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Aim: Quantitative EEG gives valuable information in the clinical evaluation of psychological disorders. The
purpose of the present study is to identify the most prominent features of quantitative electroencephalog-
raphy (QEEG) that affect attention and response control parameters in children with attention deficit
hyperactivity disorder.Methods: The QEEG features and the Integrated Visual and Auditory-Continuous
Performance Test ( IVA-CPT) of 95 attention deficit hyperactivity disorder subjects were preprocessed by
Independent Evaluation Criterion for Binary Classification. Then, the importance of selected features in
the classification of desired outputs was evaluated using the artificial neural network. Results: Findings
uncovered the highest rank of QEEG features in each IVA-CPT parameters related to attention and re-
sponse control. Conclusion: Using the designed model could help therapists to determine the existence or
absence of defects in attention and response control relying on QEEG.

Lay abstract: A model has been developed to identify the most prominent features of QEEG, and electro-
physiological monitoring method, that affect attention and response control parameters in the IVA-CPT
test, a software that helps clinicians evaluate attention deficit hyperactivity disorder. The designed model
can help therapists to determine the existence or absence of defects in attention and response control.
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Attention deficit hyperactivity disorder (ADHD) is one of the most common neurobehavioral disorders,
diagnosed in 3–7% of school-age children (age 5–9 years) [13]. ADHD as a developmental disorder is accompanied
by depression, conduct disorder, anxiety and learning disabilities [4,5]. This disorder is usually diagnosed when the
nature, frequency and duration of the behavioral symptoms such as inattention results changes in the individual’s
functions. These changes are according to the defined criteria of the Diagnostic and Statistical Manual of Mental
Disorders (DSM-IV) and the International Classification of Mental and Behavioral Disorders – 10th revision [68].
The most important symptom in children with ADHD is inability to pay attention, meaning they often make
mistakes in listening to others, following instructions, finishing tasks or maintaining personal belongings. To
control and improve the ADHD rehabilitation, the measurement of attention in the children with ADHD,
especially during primary school, can be helpful [9–11].

Recently, IVA-CPT as a computerized test has been designed according to DSM-IV criteria to evaluate two
universal scales (Scale Response Control and Scale Attention Quotient) in individuals with ADHD [6,11–13]. IVA-
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Figure 1. Flowchart of methodology.ANN: Artificial neural network; IVA: Integrated visual and auditory;
QEEG: Quantitative electroencephalography.

CPT measures different kinds of attention including alternating attention, sustained attention, divided attention,
selective attention, focused attention and also full attention and full response control, separately. Also, this test
measures other related parameters of attention and response control, including vigilance, focus, speed, prudence,
consistency and stamina in both visual and auditory aspects. IVA-CPT as a diagnostic supplementary tool can
help therapists to make an accurate diagnosis and differentiate between the subtypes of ADHD in individuals aged
6 years and up [6,9–11,14–17].

Despite the benefits of IVA-CPT, it is a time-consuming test and may only identify individuals with high risk of
attention deficit. On the other hand, the different levels in the individuals’ computer skills, their motivation and
mood as well as their ability to understand the structure of the test may unpredictably affect the test results. In
addition, this test is a quick evaluation of a short period of time and cannot necessarily represent a general clinical
experience of the individuals with ADHD. Also, it sometimes has a placebo effect that temporarily affects the level
of arousal of individuals and leads to less accurate results [18,19].

Studies have shown that IVA-CPT can be integrated with the EEG, which is one of the diagnostic indicators for
ADHD and can evaluate clinical status of individuals with ADHD [9,20–22]. EEG signals are produced as a result
of neural activity and, according to their frequency, are divided into categories Delta (0.5–4 Hz), Theta (4–8 Hz),
Alpha (8–13 Hz), Beta (13- 30 Hz) and Gamma (>30 Hz) frequency bands [23]. Each frequency band is responsible
for a special behavior [24] and its fluctuations are largely related to various mental conditions and psychological
disorders such as learning disabilities, damaged brain and ADHD [14]. Modern computer systems, by applying
spectral analysis, are able to quantitatively map the EEG signals [25]. With EEG, abnormal patterns of brain activity
are visible easily. But, other patterns that are not visible with the eye can be seen through the computer. QEEG, the
use of a computer to extract information from brain waves, is compared with traditional approaches for tracking
EEG on paper. Based on findings from previous studies, QEEG gives us valuable information about the various
aspects of the functions of the brain waves and so is suitable for clinical evaluation of neuropsychiatric conditions,
such as ADHD [14,26,27]. The purpose of the present study is therefore to identify the most prominent features
of QEEG in the classification of attention and response control parameters by correlation the QEEG with the
IVA-CPT in the children and adolescents with ADHD.

