
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Contents lists available at ScienceDirect

Genomics

journal homepage: www.elsevier.com/locate/ygeno

Original Article

CodSeqGen: A tool for generating synonymous coding sequences with
desired GC-contents
Abdulrakeeb M. Al-Ssulamia,b, Aqil M. Azmia,⁎, Muhammad Hussaina

a Department of Computer Science, College of Computer & Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia
b Department of Computer Science, Faculty of Applied Sciences, Taiz University, Taiz, Yemen

A R T I C L E I N F O

Keywords:
Synonymous coding sequence
Sequence analysis
GC-content

A B S T R A C T

Identification of regulatory elements is essential for understanding the mechanism behind regulating gene ex-
pression. These regulatory elements—located in or near gene—bind to proteins called transcription factors to
initiate the transcription process. Their occurrences are influenced by the GC-content or nucleotide composition.
For generating synthetic coding sequences with pre-specified amino acid sequence and desired GC-content, there
exist two stochastic methods, multinomial and maximum entropy. Both methods rely on the probability of
choosing the codon synonymous for usage in regard to a specific amino acid. In spite the latter exhibited un-
biased manner, the produced sequences are not exactly obeying the GC-content constraint. In this paper, we
present an algorithmic solution to produce coding sequences that follow exactly a primary amino acid sequence
and a desired GC-content. The proposed tool, namely CodSeqGen, depends on random selection for smaller
subsets to be traversed using the backtracking approach.

1. Introduction

The two regulatory elements, promoters which are near the coded
area and enhancers which are further upstream or downstream, are DNA
sequences located in the non-coding regions and bind to proteins called
transcription factors. These interactions enable RNA polymerase from
transcribing the related gene to produce mRNA which in turn is trans-
lated to a specific protein. Identifying such sequences is important to
understand the mechanism of regulating gene expression. The occur-
rences of regulatory elements are highly influenced by common features
such as GC-content [1], di-nucleotide profile [2], and codon bias [3,4].
Thus, identifying over/under-represented regulatory elements or
genome-scale patterns relies on generating random sequences that obey
the pre-specified amino acid sequence and GC-content constraints.

There are many tools that are used to generate random sequences
with various constrains. The well-known ones include: SMS [5], FaBox
[6], and GenRGenS [7]. SMS tool generates random coding sequences of
specific length given the translation table. The primary goal of this tool is
evaluating the results of sequence analysis. FaBox is used to construct
random DNA sequences with a predefined nucleotide composition.
GenRGenS creates random sequences with several models, such as
Markov chains, hidden Markov models, weighted context-free grammars,
and others. The sequences generated by GenRGenS are essentially used
for structural motif evaluation. Although, these tools generate random

DNA and coding sequences, none of them are capable of producing
coding sequences given the amino acid sequence and GC-content.

Generating random coding sequences in response to complicated con-
straints is computationally expensive. This is because the number of codons
are 1 ∼ 6 for each amino acid. Thus, for a particular protein sequence of
length n, we have to test at most 6n coding sequences to find those satisfying
the desired amino acid sequence and GC-content constraints. That is, the time
complexity is exponential with respect to the length of amino acid sequence.
Currently, there are two solutions to solve this problem, multinomial [8,9]
and NullSeq [10]. Multinomial method chooses the synonymous codon C of
amino acid a with probability Pa(C) given the nucleotide composition. The
probability Pa(C) is computed as a normalized product of probability dis-
tribution of the individual nucleotides within the codon C. As shown in [10],
the multinomial method generates unbiased coding sequences. A more re-
stricted method was presented recently, which the authors named NullSeq.
NullSeq [10] uses the maximum entropy approach where the synonymous
codon usage probability is derived from a strict function that expresses the
expected GC-content in the reference amino acid sequence. However, ma-
jority of the resulting coding sequences defy the GC-content constraints.

In this paper, we present CodSeqGen, the first exact solution to
produce synonymous coding sequences with the desired GC-contents
accurately. The proposed method uses the backtracking approach
which is smarter than an exhaustive search, where only promising
candidate solutions are tracked instead of all possible combinations.
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The rest of the paper is divided as follows. Section 2 covers the
implementation details of CodSeqGen. The results of testing our method
on different set of proteins and comparison against NullSeq is in Section
3. The last section concludes the paper.

