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Trauma experienced during surgery can contribute to the development of a systemic inflammatory response that
can cause multi-organ dysfunction or even failure. Post-surgical neuroinflammation is a documented phenome-
non that results in synaptic impairment, neuronal dysfunction and death, and impaired neurogenesis. Various
pro-inflammatory cytokines, such as TNFα, maintain a state of chronic neuroinflammation, manifesting as
post-operative cognitive dysfunction and post-operative delirium. Furthermore, elderly patients with post-
operative cognitive dysfunction or delirium are three times more likely to experience permanent cognitive im-
pairment or dementia.We conducted a narrative review, considering evidence extracted from various databases
including Pubmed,MEDLINE and EMBASE, aswell as journals and book reference lists.We found that further pre-
clinical andwell-powered clinical studies are required to delineate the precise pathogenesis of post-operative de-
lirium and cognitive dysfunction. Despite the burden of post-operative neurological sequelae, clinical studies in-
vestigating therapeutic agents, such as dexmedetomidine, ibuprofen and statins, have yielded conflicting results.
In addition, evidence supporting novel therapeutic avenues, such as nicotinic and HMGB-1 targeting and remote
ischaemic pre-conditioning, is limited and necessitates further investigation.
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Research in context

Evidence before this study

Prior to undertaking this narrative review, we considered evidence
extracted from databases including Pubmed, MEDLINE and
EMBASE, as well as researching within high-impact journals in-
cluding, but not limited to: Nature, Cell (Trend in Neuroscience),
Lancet, Critical Care and Annals of Surgery. Furthermore, book
reference lists were reviewed, for example: Perioperative Care of
the Elderly Patient (Barnett &Neves, 2018),Anaesthesia andNeu-
rotoxicity (Morimoto, 2017) and Perioperative Care of the Elderly
(2017).
As this research is a narrative review, the only inclusion criteria
were for clinical and pre-clinical papers to have been written in
the last 5 years (1st January 2013 –1st September 2018). Search
terms included post-operative delirium, post-operative cognitive
decline/dysfunction, systemic inflammatory response syndrome
and post-surgical neuroinflammation.

Added value of this study

This study summarises our current understanding of the mecha-
nisms underlying post-operative delirium and cognitive decline,
in addition to current novel therapeutic approaches to manage
these conditions and promising future pathways that require fur-
ther investigation.

Implications of all the available evidence

With over 300 million surgical procedures performed globally and
an aging population, summarising and increasing the awareness
of deleterious post-surgical neurological sequalae is vital. Alarm-
ingly, evidence suggests that post-surgical cognitive complica-
tions are not simply limited to the immediate post-surgical period
but, in fact, can result in chronic cognitive decline, such as demen-
tia. This paper has numerous implications for practice, policy and
future research:
Future research: encourage further investigation into current novel
medication associated with lower rates of post-operative delirium
and cognitive decline. In addition, by highlighting promising path-
ways with the potential to be targeted, we aim to facilitate new
pre-clinical basic scientific studies by highlighting unexplained
clinical outcomes
Policy and practice: increasing awareness of both the short-term
consequences of post-operative delirium and cognitive decline
(incl. Increased length of hospitalisation and healthcare costs),
as well as the long-term effects (poorer quality of life, increased
morbidity and mortality). By doing so, we aim to increase funding
and international awareness of the clinical, financial and socioeco-
nomic implications of these conditions.
1. Introduction

Global estimates suggest that approximately 312 million major sur-
gical procedures were performed in 2012, representing an increase of
38% over the previous 8 years [1]. Furthermore, accepted annual global
estimates of the frequency of surgery in high-income countries suggest
that over 11,000 surgical procedures are performed per 100,000 indi-
viduals [1,2]. With increasing lifespan and growing populations, the
number of surgical procedures performed annually is likely to continue
to increase. Bearing this in mind, it is critical that the peri-operative
management of surgical patients is optimised to avoid deleterious se-
quelae, such as post-operative neurological complications. The first
large prospective study in 1998 investigating post-operative cognitive
decline following non-cardiac surgery estimated that 12% of patients
develop symptoms of cognitive dysfunction in the post-operative
period [3]. Whilst post-operative cognitive dysfunction is often self-
limiting, recent concerning findings indicate that elderly patients that
develop post-operative delirium or cognitive dysfunction are three
timesmore likely to suffer from permanent cognitive impairment or de-
mentia [4]. Despite global improvements in post-operative outcomes,
our understanding of deleterious neurological sequelae in the post-
operative period remains limited.