Materials & methods
The methodology of this study is summarized in Figure 1. It consists of four main phases, including data acquisition
from QEEG and IVA-CPT, preprocessing, feature selection and features evaluation.

Participants
In the present study, 95 ADHD subjects with ages 7 through 18 years old participated. Participants visited in two
rehabilitation clinics in Tehran and Mashhad from 2013 to 2016. Based on the clinical evaluation by psychologists
and psychiatrists, they had met the diagnostic criteria of the DSM-IV [28], to include in the ADHD diagnosis.
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Table 1. The demographic characteristics of subjects.
Participants Children and adolescents with ADHD

Hyperactive impulsive Inattentive Combination Unspecified Total

Number Percent Number Percent Number Percent Number Percent Number Percent

Sex Female 5 33% 7 23% 11 25% 0 0% 23 24%

Male 10 67% 23 77% 33 75% 6 100% 72 76%

Age 7–12 9 60% 20 67% 22 50% 4 67% 55 58%

13–18 6 40% 10 33% 22 50% 2 33% 40 42%

ADHD: Attention deficit hyperactivity disorder.

Table 2. The measures, frequency band and brain sites of the top ten QEEG features in corre-
lation with full scale attention and full scale response control.
Full scale attention Full scale response control

Measures Freq Sites Measures Freq Sites

Z-scored FFT
amplitude
asymmetry

� T4, Pz Z-scored
FFT phase
lag

�2 Fp2, T4

Z-scored FFT
amplitude
asymmetry

� Fp1, T3 Z-scored
FFT phase
lag

�2 P3, Cz

Z-scored FFT
amplitude
asymmetry

� F4, T3 Z-scored
FFT phase
lag

� Fp1, T5

Z-scored FFT
amplitude
asymmetry

�1 T3,T6 Z-scored
FFT
absolute
power

�2 Cz

Z-scored FFT
amplitude
asymmetry

�1 T3,T5 FFT
relative
power

�2 T5

Z-scored FFT
amplitude
asymmetry

�1 F4, F7 Z-scored
FFT am-
plitude
asymme-
try

� Fz, T3

Z-scored FFT
amplitude
asymmetry

� Fp2, T3 Z-scored
FFT
absolute
power

� Pz

Z-scored FFT
amplitude
asymmetry

� F3, T3 Z-scored
FFT phase
lag high

� F3, T3

Z-scored FFT
amplitude
asymmetry

� C4, T3 Z-scored
FFT phase
lag high

� T5, T6

Z-scored FFT
amplitude
asymmetry

�1 F3, F7 Z-scored
FFT am-
plitude
asymme-
try

�1 F7, T3

FFT: Fast fourier transform ; Freq: Frequency.

Table 1 shows the demographic characteristics of participants based on gender, the range of ages and the type of
ADHD. The subjects who had a history of other problematic conditions such as prenatal disorders, head injury,
convulsive disorders, CNS diseases and other neurological disorders, were excluded from the study.
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Data acquisition
QEEG

In this phase, before doing EEG test, ADHD subjects took the following steps: washing hair the night before
the test and not using any products like sprays or gels; stop taking any medications before the test according to
the physician opinion (such as stop taking Ritalin 24 h prior [all ADHD samples in this study, did not take any
stimulant drugs before doing the EEG test and thus there was no effect of used drugs on the results]), and also
informing the technician performing the EEG of these medications; avoid eating or drinking caffeine at least 8 h
before the EEG test; having enough sleep night before the test and other recommendations that depend on the
situation of taking EEG, for example, in the rest or task condition. The EEG of participants was measured by using
MITSAR with 19-electrode channels. The reference electrode was linked to ears (A1+A2/2). After removing noise
of all channels, the sampling rate for acquiring data was adjusted in 250 Hz. The EEG was taken in a situation in
which the subjects were relaxed and with closed eyes. The elastic cap with 19 tin electrodes located according to the
international 10–20 system in Fp1, Fp2, F3, F4, F7, F8, Fz, C3, C4, Cz, T3, T4, T5, T6, P3, P4, Pz, O1 and O2
sites [29]. Also Ten20 as an opaque adhesive paste was applied to attach cup electrodes and reduce skin impedance.
The conversion of EEG to quantitative EEG was done by NeuroGuide software. Finally, the QEEG of 95 ADHD
subjects were acquired. The QEEG file of each participant included an excel file of QEEG features and a set of
bmp file of brain maps. In order to centralize excel files of participants, a program was developed in MATLAB
software. Data aggregation with MATLAB software resulted in a dataset in which the rows were ADHD samples
and the columns represent QEEG features as independent variables (95*9961).

