNA damage in APL cells.14 APL cells were exposed to various concentrations (0, 5, 10, 20, 40, and 80 μM) of cisplatin for 48 hours. ROS 
release was assessed by spectrofluorometry based on DCF fluorescence intensity after 30 min incubation with dichlorofluorescein diacetate (DCFDA). After incubation, ROS release 
was measured through measuring DCF fluorescence intensity by spectrofluorometry. Malondialdehyde (MDA) and GSH concentration levels were also measured by spectro-
photometry. DNA damage was analyzed by both TUNEL and alkaline gel electrophoresis (Comet) assays. (A) ROS concentrations; (B) MDA concentrations; (C) GSH concentrations; 
(D) TUNEL assay images of DNA damage; (E) Comet assay images of DNA damage; (F) Percentages of DNA damage, and Comet tail lengths. Multiple symbol indicators (*, **, #, $) 
indicate highly significant increases (p<0.01) in ROS (*), MDA (**), DNA damage (*) and Comet tail length ($), and highly significant decreases (p<0.01) in GSH ($) between control and 
cisplatin-treated cells.  Reproduced from Kumar S, Tchounwou PB. Molecular mechanisms of cisplatin cytotoxicity in acute promyelocytic leukemia cells. Oncotarget. 2015;6(38):40734– 
40746. Creative Commons license and disclaimer available from: http://creativecommons.org/licenses/by/4.0/legalcode.14
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activation of caspase-3 by acting downstream of cytochrome 
c release from mitochondria.33–35

Cisplatin and Mitogen-Activated Protein 
Kinase (MAPK)
Mitogen-activated protein kinases (MAPK) are a family of 
structurally related serine/threonine kinases regulating cell 
proliferation, differentiation, and cell survival.36–38 The 
MAPK subfamilies consist of the extracellular signal-regu-
lated kinases (ERK), the c-jun N-terminal kinases (JNK)/ 
stress-activated protein kinases (SAPK), and the p38 MAP 
kinases.39 Studies have been conducted showing that cis-
platin-induced DNA damage results in the activation of 
ERK1/2 via PKCδ.40 ERK is activated via a signaling 
pathway involving Ras, Raf, MEK, and ERK, transducing 
signals from the plasma membrane to the cell nucleus.36

Cisplatin and Jun Amino-Terminal Kinase 
(JNK)
The c-Jun NH2-terminal kinases (JNKs) are an evolutionarily 
conserved sub-group of mitogen-activated protein (MAP) 
kinases. Phosphorylation of c-Jun activates activator pro-
tein-1 (AP-1) transcription factor which is a major target 
for JNK signaling pathway.41,42 c-Jun N-terminal kinase 
regulates numerous essential cellular functions like cell pro-
liferation, differentiation, survival and apoptosis while acti-
vating and inhibiting substrates for phosphorylation 
transcription factors consequently inducing expression of 
pro-apoptosis and pro-survival factors. Studies establish 
that the JNK/c-Jun pathway is activated by cisplatin-induced 
DNA damage in a dose-dependent manner.43–45 Therefore, it 
is proposed that JNK signal pathway is very crucial in cis-
platin treatment, regulating pro-apoptosis factor and improv-
ing resistance to cisplatin-based chemotherapy.46

Cisplatin and p38 Mitogen-Activated 
Protein Kinase (MAPK)
p38 MAPK is a member of mitogen-activated protein kinases 
regulating migration and proliferation of tumor cells, epithe-
lial-mesenchymal transition, cell intravasation, and coloniza-
tion of distant sites signaling.47 Previous studies reported that 
inhibition of p38 induced apoptosis mediated by ROS and 
JNK in cells resistant to cisplatin, irinotecan and 5- 
fluorouracil.48 Hence, p38 MAPK inhibition results in ROS 
upregulation, which in turn activates the JNK pathway via 
inactivation of phosphatases, sensitizing tumor cells to cis-
platin-induced apoptosis.49 High p38 MAPK 

phosphorylation has been correlated with poor life expec-
tancy in patients with HER-2 negative breast cancer.50

Cisplatin and AKT
AKT is one of the major downstream effectors of 
Phosphoinositide 3-kinases (PI3K).51 Upon PI3K activa-
tion, AKT is translocated to the inner membrane, where it 
is phosphorylated by PDK1.52 This AKT modification 
activates the mammalian target of rapamycin complex 1 
(mTORC1). Studies reveal that complete AKT activation 
leads to additional substrate-specific phosphorylation 
events in both cytoplasm and nucleus, like inhibitory 
phosphorylation of the pro-apoptotic forkhead box tran-
scription factors (FOXO) proteins.53

Akt/mTOR survival pathway plays an important role in 
cisplatin treatment in human cancer cells. Cisplatin acti-
vates Akt in lung cancer cells mediated by Epidermal 
Growth Factor (EGFR), Src and PI3-kinase and reduces 
apoptosis by survivin upregulation, the inhibitor of apop-
tosis protein that is overexpressed in many tumors but is 
absent in most normal adult tissues.54 However, cisplatin 
treatment reduces survivin expression, thereby inhibiting 
Akt in few cancer cells.55

Cisplatin and Signaling for DNA Damage
DNA is considered as the primary target of cisplatin.56,57 

Studies show that covalent bonding of cisplatin with the N7 
position of purine bases to form 1, 2- or 1, 3-intrastrand and 
interstrand crosslinks interferes with DNA replication and 
transcription.58 Since nucleotide excision repair (NER) sys-
tem plays major role in DNA repair, low levels of XP 
complementation group A (XPA) and excision repair 
cross-complementation group I (ERCCI) have been 
noticed.59,60 On the other hand, mismatch repair (MMR) 
system proteins (MSH2 and MLH1) have been reported to 
uncouple from their function to restore lost genetic 
information.61–63

p53 and DNA Damage Response to 
Cisplatin Treatment
p53 is a sequence-specific transcriptional activator, playing 
a vital role in apoptosis, inhibition of cell cycle progres-
sion, senescence, differentiation and acceleration of DNA 
repair.64 If a cell undergoes stress to become cancerous, 
p53 is triggered to either repair the DNA damage (eg, 
Growth Arrest and DNA Damage-inducible 45 
(GADD45)) or induce programmed cell death through 
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(Bcl-2-associated X protein) Bax activation.65 However, 
most of the cancer signaling pathways inactivate p53 for 
its protective tumor-suppressor ability, and hence its acti-
vation paves a way for novel chemotherapy.