2. Methods

Our proposed method utilizes the backtracking approach.
Backtracking is more efficient than the exhaustive search when there is a
very large search space where not all combinations of raw components
are inspected. This technique is similar to tree depth-first search and
depends on adding one component to the candidate solution at a time.
Where, as soon as a violation for constraints is detected, the algorithm
discards the current solution and backtracks to the parent to seek another
candidate solution, see e.g., [11]. Since the reference amino acid se-
quence is long, it is infeasible to apply the backtracking approach di-
rectly. This is because a very large amount of memory will be required to
generate the coding sequences. For tackling this problem, we devised a
trick to permute the indices of the reference amino acid sequence. Thus,
random sets are selected without interferences and backtracked to pro-
duce coding sequences with a random distribution for the GC-content
over the whole sequence, Fig. 1 depicts our methodology.

Formally, let P refer to the reference amino acid sequence of length
n, and P refer to the corresponding DNA coding sequence of length 3n.
Assuming φ is the GC-content of P , then the problem is to generate a
random set of synonymous coding sequences each of φ GC-content
which in turn could be translated to P. Let Φ be the set of indices of P,
where Φ = {0,1, … ,n− 1}. By maintaining the set of indices, amino
acids within the reference amino acid sequence can be accessed easily.
According to the proposed methodology in Fig. 1, Φ is divided into
smaller subsets each of size s, with the last subset being a fraction of s.
Thus, the total number of subsets Γ = ⌈n/s⌉. Each subset Gi is con-
structed by randomly selecting n indices, where the subsets are disjoint.
In other words, the constructed subsets must satisfy three conditions.

First, the union of all constructed subsets equals Φ, which is the set of
indices of reference amino acid sequence P (Eq. (1)). Second, the sum of
all subsets' lengths equals the same as the length of P (Eq. (2)). And
finally, the subsets are disjoint (Eq. (3)),
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Fig. 1. The framework of our proposed method (CodSeqGen).
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Setting s= 10, means that an array of size 59,049 on average is
required to hold the coding subsequences. The worst case is that when
all the indices in the subset are pointing to Leucine, Serine, or Arginine.
In this case, the search space will be large, 60,466,176 coding sub-
sequences. But, with backtracking and GC-content constraint, this large
search space will be pruned to about 100,000, which is feasible for
memory limitations. With more complicated constraints such as nu-
cleotide composition, this search space will be further pruned to about
10,000. Our algorithm reads amino acid sequence symbols one by one
from left to right and is checked each time the amino acid is replaced
with the corresponding codon synonyms and the GC-content constraint.
If the total GC-content so far for subset Gi is greater than Ci and the end
of sequence is not reached, the current path is discarded and the al-
gorithm backtracks to find a more promising path. Fig. 2 illustrates the
backtracking with a tree of height s+ 1. The nodes at level 2 represent
the codons of the first amino acid in the subset and the variable Ci refers
to the GC-content so far, where each node has its own Ci that accu-
mulates the GC-content of the path from the second level to the node.
Algorithms 1 and 2 further elaborate our method. Note that the total

GC-content of all subsets equal φ.
For lines 3–13 in Algorithm1, the GC-content is provided either by

the input coding sequence that corresponds to the primary amino acid
sequence or GC-content value in the interval (0,100). In the second
case, initial coding sequence is created and adjusted to contain the
desired GC-content.

Unlike stochastic methods, CodSeqGen is easy to modify for ac-
commodating more complicated constraints such as nucleotide com-
position and di-nucleotide profile by simply altering the GC-content
constraint to a new constraint.

3. Results and discussion

We tested CodSeqGen on a set of proteins in various species:
Human, Saccharomyces cerevisiae S288c, Bovine popular stomatitis
virus, Zika virus, SARS coronavirus, and Hantavirus. Table 1, lists these
proteins with their NCBI accession numbers and their size, in term of
the number of amino acids. For each protein, the GC-content is com-
puted for the reference coding sequence. For instance, the reference
coding sequence of human Titin protein has a GC-content of 44.04%,
whereas Zika virus's reference coding sequence has 49.60%, and so on.
In addition, we measured the possible range of the GC-content for each
amino acid sequence. This range indicates the minimum and maximum
amount of GC-content allowed to create coding sequences. As an ex-
ample, the primary amino acid sequence of human Titin protein has the
possible range 30.42–66.67% of GC-content. Therefore, it is infeasible
to create coding sequences of GC-content less than 30.42% or over
66.67%.