IVA-CPT

After the QEEG, the IVA-CPT was administered to ADHD subjects. IVA-CPT provides quotient scores into four
groups consist of response control, attention, attribute and symptomatic [17]. In our study, IVA-CPT data about
response control and attention have been considered. The full scale response control in separate visual and auditory
dimensions is divided to prudence, consistency and stamina scales. Also, the full scale attention in separate visual
and auditory dimensions is divided to vigilance, focus and speed scales. Also, the scales of different type of attention
were considered. In general, 28 IVA-CPT parameters were extracted manually from the IVA-CPT reports (Table 3)
and stored for each participant in addition to QEEG data. For entire process, the MATLAB software (2016 b
version) was used to write a program consisting of a number of functions. Each function had a special task and was
part of the overall process.

Preprocessing
Removing missing data

Missing data means there are no data values for the variable [30,31]. The solutions to handle missing data included
predicting, fitting or deleting missing values. Due to the complexity of the relationship between QEEG features,
prediction or fitting was not possible [32], therefore, in spite of the loss of data, our approach inevitably was to
remove records containing missing values.

QEEG parameters normalization

One of the preprocessing stages is normalization. Normalization is a scaling for the prediction or forecasting
purpose. Because many of the machine learning techniques have better performance with normal data, input data
(QEEG section) were transformed into the 0 to 1 (0.1) range according to the following equation:

X new 



X min

max min

Equation 1. Normalization

IVA-CPT parameters binarization

Because of the insufficient samples for fitting, the binarization was performed to find the absence or present of
defect in IVA-CPT parameters. They were binarized according to the interpretation manual of IVA-CPT [17].
According to interpretation manual of IVA-CPT, obtained quotient score below 90 in each parameter means the
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Table 3. The results of classification accuracy for IVA-CPT parameters using artificial neural network.
IVA-CPT parameters ANN accuracy

Visual-focused attention 100%

Audio-focused attention 100%

Visual-alternating attention 100%

Audio-alternating attention 100%

Visual-sustained attention 100%

Audio-sustained attention 100%

Visual-divided attention 99.2%

Audio-divided attention 99.2%

Visual-selective attention 100%

Audio-selective attention 100%

Visual vigilance (attention) 100%

Visual focus (attention) 100%

Visual speed (attention) 93.7%

Auditory vigilance (attention) 100%

Auditory focus (attention) 100%

Auditory speed (attention) 100%

Full scale attention 100%

Full scale visual attention 100%

Full scale auditory attention 100%

Visual prudence (response control) 98.9%

Visual consistency (response control) 100%

Visual stamina (response control) 99.2%

Auditory prudence (response control) 98.9%

Auditory consistency (response control) 100%

Auditory stamina (response control) 100%

Full scale response control 99.2%

Full scale visual response control 100%

Full scale auditory response control 100%

ANN: Artificial neural network; IVA-CPT: Visual and auditory-continuous performance test

existence of defect in it. So, we organized output as follows:

new output
if IVA CPT parameters

if IVA CPT parameters


 
 

1 90

0 90

,

,





Equation 2. IVA-CPT parameters binarization
To overcome class imbalance, the adaptive synthetic sampling approach was applied. The adaptive synthetic

sampling approach algorithm is built based on Smote methodology to reduce the bias introduced by the class
imbalance. This algorithm shifts classification decision boundary to the minority classes that are difficult to
learn [33].