Recognition of DNA adducts induced by cisplatin is the 
first step towards triggering apoptosis. Molecular mechan-
isms of cisplatin-induced cell death via p53 include activa-
tion of FADD-like interleukin-1β converting enzyme 
(FLICE)-like inhibitory protein ubiquitination.66,67 The 
intra-strand lesions generated by cisplatin-induced DNA 
crosslinks activate the MMR system and in turn trigger 
tyrosine kinase c-Abl, leading to apoptosis.68 So, studies 
show that cisplatin-induced ERK activation is an upstream 
regulator of the p53 response to DNA damage caused by 
cisplatin.69 Though p53 plays a vital role in cisplatin-induced 
DNA damage response, p53-negative cells also respond, 
proposing alternate pathways.58 Increased accumulation of 
p53 has been found in cisplatin-resistant cell lines with 
dysfunctional p53.70

Cyclobutanedicarboxylate (c-Abl) and 
DNA Damage Response to Cisplatin 
Treatment
c-Abl is a non-receptor tyrosine kinase localized in the 
nucleus and cytoplasm involved in the regulation of cell 
growth, survival and morphogenesis. C-Abl is activated in 
response to cisplatin activating JNK/stress-activated pro-
tein kinase (SAPK).71 Activation of c-Abl in response to 
cisplatin led to phosphorylation and stabilization of p73, a 
member of the p53 family, to trigger apoptosis.72

In addition, studies demonstrate that c-Abl can activate 
the p38 MAPK signaling pathway not only via tyrosine 
kinase mechanism but also through MKK6 in cisplatin- 
based therapy. This serves as an interesting evidence of a 
novel signaling mechanism that fails to inhibit the p38 
MAPK pathway alone or in combination with cisplatin.73

Cisplatin Modulation of Gene Expression
It has been reported that several genes are modulated and 
work collectively to induce apoptosis/autophagy of cancer 
cells upon cisplatin treatment. Genes related to drug trans-
portation (CTR1, ATP7A, ATP7B, GSH, Metallothioneins), 
DNA repair system (ERCC1, MLHI, MSH2, POLH, REV3, 
BRCA1, BRCA2, VDAC) and pro-apoptotic and apoptotic 
proteins (Bax, BCl-2, surviving, caspases, MAP Kinases, 
TP53) have shown altered expression.74 Genome-wide stu-
dies through Affymetrix Gene Chip Human Exon 1.0 

Sequence Tag Array have identified six, two, and nine repre-
sentative SNPs that contribute to cisplatin-induced cytotoxi-
city through their effects on 8, 2, and 16 gene expressions. 
These genetic variants contribute to 27%, 29%, and 45% of 
the overall variation, respectively, in cell sensitivity to 
cisplatin.75 cDNA microarray analysis of gene expression 
profiles showed overexpression of GST-pi mRNA, DNA 
repair associated genes ((X-ray repair complementing defec-
tive repair in Chinese hamster cells) XRCC5, XRCC6, 
ERCC5, MutL homolog 1 (hMLH1)), apoptosis inhibitors 
(Insulin-Like Growth Factor (IGFR) type I and II), while 
apoptosis inducer (caspase 3 and Bcl-2 homologous antago-
nist killer (BAK)) were underexpressed.76

Computational Studies with Cisplatin
The anticancer activity of cisplatin has led to several 
experimental and theoretical studies to further understand 
its structural and spectroscopic properties. Various compu-
tational tools are used to study molecular mechanisms in 
cancer biology. Genome-scale metabolic model (GSMM) 
has been used to understand the accurate prediction of 
numerous metabolic phenotypes, including growth rates, 
nutrient uptake rates, gene essentiality, etc.,77 Another 
model called embedded multiscale method has been used 
to analyze hyperthermic treatment of cancer based on 
systemically injected vascular magnetic nanoconstructs 
carrying super-paramagnetic iron oxide nanoparticles.78

Solvation is the critical step in activating cisplatin to its 
active forms, [Pt (NH3)2(OH2) Cl] − and [Pt (NH3)2 

(OH2)2]2
+, wherein chloride ions are displaced by water 

molecules.79 The thermodynamic and kinetic aspects of 
hydration reactions of cisplatin were studied using polar-
izable continuum model revealing the fact that all the 
hydration reactions are slightly endothermic while the 
Gibbs energies of cisplatin hydration amount to 7.0 for 
the chloride and 14.2 kcal/mol for ammonium 
replacement.80 The equilibrium constants of individual 
pKa have been shown by many laboratories to be pKa1 = 
5.5, pKa21 = 7.3 and pKa22 = 6.6 (Figure 4).

Cisplatin undergoes substitution reactions by an associa-
tive mechanism in the case of Pt (II), a common mechanism 
for the transition metals.81 Rate constants for dechlorination 
for the first and second steps and both cis- and trans-con-
formers at T = 318.2 K, pH 2.8–3.4 and 0.1 M NaClO4 

solution were also determined. The concentration of Cl− 

anions, when passing from blood is about 100 mM, and to 
cellular environment is about 10–80 mM.80 Cisplatin is stu-
died to be very hydrophilic, with an octanol–water partition 
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coefficient (log Poct) of less than −2.0.82 This leads to poor 
intestinal absorption of cisplatin, and therefore, intravenous 
administration is suggested.

The high ligand binding affinity of activated cisplatin 
with biomolecules in the cellular environment, like 
guanines in DNA, forms an intrastrand 1,2- d(GpG) com-
plex, peptides (glutathione), or peptides with sulphur-con-
taining amino acids, cysteine, and methionine, or RNAs, 
introduce the prospect of their use in chemopreventive 
application. The preference of cisplatin’s affinity towards 
guanine at the N7-position is established experimentally 
explaining formation of weak hydrogen bond between the 
chloride ligand of cisplatin and the H2N−C6 group of 
adenine and stronger molecular orbital interaction for gua-
nine compared to adenine.83 Free energy reactions of 
cisplatin derivatives with cysteine showed strong thermo-
dynamic stability and exhibited clear constant preferences 
in the whole pH range.84 Further studies were conducted 
to describe the physicochemical properties of cisplatin 
through a model capable of quantitatively describing and 
interpreting the structural and vibrational properties.85

Taken together, cisplatin-induced cancer cell death is 
mediated through a series of biochemical effects and mole-
cular mechanisms that include the formation of DNA 
adducts, induction of reactive oxygen species, genotoxic 
damage, p53 activation, MAPK and JNK signaling, over-
expression of p38, p21 and cell cycle arrest, activation of 
apoptotic genes/proteins, and down-regulation of proto- 
oncogenes and related proteins. Figure 5 presents the 
specific molecular mechanisms of action of cisplatin 
resulting from experimental studies conducted in molecu-
lar pharmacology laboratories including ours.14

Toxicological Effects of Cisplatin
Overview
Modulation of intracellular changes controlling the regulation 
of few signaling pathways and depletion of bioavailable Cu 

pool leads to sensitization of cisplatin transport and triggers 
apoptosis.86 Toxic effects of cisplatin are varied and have 
been an area of concern for many oncologists, practitioners 
and researchers. Cisplatin is a potent chemotherapeutic drug 
associated with several side effects such as myelotoxicity, 
gastrointestinal toxicity, neurotoxicity, ototoxicity, cardiotoxi-
city and nephrotoxicity.87 Common side effects of cisplatin 
include nausea and vomiting.88 Therapeutic strategies such as 
cell cycle inhibitors,89 heavy metal chelating agents,90 

bioflavonoids,91 algae,92 and natural products93,94 have been 
documented to manage the toxicological implications without 
compromising oncolytic action.