We ran both tools, CodSeqGen and NullSeq [10], to generate 1000
coding sequences given the primary amino acid sequence and the target
GC-content of the reference coding sequence. Results in Table 2 show
that CodSeqGen is more accurate in generating 1000 sequences with
exactly the desired GC-content of the reference coding sequence, while
NullSeq produced coding sequences that do not exactly match the tar-
geted GC-content. For example, the coding sequences that are gener-
ated for Titin protein to match the GC-content of its reference coding
sequence (DNA nucleotides) do not match the target GC-content of
44.04% but rather vary in range 43.54–44.68%. Scatter plots in Fig. 3,
and Fig. 4 for human Titin protein and Zika virus protein, clearly, show
GC-contents of the 1000 generated random sequences by both tools.
These figures evidently display that sequences generated by CodSeqGen
tool fit with the GC-content constraint. All sequences have the precise
GC-contents of 44.04% and 49.60%, as shown by the red vertical lines
in Fig. 3 and Fig. 4, respectively.

Since CodSeqGen tool generates random synonymous coding se-
quences having the exact GC-content, it is important to test how GC-
content is distributed over complete sequences. This was tested by di-
viding the complete sequence into subsets and then computing the GC-
contents for all subsets. Thus, standard deviation (STD) and average
(Avg) are computed for each generated sequence. Finally, a range is
computed over 1000 random coding sequences. The same experiment
was repeated for 1000 random coding sequences generated by NullSeq.
Table 3 lists the ranges of STD and Avg for both tools over 1000 gen-
erated coding sequences in addition to the STD and Avg for the re-
ference coding sequences. Since it is a single reference coding sequence
for each protein, no ranges are shown. Smaller STD means that all
subsets have similar GC-content and larger STD means that GC-content
is non-uniformly distributed over subsets. Thus, larger STD and Avg
ranges means that a diversity of random sequences are produced. Both
tools generate sequences with a good STD and Avg ranges. However,
random sequences by NullSeq originally have GC-content smaller or
greater than targeted GC-contents which cause the ranges of STD and
Avg for subsets GC-content to be a bit larger.

Graphically, Figs. 5-6 depict GC-content distribution for subsets
over five randomly selected sequences on Titin protein by CodSeqGen
(Fig. 5) and NullSeq (Fig. 6). As another example, Figs. 7-8 showFig. 2. Backtracking the coding subsequences for subset Gi.
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subsets' GC-content distribution on Zika virus by CodSeqGen and
NullSeq, respectively. The Figures show that the produced sequences
have different GC-content distributions over the whole sequences as the
sizes of the four quartiles in box plots differ among the five sequences.

As has been shown from results, CodSeqGen is a powerful tool to
achieve the exact target GC-content with all generated synonymous
coding sequences where GC-content is distributed more randomly over
whole generated sequences. Moreover, our tool can be adjusted easily
when we have more complicated constraints and it can be useful in
generating random RNA structures with pre-specified constraints.

4. Conclusion

In this paper, we presented a tool called CodSeqGen. The proposed
tool produces synonymous coding sequences following pre-specified
amino acid sequence and desired GC-content. Our approach uses the
backtracking technique to produce exact coding subsequences and
these subsequences are aggregated to produce the desired synonymous
coding sequences. The proposed tool will help researchers for identi-
fying accurate protein-DNA binding sites and producing sequences with
more complicated constraints.

Table 1
List of proteins in our experiment. The Size refers to that of protein in term of the number of amino acids (aa).