2. Surgical trauma and inflammation

2.1. Development of systemic inflammation

An uninhibited early inflammatory response results in a well-
documented disorder known as Systemic Inflammatory Response Syn-
drome (SIRS). Studies have shown that higher surgical trauma and
stress correlates with the development of SIRS and with longer hospital
stay [5,6]. The proposed mechanisms underlying SIRS are summarised
in Table 1. The severity of postoperative SIRS may be predicted by the
increased levels of cytokines observed [7–9]. SIRS can potentially lead
to multi-organ injury (Fig. 1). In this review we will focus on neuroin-
flammation and functional changeswithin the brain after surgery. In ad-
dition, it is important to note that major surgery is always accompanied
with anaesthesia, which possesses its own associated pathological and
functional effectswithin the brainwhich is still under investigation clin-
ically; this is out of the scope of this review.

2.2. Severe SIRS and pathological changes in the brain

2.2.1. Disruption of BBB – The hallmark of neuroinflammation
Following surgical trauma, the innate immune system is activated in

a nuclear factor-κβ (NF-κβ)-dependent manner. This results in the re-
lease of a variety of pro-inflammatory mediators, such as TNFα, which
ultimately causes blood-brain barrier (BBB) compromise and promotes
monocyte-derived migration of macrophages into brain parenchyma
[10]. In turn, intensification of CD11b immunoreactivity occurs, which
has been identified in the surgical phenotype [11]. In addition, a murine
study demonstrated that surgery and anaesthesia both play a role in re-
ducing the levels of tight junction proteins including cloudin, occludin
and ZO-1 [12]. This reduction of tight junction proteins may be caused



Table 1
Pathogenesis of the systemic inflammatory response following surgical trauma and other
disease conditions per se.

Stage Response Result

I Initial localised inflammation to
limit further injury and promote site
healing following surgical trauma,
infection, burns and various other
conditions.

There is initiation of a local
inflammatory reaction via activation
of the innate immune system and
recruitment of immune cells, such
as macrophages and neutrophils, to
the site of injury.

II Activation of the early
compensatory anti-inflammatory
response (CARS) aims to restore
immunologic balance.

CARS results in various physiological
alterations including the reduction
of lymphocytes via apoptosis, a
dampened monocytic response to
cytokine stimulation and cutaneous
anergy. In addition, CARS causes a
decrease in human leukocyte
antigen (HLA) antigen-presenting
receptors on monocytes, as well as
an increased production of specific
cytokines, such as IL-10, that act to
suppress TNF expression.
Ultimately, there are two potential
outcomes for patients in stage II:
a. Restoration of immunologic
balance and dampening of the
pro-inflammatory response
b. An overactive systemic
inflammatory response prevails
over CARS.

III The overactive pro-inflammatory
SIRS reaction predominates over the
anti-inflammatory response.

SIRS causes endothelial dysfunction,
increased microvascular
permeability, profound vasodilation
and activation of the coagulation
system. The uninhibited action of
NF-κβ results in the release of
pro-inflammatory cytokines,
including TNFα and IL-1. Other
cytokines, particularly IL-6,
stimulate the release of acute-phase
reactants such as C-reactive protein
(CRP), whilst activation of the
complement cascade, particularly
via C3a and C5a, promotes
vasodilation and increased vascular
permeability.