Hepatotoxicity
Clinical studies have shown cisplatin-induced liver 
damage either alone or in combination with other 
drugs.95 Oxidative stress played an important role in 
cisplatin-induced hepatotoxicity.96 Cisplatin-induced 
hepatotoxicity resulted in elevated expression of cyto-
chrome P450 leading to reduction of cell viability, 
through reduced GSH, and higher ROS production.97 

Clinical manifestations of liver damage from a histo-
pathology standpoint include high levels of serum ala-
nine transaminase (ALT) and Aminotransferase (AST), 
liver caspase-3 activity, and increased positive staining 
in Terminal deoxynucleotidyl transferase dUTP nick end 
labeling (TUNEL) assay.98

Cardiotoxicity
Several experimental and clinical studies support the 
fact that increased oxidative stress and apoptosis have 
been involved in the cisplatin-mediated cardiotoxicity.99 

Acute cardiovascular toxicity by cisplatin has been 
observed by direct damage of the vascular endothelium 
because of an increase of von Willebrand factor released 
by endothelial cells during chemotherapy.100 Cisplatin- 
induced vascular toxicity is becoming an increasing 

Figure 4 Chemical reactions showing hydrolysis of cisplatin. Reproduced with permission from  Burda JV, Zeizinger M, Leszczynski J. Hydration process as an activation of 
trans- and cisplatin complexes in anticancer treatment. DFT and Ab initio computational study of thermodynamic and kinetic parameters. J Comput Chem. 2005;26(9):907– 
914. Copyright © 2005 Wiley Periodicals, Inc.81
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concern affecting up to 12% of the patients.101 Clinical 
manifestations of cardiotoxicity due to cisplatin che-
motherapy include heart failure, angina, acute myocar-
dial infarction, thromboembolic events, autonomic 
cardiovascular dysfunction, both hypertension and hypo-
tension, myocarditis, pericarditis, and severe congestive 
cardiomyopathy, supraventricular tachycardia, ventricu-
lar arrhythmias, atrial fibrillation, occasional sinus bra-
dycardia and occasional complete atrioventricular block 
reported in the literature.102

Nephrotoxicity
The concentration of cisplatin in proximal tubular epithe-
lial cells of kidney is roughly 5 times the serum concen-
tration leading to cisplatin-induced nephrotoxicity.91 

Clinical and experimental literature on cisplatin nephro-
toxicity states that unbound cisplatin is freely filtered at 

the glomerulus and transported into renal tubular cells of 
kidney.103 Clinical manifestations include tubular damage 
and dysfunction leading to decrease in glomerular filtra-
tion, segmental degeneration, necrosis, and desquamation 
of the epithelial cells in the pars convoluta and pars recta 
of the proximal tubules and the distal tubules.104 Long- 
term cisplatin treatment and injury may cause cyst forma-
tion and interstitial fibrosis.105 Mechanisms of cisplatin 
nephrotoxicity include high expression of calcitonin recep-
tor (Ctr1) and its localization to the basolateral membrane 
of the proximal tubule, suggesting that Ctr1 is an impor-
tant cisplatin uptake mechanism in these cells.106 Another 
investigation showed knockout of the Octamer-binding 
protein 2 (OCT2) gene significantly reduced urinary cis-
platin excretion and nephrotoxicity.107 Low concentrations 
of cisplatin resulted in apoptotic cell death while at higher 
concentrations necrosis has been reported.17,108

Figure 5 Molecular mechanisms of cisplatin-induced cytotoxicity in APL cells.  Reproduced from Kumar S, Tchounwou PB. Molecular mechanisms of cisplatin cytotoxicity in 
acute promyelocytic leukemia cells. Oncotarget. 2015;6(38):40734–40746. Creative Commons license and disclaimer available from: http://creativecommons.org/licenses/by/ 
4.0/legalcode.14
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Other Organ Toxicity
Neurotoxicity is the third and most serious cisplatin 
toxicity.109 Cisplatin treatment caused high levels of Pt– 
DNA binding and apoptosis of dorsal root ganglion neu-
rons. Studies report changes in the circulation of nerve 
growth factor could be responsible to the dorsal root gang-
lia sensory neuron damage induced by cisplatin and return 
to normal levels after recovery from the neurotoxic 
damage.110

Cisplatin-induced ototoxicity affects up to 93% of the 
patients receiving cisplatin chemotherapy. Clinical symp-
toms include progressive and irreversible sensorineural 
hearing loss.111 It is hypothesized that transporters inter-
fere in cisplatin influx, leading to cisplatin-induced oto-
toxicity. Several transporters like copper transporters, 
organic cation transporters, the transient receptor potential 
channel family, calcium channels, multidrug resistance- 
associated proteins, mechanotransduction channels and 
chloride channels have been studied to understand the 
pathophysiology of cisplatin-induced ototoxicity.112

Testicular toxicity has been linked to cisplatin treatment 
with damaging effects on spermatogenesis and testicular 
endocrine function.113 Histopathological studies have 
shown spermatogenic damage, germ cell apoptosis, Leydig 
cell dysfunction and testicular steroidogenic disorder.114,115

Retinal toxicity has also been observed after high-dose 
cisplatin treatment.116 Clinical manifestations such as sec-
ondary glaucoma, internal ophthalmoplegia, retinopathy, 
cavernous sinus syndrome have been observed after 
administration of cisplatin.117

Cisplatin Resistance
Overview of Mechanisms of Resistance
Molecular mechanisms of cisplatin resistance leading 
to therapeutic failure include abnormal gene expres-
sion, reduced intracellular drug accumulation, 
enhanced DNA damage repair, efficient drug efflux, 
altered cell regulatory pathways, abnormal formation 
of blood and lymphatic vasculature promoting tumor 
growth, progression, and metastasis, etc.74 Here below, 
we discuss several events occurring either before or 
after cisplatin interacts with the target leading to drug 
resistance.