Features selection with Independent Evaluation Criteria for Binary Classification
One of the problems that might occur in the analysis of high-dimensional data is, the curse of dimensionality. It
refers to the state that the large number of dimensions of features in the samples is not useful in analyzing and results
in a tangible drop in the modeling accuracy. In this situation, not only is increasing the number of dimensions not
helpful, it is also destructive. In order to avoid the curse of dimensionality, feature selection was performed. Feature
selection is an important step in the classification tasks which by reducing the number of features, enables the
classifiers to have a better performance and learn a stronger solution [34,35]. In this study to use the most informative
features of QEEG dataset in output classification, our approach for feature selection was based on the ICA. This
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technique uses the correlation information between each feature and the output based on criterion 1.

Z * *1   ALPHA RHO

In the above relation, RHO is equal to the average of the absolute values of correlation between candidate feature
and previous selected features. The ALPHA represents the controlling element with a default value of 0 (no weight)
which sets the weighting factor. The above technique was called and used in MATLAB software as below.

IDX Z rankfeatures X Group, ,   

The output of this operation is the IDX and Z vectors. IDX is equivalent to the order of important features and
Z represents the value of the correlation coefficient of each attribute to the output.

Features evaluation with artificial neural network
The extracted outputs in previous phase were the effective features in the classification of IVA-CPT parameters.
The extracted features based on the analysis of the ICA had a high correlation with the output of the classification.
In this step, the evaluation of selected features was done by a separate classification technique separately. The
artificial neural network (ANN) as a simulated model of the human brain model, can detect nonlinear relationships
at the desirable level, so it can be an appropriate option for evaluating selected parameters. Hence, 28 neural
network models (for each output, a model) based on multilayered perceptron architecture and back-propagation
algorithm were designed in order to evaluate the effective QEEG parameters in output classification. Multilayer
perceptron as a well-known ANN model is formed of an input, an output and one or more hidden layers. In
multilayered perceptron process for determination of weights and biases, input–output data are used [36–39]. Also,
the back-propagation technique generates the input forward in a network and in an iterative manner computes the
error backward [36,40].

The input of each data model was related to the effective features of the QEEG. Also, each model has one or two
hidden layers fit to the input value and the network output is equal to the binarized IVA-CPT parameters. These
models fall into the process of learning with the Levenberg–Marquardt algorithm. Data samples were randomly
assigned into three sections: train (70%), test (15%) and validation (15%), and participated in the training process.
The accuracy of the network on the classification of samples in the test section was considered as a criterion for the
optimization of the selected characteristics.

Results
The first step in our study was to perform feature selection and ranking. The features of the QEEG dataset were
optimized using the ICA. Then obtained optimal subset of QEEG factors was used to gain a better classification
result for each 28 output. The report of the analysis was a list of the most priority QEEG parameters which had
been ranked based on their importance in the classification of each output. Because of the high numbers of ranked
QEEG factors, the top ten factors were considered. Figure 2 shows the diagrams of ranking of top ten QEEG
features in the classification of full scale attention and response control. Also the measures, frequency band and
brain sites of these ten effective factors are shown in Table 2.

Figures 3 & 4 reflect the frequency of the most important of 280 QEEG features in the correlation with all
28 IVA-CPT parameters. In Figure 3, QEEG features were prioritized according to measures including amplitude
asymmetry, phase lag, absolute power, relative power, power ratio, Z score and frequency bands. As is shown in
Figure 3, FFT relative power in α2 frequency band has the highest degree of importance while FFT absolute power
β2 frequency band was of the least importance. Figure 4 reflects the priority of brain sites in classification of outputs.
For considering top ten QEEG factors, P4 was of the highest importance in brain sites. Also, in order to assess the
selected features, the ANN was used as the simulation model of brain to classify based on selected features. The
results of classification accuracy by using the ANN algorithm for each of outputs are summarized in Table 3. As it
is shown from the Figure 1, the classification accuracy of ANN in audio-divided attention, visual speed (attention),
auditory speed (attention) and visual stamina (response control) is 99.2, 99.2, 96.8 and 98.9%, respectively. The
classification accuracy of other output was 100%.
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Figure 2. The importance of top ten QEEG features in the correlation with full scale attention and full scale
response control.
QEEG: Quantitative electroencephalography.