Protein Accession Size GC-content range GC-content of ref coding seq (%)

Titin [Homo sapiens] CAA62188.1 26,926 30.42–66.67% 44.04
Mitotic regulator LTE1 [Saccharomyces cerevisiae S288c] NP_009378.1 1435 24.26–61.37% 37.07
RPO147 [Bovine papular stomatitis virus] NP_957965.1 1289 27.16–64.39% 63.20
E protein, partial [Zika virus] AIC06934.1 504 32.08–67.72% 49.60
S protein [SARS coronavirus] ABF65836.1 1255 27.42–63.58% 38.83
Glycoprotein 1 [Hantavirus] AAB20470.2 1134 28.16–64.10% 39.83

Table 2
The GC-content achieved by NullSeq [10] vs CodSeqGen (our approach) for 1000 generated synonymous coding sequences based on primary re-
ference coding sequences.

Protein Targeted GC-content Achieved GC-content

NullSeq CodSeqGen (%)

Titin Homo sapiens 44.04% 43.54–44.68% 44.04
Saccharomyces cerevisiae 37.07% 35.01–38.86% 37.07
Bovine papular stomatitis virus 63.20% 61.16–65.30% 63.20
Zika virus 49.60% 46.10–53.97% 49.60
SARS coronavirus 38.83% 36.33–41.20% 38.83
Hantavirus 39.83% 37.36–42.59% 39.83

Fig. 3. The GC-contents of 1000 random coding sequences generated by
NullSeq [10], and CodSeqGen on Titin Homo sapiens protein. All the random
sequences generated by CodSeqGen fall exactly with the same GC-content of
44.04% (red vertical line). The distorted random sequences generated by
NullSeq have GC-contents oscillate between 43.54% and 44.68% (scattered
circles in blue). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 4. The GC-contents of 1000 random coding sequences generated by
NullSeq and CodSeqGen on Zika virus protein. Again, all the random sequences
generated by CodSeqGen fall with the same GC-content of 49.60% (vertical
line), while NullSeq generated random sequences with GC-contents that oscil-
late between 46.10% and 53.97% (scattered circles).
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Table 3
Standard deviation (STD) and average (Avg) of GC-contents over subsets for 1000 randomly generated coding sequences using NullSeq and CodSeqGen. The Table
lists ranges, minimum and maximum, of STD and Avg. The subset size is measured in term of the number of aa. The Ref. Seq. denotes the reference coding sequence.

Protein Subset size Ref. Seq. NullSeq CodSeqGen

STD Avg STD Avg STD Avg

Titin Homo sapiens 1000 1.68 44.09 0.57–1.36 43.54–44.69 1.16–1.75 44.03–44.04
Saccharomyces cerevisiae 100 2.11 36.91 0.92–4.68 34.69–39.01 1.22–4.05 36.54–37.28
Bovine papular stomatitis virus 100 2.52 63.20 1.05–4.37 61.17–65.33 2.04–3.13 63.19–63.21
Zika virus 50 6.01 51.03 2.03–13.96 44.21–54.67 2.01–11.08 49.64–52.43
SARS coronavirus 100 3.55 39.04 1.26–4.64 36.48–41.18 2.06–4.40 38.66–39.10
Hantavirus 100 1.54 39.63 1.36–5.75 36.98–42.73 1.59–5.37 38.99–39.96

Fig. 5. Box plot indicates the GC-content distribution for 5 Titin synonymous
coding sequences (Seq-1, …, Seq-5) generated by CodSeqGen over subsets of
size 1000 amino acids (aa) versus GC-content of the reference coding sequence
(the leftmost box). In each box, the central line marks the median, while the
bottom and top edges of the box indicate the 25th and 75th percentiles, re-
spectively. The whiskers extend to the most extreme data points that are not
considered outliers. The latter are marked using solid dots.

Fig. 6. The GC-content distribution for 5 Titin synonymous coding sequences
(Seq-1, …, Seq-5) generated by NullSeq [10] over subsets of size 1000 aa versus
GC-content of the reference coding sequence.

Fig. 7. The GC-content distribution for 5 Saccharomyces cerevisiae synon-
ymous coding sequences (Seq-1, …, Seq-5) generated by CodSeqGen over
subsets of size 100 aa versus GC-content of the reference coding sequence.

Fig. 8. The GC-content distribution for 5 Saccharomyces cerevisiae synon-
ymous coding sequences (Seq-1, …, Seq-5) generated by NullSeq over subsets of
size 100 aa versus GC-content of the reference coding sequence.
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Availability

CodSeqGen executable is available for free download at: https://
github.com/Abdulrakeeb/CodSeqGen
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