Drug Uptake and Efflux for Cisplatin
Reduced uptake and increased efflux are characteristic 
features of cells exhibiting cisplatin resistance. While 

CTR1 plays a major role in reduced uptake, ATP7A/ 
ATP7B and MRP2 regulate increased efflux of the drug 
and metallothioneins may bind and inactivate cisplatin.118

Reduced Uptake
The uptake of cisplatin by a cell is a major contributing 
factor for its resistance. It is estimated that about 50% of 
cisplatin uptake is regulated by CTRs while other half is 
transported via passive diffusion or by other transporters.-
119 Several studies have been conducted to confirm the 
roles of copper transporters (CTR) in cancer resistance to 
cisplatin.120 In vitro studies in leukemia proved that resis-
tant cells had 36–60% reduction in uptake compared to 
sensitive cells.121 Copper, the main CTR1 substrate, home-
ostasis regulates the up-take of cisplatin.122,123 CTR1 is 
happened to be a major protein leading cisplatin uptake.9 

Cisplatin uptake is mediated by the copper transporter 1, 
distributed to various intracellular compartments by the 
copper chaperones, and exported from tumor cells with 
the help of ATP7A and ATP7B.124 Cisplatin binds to the 
metal-binding domain of ATPase in a similar way to that 
in the Atox1, such copper-induced interaction between 
Atox1 and ATPase is the basis of the copper transportation 
in cells.125 Hence, the link between Ctr1 and cisplatin 
transport may clarify cisplatin resistance to some extent 
in humans and suggests ways of regulating sensitivity and 
toxicity to cisplatin.

Increased Efflux
Previous studies conducted on gene expression of Multi- 
Drug Resistance (MDR) proteins found that MRP2 (MDR 
protein 2) as the major ATPase responsible for an 
increased efflux of cisplatin in resistant cells.126 P-glyco-
protein, MRP1 (Multi-Drug Protein 1) and MRP2 (Multi- 
Drug Protein 2) belong to ATP-binding cassette (ABC) 
transporter proteins leading to multi-drug resistance via 
reduced cellular drug accumulation.127

P-Glycoprotein (P-gp) is usually overexpressed in most 
of the cancer types contributing towards chemoresistance.128 

Structurally, P-gp consists of 12 transmembrane regions and 
two ATP-binding sites resulting in efflux of every effective 
drug. P-gp is an ABCB1 member of the ABC (ATP binding 
Cassette) drug transporter family.129 Knockdown of P-gp or 
using P-gp inhibitors (Dofequidar fumarate) have sensitized 
the cells towards cisplatin resistance further confirming their 
role in effective chemotherapy.130 Even though cisplatin is 
not a substrate for P-gp, studies show that P-gp depresses 
cisplatin-induced caspase-3 activation, reduces cisplatin- 
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induced Bcl-2 suppression and substitutes cisplatin-induced 
apoptosis progression, thereby, modulating changes in cell 
regulatory pathways leading to loss of cisplatin sensitivity.131 

A study conducted on cisplatin-resistant cells showed that 
upregulation of miR130a might be associated with MDR1/P- 
glycoprotein-mediated drug resistance. Their results from 
real-time qRT-PCR for miR-130a expression level and 
Western blot analysis for comparison of P-gp expression in 
both cisplatin-resistant and parent cells validated the contri-
bution of P-gp in cisplatin responsiveness. Therefore, 
miR130a might modulate the expression levels of MDR1 
mRNA and P-gp.132 Using natural products like Asiatic 
acid, Hesperetin, etc., as inhibitors for P-gp has proved to 
be effective by modulating NF-kB and MAPK–ERK path-
ways leading to apoptosis, thereby sensitizing cells for cis-
platin therapy.133,134

Increased Inactivation
Upon cisplatin administration, the platinum atom binds to 
endogenous thiols glutathione (GSH) and metallothioneins 
(MTs) forming complex that is effluxed from the cell in an 
ATP-dependent fashion by the glutathione transporter 
family.135 Moreover, prolonged exposure to cisplatin 
leads to overexpression of MT, GSH, and other cellular 
thiols, leading to cell’s resistance to cisplatin.136 

Additionally, their reactivity seems to be faster than that 
of glutathione.137

Role of Metallothioneins 
Several studies have been conducted to establish the relation-
ship between metallothionein and cisplatin resistance in 
variety of cancers. Poor outcome of cisplatin chemotherapy 
has been linked to regulation of metallothionein gene 
expression.138–141 Gene regulation studies via RNA interfer-
ence targeting expression of MT inhibited cisplatin 
resistance.142 Translocation of metallothionein from cyto-
plasm to nucleus seems to be the possible event leading to 
cisplatin resistance by protecting DNA from cytotoxic 
effect.143 Hence, MTs have been shown to play an important 
role in carcinogenesis since they regulate the supply of zinc 
for proteins and the activity of zinc-dependent transcription 
factors to modulate tumor cell growth and proliferation. 
Therefore, chemotherapy targeting metallothionein can be a 
novel proposal to increase the efficacy of cisplatin treatment.

Role of GSH 
Studies have been conducted to identify the role of glu-
tathione transferase (GST) P1-1 that is often 

overexpressed in drug-resistant tumors, as a cis-DDP- 
binding protein.144 The control mechanism involves GST 
P1-1 binding to the c-Jun N-terminal kinase (JNK) to 
inhibit JNK phosphorylation, triggering downstream apop-
tosis signaling. In addition, other studies have reported that 
GST P1-1 knockout mice are sensitive to cisplatin treat-
ment than their wild-type counterparts.145

Increase in Repair of DNA Damage
Formation of DNA adducts leading to cell death signaling 
pathway is often impaired in cisplatin-resistant cells. Not 
only DNA damage repair system is improved but also 
translesion synthesis mediates cisplatin responsiveness.

Nucleotide Excision Repair (NER) System
Usually, NER protects DNA integrity by chopping 
damaged nucleotides followed by DNA synthesis. 
ERCC1-XPF endonuclease is essential for NER of DNA 
lesions performing interstrand crosslink repair.146 

However, early reports suggest that sensitivity to cisplatin 
treatment has been identified with low expression of NER 
proteins, like Xeroderma Pigmentosum group A (XPA) 
and Excision repair cross-complementing-1 (ERCC1), 
lacking NER repair mechanism in several cancers.60 

Overexpression of human ERCC-1 may inhibit a pathway 
specific to the repair leading to cisplatin sensitivity.147 

Hence, ERCC1 expression is considered as a biomarker 
for the prediction of cisplatin resistance.