IV The anti-inflammatory response is
upregulated in order to compensate
for the vigour of the systemic
pro-inflammatory state.

The CARS eventually becomes
excessive, resulting in profound
immunosuppression or immune
paralysis. This predisposes the
individual to nosocomial or
secondary infections, re-initiating
the vicious cycle of systemic
inflammation.

V Prolonged dysregulation of the SIRS
and CARS response.

This stage is termed immunologic
dissonance. The prolonged action of
pro-inflammatory cytokines, such as
TNFα and IL-1, directly alters
endothelial surfaces, resulting in the
increased expression of tissue factor
(TF). TF initiates the production of
thrombin, promoting coagulation
and also acting as a
pro-inflammatory mediator itself.
TNFα and IL-1 promote the
production of plasminogen activator
inhibitor-1, inhibiting the process of
fibrinolysis. The pro-coagulant state
is further upregulated via the
activation of the complement
cascade, which disrupts the action of
anti-thrombin and activated
protein-C. Persistence of the
pro-coagulant state results in
various complications of
microvascular thrombosis,
ultimately resulting in multiple
organ dysfunction or failure and, in
the most severe cases, death.

549A. Alam et al. / EBioMedicine 37 (2018) 547–556
by an increase of IL-6, which is essential in the metabolism of β-catenin
resulting in a reduction of tight junction proteins [12]. The mechanisms
underlying the development of BBB dysfunction and neuroinflamma-
tion are highlighted in Fig. 2

Surprisingly, mast cells can also be found in the brain and appear to
contribute to the disruption of the BBB following surgery. An increased
number ofmast cells is seen in the hippocampus inmice following tibial
fracture surgery, which is associated with increased permeability of the
BBB [13]. Although it is not yet fully understood,mast cells are shown to
play a role in reducing the levels of tight junction proteins, including
occludin and claudin-5 [13]. Mast cells may also indirectly disrupt the
BBB by upregulating MMP-2 and 9, which subsequently break down
the basal lamina and tight junction proteins of the BBB upon the release
of serine protease tryptase and chymase.

2.2.2. The role of microglia and astrocytes
Both microglia and astrocytes have shown to play a key role in neu-

roinflammation. The release of pro-inflammatory cytokines during
surgery-induced neuroinflammation results in the transformation of
inactivated microglia to an activated, phagocytic state. Studies have
demonstrated that the inhibition of microglia can lead to a reduction
of proinflammatory cytokines including TNFα and IL-1β, as well as
chemokines such as MCP-1, which are all important factors in causing
neuroinflammation [14]. Evidence has shown that astrocytes and mi-
croglia can communicate with each other upon surgical trauma,
resulting in a pro-inflammatory state. It appears that CCL2, a chemokine
also known asMCP-1, is released by astrocytes following surgery,which
binds to its receptor CCR2 in microglia causing activation of microglia
and transformation into M1 phenotype [15]. Ultimately, there is an in-
creased production of pro-inflammatory cytokines such as TNF-α and
IL-1β, causing neuroinflammation and neuronal apoptosis [15]. Astro-
cytes may also contribute to neuroinflammation and neuronal damage
by producing amyloid proteins following surgery. IL-17A is a cytokine
that is upregulated in multiple inflammatory diseases, including neuro-
inflammation following surgery [16,17]. It has been demonstrated that
IL-17A causes an increased production of Aβ1–42 via the TGFβ/Smad sig-
nalling pathway inside the astrocyte, a mechanism that is also observed
in Alzheimer's' disease [18]. It is also important to note that the produc-
tion of reactive oxygen species (ROS) inmicroglia is increased following
surgery, contributing to neuroinflammation [19].