Discussion
Despite the lack of concrete and fast treatment for ADHD, fortunately many ADHD symptoms including
inattention, hyperactivity, impulsivity and response inhibition can be controlled and improved. By identification
of deficits in each of these symptoms, therapists can focus on a special cognitive treatment and improve the
rehabilitation of children with ADHD. Recently, QEEG clinically has been used in assessment, diagnosis, evaluation
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Figure 3. The frequency of the most important of QEEG features (calculation measures) in the correlation with 28 IVA-CPT parameters.
QEEG: Quantitative electroencephalography.

0

4

6

2

8

10

12

P
3

T
6

T
3

T
5

O
2,

C
z

C
z

F
7,

F
8

P
4

P
z

O
2,

F
8 F
z

F
7,

C
z

F
7

F
3,

T
3

O
1,

P
z

F
4,

O
1

F
4,

F
7

F
8

F
3

T
3,

T
5

C
4

F
p1

,P
4

F
p2

T
3,

P
z

F
p1

,T
4

C
4,

T
5

C
4,

F
7

F
4

O
2

T
4,

P
z

F
4,

T
3

O
1

F
p2

,F
3

F
p2

,F
8

F
p2

,p
4

O
2,

T
5

P
3,

P
z

F
3,

F
8

T
3,

T
4

F
4,

C
z

O
1,

T
5

T
4

C
3,

O
2

F
7,

F
z

F
p1

,F
8

P
4,

T
4

T
5,

C
z

F
3,

P
z

T
3,

T
6

F
7,

P
z

C
3

F
4,

P
z

O
1,

F
z

F
p1

,T
3

F
p2

,T
3

C
4,

T
3

P
4,

T
6

T
5,

T
6

P
4,

F
z

F
p2

,T
4

P
4,

C
z

F
8,

C
z

P
3,

T
4

F
4,

F
8

C
4,

P
4

O
1,

C
z

P
4,

T
3

F
8,

T
3

P
3,

F
z

F
4,

p3
F

4,
p4

F
7,

f8
F

3,
P

4
F

4,
P

3
P

3,
O

2
O

1,
O

2
F

8,
F

z
F

p2
,T

4
T

5,
P

z
F

Z
,P

z
P

3,
T

5
P

4,
T

5
F

3,
F

4
F

p2
,C

3
F

p1
,T

6
F

7,
T

6
F

3,
C

3
C

3,
P

z
P

3,
F

7
T

4,
C

z
C

3,
F

7
F

3,
F

7
C

3,
F

z
T

3,
F

3
T

3,
T

7
C

4,
F

z
P

3,
T

3
F

p2
,C

z
F

4,
C

3
F

p2
,F

7
F

p1
,P

z
F

z,
P

z
C

4,
T

6
F

p2
,F

4
T

6,
F

z
F

4,
T

6
F

3,
P

3
F

p2
,T

6
F

8,
T

6
F

4,
F

z
F

p1
,O

1
F

p1
,F

7
C

4,
C

4
P

3,
C

z
F

p1
,T

5
F

z,
T

3
F

7,
T

3
T

4,
T

6
O

1-
LE

T
5-

LE
C

z,
P

z

QEEG parameters

F
re

q
u

en
cy

Figure 4. The frequency of the most important of QEEG features (brain sites) in the correlation with 28 IVA-CPT parameters.
QEEG: Quantitative electroencephalography.
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and treatment of psychiatric disorders such as ADHD. The QEEG not only has a strong role in differential diagnosis
of ADHD, but also has significant heterogeneity among ADHD-diagnosed children and adolescents [41,42].

The present study was performed to identify the most effective features of QEEG in the determination of
IVA-CPT parameters (attention and response control) in children with ADHD. The study was conducted based
on using the Independent Evaluation Criterion for Binary Classification to analyze the QEEG parameters. Also,
by applying ANN as an optimum technique to evaluate the QEEG features in output classification, the results of
features selection were confirmed.

Previous researches showed the children with ADHD compared with normal subjects, due to the reduced cortical
activity, have EEG differences in brain electrical activity, particularly the increase in δ-band frequency in the fronto-
central region. They also pointed the high accuracy and sensitivity of QEEG in differentiation of ADHD from the
normal group [5,6,25,41–56]. Some other studies highlighted the changes of QEEG patterns in behavioral symptoms
and deficit in cognitive skills such as attention, reaction time and impulsivity [5,6,25,46].