Mismatch Repair (MMR) System
Genomic stability is maintained by MMR system involves 
the correction of mismatched nucleotides in the comple-
mentary DNA strands via insertions or deletions, arising 
from DNA replication errors. hMLH1 is the human homo-
logue of the yeast mismatch repair gene MLH1.148 Loss of 
expression of the hMLH1 and hPMS2 of MMR complex 
after administration of cisplatin has been observed in cis-
platin resistance types.149 Such loss of hMLH1 protein has 
been linked to methylation of the hMLH1 promoter.148

Translesion Synthesis
Translesion synthesis (TLS) is a DNA damage tolerance 
process by which DNA replicates past DNA lesions. 
Cisplatin adduct resulting in a delayed replication com-
plex will trigger DNA polymerases including POLH, 
POLI, POLK, REV1, REV3 and REV7.150 This will 
result in bypass of the lesion by translesion synthesis 
so that replication can resume. In addition, defects in 
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MLH1 and MSH6 (the MMR proteins) are associated 
with increased level of translesion synthesis, the phe-
nomenon whereby DNA synthesis is not blocked but 
proceeds beyond cisplatin adducts.151 Increased transle-
sion synthesis occurs in cisplatin-resistant cells due to 
overexpression of Human Homolog of the 
Saccharomyces cerevisiae 3 (REV3).152 REV3 is the 
catalytic subunit of TLS polymerase ζ, plays an impor-
tant role in DNA damage response induced by cisplatin. 
Combined knockdown of REV3 and Ataxia 
Telangiectasia and Rad3-related protein (ATR) enhanced 
cytotoxicity in cisplatin-sensitive and -resistant cell 
line.153

Homologous Recombinational Repair
Homologous recombination system repairs breaks in the 
double-stranded DNA. Cisplatin adducts are usually 
recognized in the S Phase of cell cycle and treated by 
HRR. However, HR-deficient cells (mutated BRCA1/2) 
are more sensitive to cisplatin treatment establishing the 
role of BRCA1 and BRCA2 to cisplatin resistance.154 

Moreover, it has been reported that cisplatin resistance 
develops in sensitive tumors because of secondary muta-
tions that compensate for BRCA1/2 deficiency.155

Cytoplasmic Proteins
Studies show that cytoplasmic proteins like voltage-depen-
dent anion channel (VDAC) are found to be responsible 
for the cisplatin-resistant phenotype.156 VDAC is a mito-
chondrial protein with vital and lethal functions. Cisplatin 
binds to mitochondrial DNA as well leading to cell death 
possible direct effect of cisplatin on mitochondria inde-
pendent of nuclear DNA interaction.157

Control Mechanisms for Cisplatin 
Resistance
Although clinical data show high initial response to plati-
num-based chemotherapy, over time neoplasms become 
refractory, increasing mortality due to chemoresistance. 
Cisplatin resistance has been studied extensively for better 
understanding in drug designing and treatment. Previous 
studies showed the evidence of different mechanisms 
responsible for resistance to cisplatin treatment.

Nrf2 Signaling
Cisplatin decreases mitochondrial membrane potential redu-
cing ATP content with an increase in ROS.158 Another study 
introduced HIF-independent, CD133-mediated mechanism 

of cisplatin resistance.159 CD133 is a biomarker for glioblas-
toma (GBM). The molecular mechanism of CD133-depen-
dent resistance could be upregulation of CD133 under 
hypoxic conditions that may lead to activation of the anti- 
apoptotic Akt pathway, resulting in drug resistance.160 

Further molecular studies have revealed the role of nuclear 
factor erythroid 2-related factor 2 (Nrf2) as the sensor of 
oxidative stress, and has been shown to be involved in 
cisplatin resistance and chemoprotection.161–164 Under nor-
mal physiological conditions, Kelch-like ECH-associated 
protein 1 (Keap1)-Nrf2 blocks Nrf2 in the cytoplasm, how-
ever, oxidative stress activates Nrf2 through the PI3K/Akt 
signaling pathway and translocate into the nucleus activating 
the small musculoaponeurotic fibrosarcoma oncogene homo-
logue (sMAF) heterodimerization.165,166 This leads to the 
activation of the genes containing the antioxidant response 
element (ARE), activating the transcription of antioxidant 
enzymes.167 It has been shown that natural products such as 
melatonin and berberine have cytoprotective effect 
from oxidant injuries through activation of the Nrf2 
pathway.161–163 Studies show a regression in cisplatin- 
mediated cytotoxicity in Nrf2-deficient cells via reduction 
in total GSH levels leading to cisplatin resistance.168 A recent 
study has been conducted on micro RNAs (lncRNAs, 
circRNAs, NF-κB, SOX2 and TRIM65) and their regulation 
in cisplatin chemotherapy of lung cancer via targeting var-
ious pathways such as Wnt/β-catenin, Rab6, CASP2, PTEN, 
and Apaf-1 and STAT3 to suppress cisplatin resistance.169 

Further investigations indicated that microRNA-mediated 
regulation of Nrf2 signaling pathway restoring cisplatin sen-
sitivity in human cancer cells is considered as a novel 
therapy.170

Epithelial–Mesenchymal Transition (EMT)
EMT is a physiological process necessary for embryonic 
development. However, cancer cells apply this mechanism 
significantly contributing to chemoresistance. The mechan-
ism involves converting the immobile epithelial cells into 
mobile mesenchymal cells and therefore regulating cell–cell 
adhesion and cellular extracellular matrix.171 This cascade of 
events leads to tumor cell invasion. Cisplatin stimulates 
macrophages to secrete chemokine ligand 20 (CCL20) for 
recruiting T helper cells to maintain the immunosuppressive 
tumor microenvironment facilitating cancer cell progression 
and chemokine receptor 6 (CCR6) enhancing tumor cell 
migration and induces the EMT mechanism, causing EMT- 
mediated drug resistance.172–176
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Autophagy
Autophagy is a “self-eating” mechanism that is important 
for balancing out energy demands during growth and also 
stress. Therefore, autophagy serves as a survival mechan-
ism, where toxic and aged organelles and macromolecules 
are degraded. Studies have shown that prolonged exposure 
to cisplatin impedes autophagy leading to cisplatin 
resistance.177 A recent study has demonstrated that under 
hypoxia, cisplatin-induced apoptosis is significantly 
reduced suggesting autophagy-mediated cisplatin 
resistance.178 Recent studies have also pointed out that 
hypoxia-inducible factor (HIF)-1α and histone deacety-
lases 4 (HDAC4) facilitate the interaction between p53 
and rat sarcoma (RAS) signaling in cisplatin-resistant 
cell lines through dysregulation of apoptosis and 
autophagy.179 GAS5 downregulation is linked to cisplatin 
resistance by inhibiting autophagy resulting in cisplatin 
sensitivity in Non-small cell lung carcinoma (NSCLC) 
cells.180 Reports show that cisplatin-treated ovarian cancer 
cells showed decreased putative serine/threonine protein 
phosphatase (PRPA1)-medicated autophagy.181 In addi-
tion, autophagy is studied as a cytoprotective process dur-
ing cisplatin-induced injury.182,183

Combination Therapy of Cisplatin 
with Other Cancer Drugs
Overview
Drug resistance has been observed in many patients who 
have relapsed from cisplatin treatment due to its cellular 
uptake and efflux of cisplatin, increased biotransformation 
and detoxification in the liver, and increase in DNA repair 
and anti-apoptotic mechanisms. To overcome drug resis-
tance, cisplatin has been commonly used in combination 
with some other drugs in treating a wide variety of 
cancers.

Cisplatin and Paclitaxel
Paclitaxel (Taxol®) chemically synthesized from bark of 
western yew acts as an effective treatment for various 
cancers especially ovarian and breast cancer.184 However, 
because of its low therapeutic index, an improved delivery 
system is deemed necessary. Therefore, a combination 
therapy of intravenous paclitaxel plus intraperitoneal cis-
platin has been employed to improve the survival of ovar-
ian cancer patients.185 Numerous clinical studies have 
been conducted to test the efficacy of this combination in 

various cancers.186,187 The literature search disclosed that 
there exists an inverse relationship between platinum and 
taxane with about 26 genes responsible for this effect.188

Cisplatin and Tegafur-Uracil (UFT)
Tegafur-uracil (UFT) is an oral fluorouracil (FU) com-
posed of tegafur and uracil. Antitumor effects of UFT are 
low in most malignant tumors.189 But UFT is widely used 
in Japan as a postoperative adjuvant chemotherapy 
because of its mild toxicity characteristics.190 Few studies 
have reported that the combination of cisplatin with UFT 
has a significant effect in patients.191–194 While other 
research groups have pointed out that fluorouracil alone 
is a better regimen than in combination with cisplatin.195

Cisplatin and Doxorubicin
In 1960, doxorubicin (DOX) was isolated from 
Streptomyces peucetius. DOX is widely used antineoplas-
tic drugs alone or in combination due to its cytotoxic 
activity.196 The combination effect studied to be an effec-
tive therapy with modest antitumor activity with tolerable 
adverse effects in patients.197,198 Chemotherapy with cis-
platin-doxorubicin significantly enhanced overall survival 
for endometrial cancer patients.199 However, compared 
with cisplatin plus doxorubicin, cisplatin monotherapy 
yielded similar survival among children with standard- 
risk of hepatoblastoma.200

Cisplatin and Gemcitabine
Gemcitabine [2′- deoxy- 2′, 2′- difluorocytidine monohy-
drochloride (β isomer); dFdC] is a novel nucleoside ana-
logue with antiviral effects and efficient for anticancer 
therapy with mild toxicity profile.201 Its mode of action 
associated with the incorporation of gemcitabine dipho-
sphate (dFdCTP) into DNA is most likely considered as 
being the major mechanism by which gemcitabine causes 
cell death.202 Clinical studies have shown that cisplatin 
plus gemcitabine has a significant survival advantage with-
out the addition of substantial toxicity.203,204

Cisplatin and Vitamin D
Not only as a steroid hormone playing critical role in 
mineral homeostasis and bone metabolism, but Vitamin 
D [1α, 25-dihydroxycholecalciferol] also had broad-spec-
trum anti-tumor activities.205 Calcitriol acts through both 
genomic and non-genomic mechanisms.206 Vitamin D 
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compounds are found to be effective against colorectal, 
breast, prostate, ovarian, bladder, lung, skin cancers and 
leukemia.207 The molecular mechanisms behind their cyto-
toxicity involve inhibition of cancer cell proliferation and 
invasiveness, induction of differentiation and apoptosis, 
and promotion of angiogenesis.205 Combination therapy 
of Vitamin D with cisplatin or carboplatin inhibited cell 
proliferation in breast cancer cell lines.208 Studies on SCC 
showed synergy between cisplatin and Vitamin D via 
regulating Lipocalin-2 (LCN2)-modulated NF-κB 
pathway.209 Furthermore, Glutathione Peroxidase 1 
(GPX1) expression has been studied to be crucial in cis-
platin-resistance but can be reduced by vitamin D.210 The 
combination therapy with calcitriol offers evidence and 
support for the further study of calcitriol and its implica-
tions in cancer chemotherapy.

Other Possible Drug Combinations
Scientific evidence shows that combination therapies of 
cisplatin with other drugs have been tested in cancer cell 
lines for more efficacy. Some have shown additive while 
few other responses have been found to be synergistic. 
Table 1 presents the different drug combinations used to 
treat various cancers in combination with cisplatin.

Natural Products
Chemoresistance has become a serious challenge in the 
cancer management. However, natural products, in the 
form of chemo sensitizers have attracted the attention of 
researchers. Natural products for cancer therapy have 
been very promising after thorough clinical and pre- 
clinical investigations. The bioactive components 
derived from these natural products have been tested 
for anti-cancer activity. These compounds work either 
alone or in combination with conventional chemothera-
peutic drugs to alleviate the side effects of the drug 
administered and also protecting healthy cells in vicinity. 
The molecular target for individual product varies, but 
leading to dose and time-dependent cytotoxicity. The 
majority of natural products effectively target cancer 
cells specific ROS-sensing signaling pathways, thus 
attacking tumor development and progression. We have 
compiled the updated literature available on natural pro-
ducts in a tabular form below, describing the role of 
natural products in overcoming cisplatin chemo-resis-
tance (Table 2).

Nanotechnologic Formulations
Effective drug delivery and tumor targeting are of para-
mount importance in clinical oncology. However, the phar-
macokinetics of chemotherapy drugs is often affected by 
factors like poor solubility, loss of bioactive structure, 
inadequate cellular uptake, short plasma half-lives due to 
rapid excretion from kidneys or enzymatic degradation, 
drug resistance, and side effects due to non-specific 
binding.211 Several nanoparticle formulations have been 
developed to address the problems encountered by con-
ventional chemotherapy. More than a few nanoparticle 
platforms are designed with polymers and targeting agents 
enhancing colloidal stability and successful delivery of the 
bioactive compound in cancer cells. Clinically relevant 
therapeutic and diagnostic nanoparticles include two cate-
gories, Organic (liposomes, protein-based, polymeric/ 
micelle) and inorganic (iron oxide, silica, and gold). 