Related to such research, the present study focused on ADHD and highlighted that the EEG patterns are also
different among ADHD samples. These variations are due to the wide heterogeneity and heterogeneity of ADHD
symptoms and also the severity of them [57]. Our analysis, by focusing on attention and response control as two main
ADHD symptoms, confirmed that the ADHD subjects, based on receiving scores in attention and response control
by using IVA-CPT, showed different patterns of electroencephalography. Such variations were shown even in two
visual and auditory dimensions of each IVA-CPT parameter. For instance, in visual-divided attention, the most
effective QEEG feature belonged to FFT relative power in the α-frequency band in T4 site while in audio-divided
attention; Z-scored FFT coherence in β-frequency band in O2 and Cz sites has the high priority.

Epileptic patterns, increase in the power of the δ- and θ-frequency bands, elevated level of δ/β ratio and
reduction in β- and α-frequency bands particularly in posterior regions, are the most consistent findings that have
been observed in many studies related to the analysis of EEG in children with ADHD [4,7,14,41,58–62]. In support of
previous research, this study highlighted and ranked the brain wave frequency bands and also brain sites to indicate
the impact of each of these brain wave frequency bands and sites on the IVA-CPT parameters.

According to Hillard et al. [63], change in EEG bands’ relative power will be accompanied with inattention.
The study of Dongen-Boomsma et al. uncovered the correlation of δ/α and δ/β ratios and the response time [64].
The study of Ogrim et al. supports the results of the study of Dongen-Boomsma et al. and also highlighted that
δ-β ratio may demonstrate the increase in impulsivity [56]. Consistent with these studies, our finding showed the
FFT relative power with the highest frequency, as a main measure in correlation with overall IVA-CPT parameters,
although, in the analysis of each 28 IVA-CPT parameters separately, such result was not supported. As such, the
highest measures in full attention and full response control were Z-scored FFT amplitude asymmetry and Z-scored
FFT phase lag, respectively.

Some studies investigated the correlation between EEG and neuropsychological test. Koehler et al. indicated
a positive relation between δ- frequency band and inattention scores on the self-report scale of individuals with
ADHD. Also, the study of Clarke et al. showed the relation between EEG features and Conners’ Rating Scale.
The result of these studies confirmed the correlation of the δ-frequency band in frontal region with inattention
and also the correlation of δ-β ratio with hyperactivity–impulsivity [65,66]. The study of Kim et al. was one of the
most relevant studies regarding the relationship between IVA-CPT and EEG. In this study, by correlating between
the IVA-CPT and EEG parameters, the EEG power spectrum and the δ-phase γ-phase amplitude measurement
data were analyzed [22]. Similar to such studies, current research, by designing a model of correlation between
QEEG features and IVA-CPT, determined the most priority of QEEG features in the classification of IVA-CPT
parameters. According to previous studies, the age and IQ can affect the power of EEG frequency bands [50,67]. The
present study analyzed the data of all ADHD subjects were included in the study to correlate between QEEG and
IVA-CPT, and no intervention was done on ADHD samples. The impact of age and IQ and other confounding
factors on EEG patterns, was not considered. Also, another limitation of this study was the insufficiency of the
sample size compared with the number of QEEG features. Thus, the results must be considered with caution.

Conclusion & future perspective
Today, it is accepted that EEG provides a potential outlook of the neurophysiology of the brain. EEG studies on
children with ADHD are performed to explore the different aspects of brain functions in them [21]. In the present
study, a model for correlation between QEEG and IVA-CPT was designed. By developing Clinical Decision
Support System based on the designed model and using the system in clinical trials and research studies, therapists
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could be able to determine the existence or absence of defects in IVA-CPT parameters related to attention and
response control, relying on QEEG. As well, they can concentrate on specific cognitive skill such as attention to
suggest an optimal approach for rehabilitate it. We propose further researches about the correlation between QEEG
and neuropsychological tests such as IVA-CPT with more ADHD subjects.

Summary points

Background
• This study identify the most prominent features of quantitative electroencephalography that affect attention

and response control parameters in the children and adolescents with attention deficit hyperactivity disorder.
Materials & methods
• The feature selection was done by Independent Evaluation Criterion for Binary Classification and then was

evaluated by using the artificial neural network.
Results
• The highest rank of QEEG features in each Integrated Visual and Auditory-Continuous Performance Test

parameters were uncovered.
Discussion
• The designed model could be used in other domains which the scanning and checking of the attention and

response control parameters, is important.
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