Table 1 Other Potential Cancer Drug Combinations with 
Cisplatin

Drug Cancer Reference

Cyclophosphamide Advanced carcinomas of 

salivary gland

[233,234]

Mitomycin & 

Vindesine

Non–small-cell lung cancer [235]

Etoposide Non–small-cell lung cancer [235,236]

Hydroxyurea Cervical cancer [237]

Docetaxel Gastric cancer [238]

Bevacizumab Non–small-cell lung cancer [239]

Irinotecan Neuroendocrine carcinoma [240–242]
Gastric cancer

Esophageal cancer

Methotrexate Squamous cell carcinoma cancer [243]

Dacarbazine, 

Tamoxifen

Melanoma [244]

Ifosfamide Non–small-cell lung cancer [245]

Mitomycin Non–small-cell lung cancer [246]

Capecitabine Gastric cancer [247]

Bleomycin Ovarian cancer [248]

Epirubicin Hepatocellular carcinoma [249]

Adriamycin Uterine stromal sarcoma [250]

S-1 DCS Gastric cancer [251]
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Inorganic NPs are mainly used for cancer imaging appli-
cations along with thermal ablation of tumors while 
organic NPs are approved for vaccination, hemostasis, 
drug delivery systems, and topical dermal delivery.212

Nanocarriers
Clinical manifestations of a typical tumor site include 
leaky blood vessels and poor lymphatic drainage.213 

Hence, multiple drug resistance occurs because of lack 
of control on drug delivery in conventional 
chemotherapy.129 In spite of non-specific diffusion, a 
nanocarrier can escape into the tumor tissue through 
leaky vasculature via EPR effect offering many advan-
tages over free drugs. Studies have shown that nanopar-
ticle diameter size <200 nm is more effective for 
successful drug delivery.214,215 Not only nanocarriers 
protect the drug from premature degradation, they also 
enhance absorption of the drugs into a selected tissue 
and improve intracellular penetration.216 Targeted drug 
delivery is possible through nanocarriers by conjugating 
a ligand molecule that binds to specific receptors on cell 
surface.217 A recent study has shown that cisplatin- 
loaded human epidermal growth factor receptor 2 

(HER2) targeted poly(lactic-co-glycolic) nano platform 
system increases the therapeutic efficacy by taking 
advantage of overexpressed (HER2) receptors, using 
them as docks for targeted chemotherapy.218 Such spe-
cific-binding leads to receptor-mediated internalization, 
a requisite for drug release inside the cell. A successful 
liposomal formulation of encapsulated into liposome has 
been clinically investigated as lipoplatin.219 The thera-
peutic efficacy of lipoplatin is attributed to its primary 
action targeting tumors and hence, causing a greater 
damage to tumor tissues compared to normal tissues.220 

In addition, preclinical studies with lipoplatin have 
shown less nephrotoxicity compared to 
cisplatin, contributing cytoprotective function to adja-
cent cells.221,222 Also, for the first time, lipid-coated 
cisplatin nanoparticles administered through micronee-
dle in a mice xenograft model significantly induced 
cytotoxicity and apoptosis (apoptotic index of 58.6%). 
This cisplatin-nanoparticle microneedle system did not 
elicit other organ toxicity in the animal model, indicat-
ing that it is bio-safe.223 Another study on human mel-
anoma tumor cells treated with cisplatin nanoparticle 
showed significant cytotoxicity through the “neighboring 

Table 2 Natural Products Used in Reducing Cisplatin Toxicity and Suppressing Its Resistance

Natural Compound Organism Category Signaling Pathway Year Reference

Melatonin Homo sapiens Hormone Nrf2 2020 [161]

Resveratrol Several plants Polyphenol Nrf2 2020 [162]

Berberine Berberis aristata Isoquinoline Alkaloid Nrf2 2019 [163]

Luteolin Reseda luteola Flavonoid Sox2 2016 [252]

Cryptotanshinone Salvia miltiorrhiza Bunge Quinoid Nrf2 2015 [253]

Licorice Glycyrrhiza glabra Hydroalcohol CYP1B1 2017 [254]

Novobiocin Streptomyces niveus Antibiotic HSP90 2008 [255]

Tangeretin Citrus Fruits Flavonoid PI3K/Akt 2009 [256]

Shikonin Lithospermum erythrorhizon Napthoquinones Pyruvate Kinase M2 2017 [257]

Diallyl trisulfide Allium sativum Organosulfide Nrf2 2017 [258]

Curcumin Curcumin longa Polyphenol BRCA 2014 [259]

Vitamin C N/A Ascorbic Acid P53 2016 [260]

Celastrol Tripterygium wilfordii Triterpenoid ERK1/2 and p38 MAPK 2019 [261]

Chinese Bayberry Leaves Myrica rubra Proanthocyanidins HIF-1α and VEGF 2018 [262]

Oleuropein Olea europaea Monoterpenoids Matrix metalloproteinase 2018 [263]

Terrein Aspergillus terreus Cyclopentanone ERK 2017 [264]
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effect” upon administration of 1 mg/kg dosage.224 We 
reviewed recent clinical investigations of cisplatin nano-
particle formulations in a tabular form showing their 
importance as a disruptive technology for effective che-
motherapy (Table 3).

Combination Chemotherapy with Nanoparticles
The combination of drugs with nanoparticles is advantageous 
over single drug administration. Those benefits include abso-
lute delivery of a correct ratio of each drug, synergistic 
therapeutic effects, suppressed drug resistance, and the abil-
ity to control drug exposure temporally.225 Combination 
therapy of doxycycline and cisplatin-loaded polysacchar-
ide-based nanovehicles was found to be synergistic for breast 
cancer treatment.226 This nanoparticle-based drug delivery 
was made possible from HER2 antibody-decorated nanopar-
ticles assembled from aldehyde hyaluronic acid and hydro-
xyethyl chitosan with spherical shape, having an average size 
of ~160 nm and a zeta potential of −28 mV, and showing a 
pH-responsive surface charge reversal and drug release with 
significant enhancement on the cellular uptake.226 Another 
interesting study has shown the delivery of doxorubicin and 

cisplatin via a single polymer-caged nanobin prepared with 
doxorubicin-encapsulated liposomal core protected by a pH- 
responsive cisplatin prodrug-loaded polymer shell.227 The 
cytotoxicity of each drug at low doses exhibits higher 
synergy than combinations of either the free drugs or sepa-
rately nano-packaged drugs. A synergistic cytotoxic effect of 
doxorubicin and cisplatin has been accomplished by design-
ing polymeric nanogels of about <100 nm in size based on 
polyacrylic acid. The experimental results have shown effi-
cacy for the multidrug-resistant MCF-7/ADR tumor with 
reduced side effects.228 Furthermore, systemic co-delivery 
of cisplatin and doxorubicin through hyaluronic acid-mod-
ified amine-terminated fourth-generation polyamidoamine 
dendrimer nanoparticles was shown to be effective treatment 
for breast cancer treatment.229

Combination of cisplatin and a protein phosphatase 2A 
inhibitor (4-(3-carboxy-7-oxa-bicyclo[2.2.1]heptane-2-car-
bonyl)piperazine-1-carboxylic acid tert-butyl ester) using 
PEG-b-PLGA micelles has facilitated to overcome tumor 
resistance to cisplatin.230 This combination has shown to 
prolong drug residence in the blood while minimizing the 
side effects. In vitro studies with mesoporous silica 

Table 3 Cisplatin-Nanoparticle Combinations Under Clinical Trials

Name (Company) Formulation ClinicalTrials.gov 
Identifier

Status Cancer Type

Lipoplatin (Regulon, Inc) PEG- liposome- 

based

NCT02702700 Phase 1 Pleural Malignancies

SPI-77 (ALZA Pharmaceuticals) PEG- liposome- 

based

NCT00004083 Phase II Pilot Ovarian Cancer

NCT00102531 Phase Ib/IIa Osteosarcoma Metastatic to the 

Lung

NCT00004033 Phase II Malignant Pleural Mesothelioma

NCT01861496 Phase I/II Advanced or Refractory 

Tumours

NC-6004 Nanoplatin (NanoCarrier Co., 

Ltd)

Polymeric -Micelles NCT00910741 Phase I/II Pancreatic Cancer

AroplatinTM (Aronex Pharmaceuticals) Liposomes NCT00316511 Phase 1 B-Cell Lymphoma

NCT00081536 Phase I/II Colorectal Cancer

NCT00081549 Phase I/II Metastatic Pancreatic Cancer

NCT00043199 Phase II Colorectal Cancer

NCT00057395 Phase I/II Solid Malignancies

NCT00004033 Phase II Malignant Pleural Mesothelioma

LiPlaCis (LiPlasome Pharma) Liposome Based NCT01861496 Phase I/II Advanced or Refractory 
Tumours
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nanoparticles loaded with cisplatin and phthalocyanine has 
been evaluated for its potential treatment efficacy in HeLa 
cells as nanocarriers.231 The confocal microscopy experi-
ments presented that the silica nanomaterials can be effec-
tively internalized in HeLa cells. The in vitro and in vivo 
studies with oligonucleotides assembled Au nanorod for 
combination remote-controlled drug delivery of 

doxorubicin and cisplatin have reported significant cell 
toxicity and controlled solid tumor growth, respectively. 
The design included a complementary DNA (cDNA) with 
the 5′ amine functional group assisted to chain cisplatin- 
Dox with amide bond.232 We discussed updated literature 
on nanoparticle formulations, in combination with cispla-
tin in Table 4.

Table 4 Nanoparticles Used in Combination with Cisplatin

Cancer Type NP Platform Year Reference

Breast Cancer Doxorubicin- liposomal core cisplatin- polymer shell 2010 [227]

Lung ScFvEGFR-Heparin-Cisplatin NP 2011 [265]

Melanoma Lipid Coated NP 2013 [224]

Prostate Cancer PLGA-mPEG NP 2007 [266]

Hepatocellular Carcinoma Lipid-coated Cisplatin NPs Co-loaded with miRNA-375 2016 [267]

Mice Xenograft Lipid Coated Cisplatin NP 2018 [223]

Bladder Carcinoma Gemcitabine Monophosphate NPs and Cisplatin NP 2014 [268]

Non–Muscle-Invasive Bladder Cancer Cisplatin loaded poly L-aspartic acid sodium salt NP 2017 [269]

Human Ileocecal Adenocarcinoma Fucoidan-Cisplatin nanoparticles 2017 [270]

Breast Cancer poly(γ,l-glutamic acid)-Cisplatin NP 2019 [271]

Brain Cancer Cisplatin-Loaded Poly (Butylcyanoacrylate) NP 2019 [272]

Melanoma Losartan microspheres and (PLG-g-mPEG)-cisplatin NP 2019 [273]

Renal Adenocarcinoma Cisplatin-Loaded Polybutylcyanoacrylate NP 2020 [274]

Ovarian Carcinoma Cisplatin-loaded lipid-chitosan hybrid NP 2019 [275]

Colorectal Cancer Alginate nanogel co-loaded with cisplatin and gold NP 2019 [276]

Glioblastoma Cisplatin-loaded NPs with Polyethylene glycol matrix 2017 [277]

Ovarian Carcinoma Cisplatin loaded cysteine-based poly-(disulfide amide) NP 2017 [278]

Breast Cancer Cisplatin loaded Solid Lipid NPs 2020 [279]

Colon Adenocarcinoma Cisplatin and Gold NPs co-loaded into alginate hydrogel 2019 [280]

Glioblastoma Folate/Cisplatin-si-GPX4 in Iron Oxide NP 2020 [281]

Ovarian Carcinoma Cisplatin-loaded PLGA NP 2019 [218]

Hepatocellular Carcinoma Cisplatin-oleanolic acid co-loaded calcium carbonate NP 2019 [282]

Head and Neck Cancer Gold NP coated with glucose and cisplatin 2018 [283]

Human Cervical Cancer Pegylated liposomes loaded with cisplatin and magnetic NP 2018 [284]

Ovarian Carcinoma AS1411 - PEGylated poly(lactic-co-glycolic acid) NP 2018 [285]

Lung Carcinoma EGFR-targeted lipid polymeric NP co-loaded with cisplatin and doxorubicin 2019 [286]
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Conclusions
Cisplatin is a commonly used metal coordination com-
pound that was approved for clinical treatment of various 
cancers. Its molecular mechanism of action primarily 
involves formation of DNA adducts leading to onset of 
programmed cell death through initiation of major signal-
ing pathways. Production of free radicals from ruptured 
cell membrane due to disruption of calcium homeostasis, 
lipid peroxidation, DNA damage, p53 activation, overex-
pression of p38, MAPK and JNK signaling pathways, 
caspase 3 and caspase 9 activation, and down-regulation 
of oncogenes, collectively trigger apoptosis of cancer 
cells. These molecular mechanisms of toxic action consti-
tute that hallmarks of cisplatin bio-activity. However, its 
clinical utilization for cancer treatment has also raised 
safety concerns associated with a number of side effects 
including hepatotoxicity, cardiotoxicity, neurotoxicity, ret-
inal toxicity and other systemic effects. Another cause for 
concern is related to drug resistance associated with the 
alterations in cisplatin uptake and efflux processes; 
increased drug biotransformation and excretion, and 
enhanced DNA repair mechanisms to reduce cisplatin 
toxicity to cancer cells. Both drug resistance and safety 
issues in cancer monotherapy with cisplatin have led to the 
development and implementation of novel therapeutic stra-
tegies that include combination treatments with other can-
cer drugs such as doxorubicin, gemcitabine, paclitaxel, 
vitamin D, and tegafur-uracil, as well as the application 
of nanotechnology-based formulations to enhance cisplatin 
drug delivery to cancer patients.
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