2.2.3. The role of DAMPs
Following surgical trauma, danger-associated molecular patterns

(DAMPs) are released, which adhere to pattern recognition receptors
(PRRs). PRRs are present within the BBB endothelium, and macro-
phages, whilst interaction between DAMPs and PRRs results in further
activation of pro-inflammatory pathways. S100A8 is a cytosolic protein
that acts as a DAMP and is upregulated following surgical trauma, asso-
ciated with microgliosis and macrophage migration into the brain via
the TLR4/MyD88 signalling pathway [20]. Interestingly, S100A8 expres-
sion is reduced in TLR4 knock-out (TLR4−/−)mice, suggesting a loop re-
lationship between activation of the TLR4/MyD88 pathway and the
ligand S100A8.

Other DAMPs, including the high-mobility group box 1 protein
(HMGB-1), are also increased after surgery and cause neuroinflamma-
tion, particularly within the perivascular space and brain parenchyma
[21]. It has been shown that HMGB1 can lead to microglial activation,
which is a crucial step in neuroinflammation, ultimately resulting in
cognitive dysfunction [22]. Furthermore, circulating HMGB-1 from a
distant site can also be found in the brain [23]. These findings suggest
that HMGB-1 may enter the disrupted BBB following surgery and
cause neuroinflammation.

2.2.4. The role of BDNF
Brain-derived neurotrophic factor (BDNF) is a neurotrophin in-

volved in neurogenesis, synaptogenesis and regulating neural



Hepatobiliary system
   •Cholestatsis
   •↓synthetic function
   •Impaired metabolic function
   •Hepatocellular hypoxia

• ↓contractility and ↓ SVR due to 
inflammation
•Hypotension and hypoperfusion
•↑ myocyte apoptosis and cardiac 
remodelling

Cardiovascular system

•↓ intestinal motility
•↑ villous necrosis and apoptosis
•↑ vascular permeability

Intestinal system

•↑ pulmonary vascular permeability 
and cellular infiltration
•Impaired gas exchange
•ALI/ARDS with scarring

Respiratory system

•↓ renal perfusion
•↓GFR and oxygen delivery
•Leucocyte-mediated damage

Urinary system

•↑BBB permeability
•Direct cytokine-mediated neuronal injury
•Activation of microglia
•Delirium and long term cognitive 
dysfunction

Nervous system

Fig. 1. End organ effects of postoperative systemic inflammatory response syndrome (SIRS). Surgical dissection and its associated trauma cause cell death which, in turn, results in the
release of intracellular components into the extracellular space. These include immunogenic compounds such as RNA and DAMPs (HMGB-1, ATP and Histone) which bind to and
activate specific toll-like receptors (TLRs), driving the NFκB mediated transcription of pro-inflammatory cytokines. Furthermore, activated T cells release pro-inflammatory mediators
and can cause direct cytotoxicity. These processes result in tissue injury, oedema and inflammation and ultimately damage organs. ALI, acute lung injury. ARDS, acute respiratory
distress syndrome. BBB, blood brain barrier. GFR, glomerular filtration rate. SVR, systemic vascular resistance.
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plasticity, as well as learning and memory. Reduction of BDNF is seen
in many neurodegenerative diseases including Alzheimer's disease
and Parkinson's disease [24,25]. Interestingly, a decreased level of
BDNF is also observed in parallel with neuroinflammation following
surgery [26,27]. It is likely that surgery causes neuroinflammation
TLR

NF-κB
Surgery

a

microglia

endothelium

DAMPs
PAMPs

neuron

cytokines

Ca2+ 

NO
iNOS

TNF

NF-κB

GSK3

Fig. 2. Mechanism of post-operative neuroinflammation. DAMPs and PAMPs activate the
proinflammatory mediators via NF-κB. This causes the loss of blood-brain barrier (BBB) inte
result, there is a recruitment of circulating lymphocytes into the neuronal tissue, and micro
inducible nitric oxide synthase from the activated microglia and astrocytes. Also, cytokin
neuroinflammation, which potentiates microglial activation and migration and stimulates cel
to neuronal apoptosis, reduced hippocampal neurogenesis, impaired synaptic plasticity and
such as post-operative cognitive dysfunction and increased risk of Alzheimer's disease. BBB, bl
kinase-3. iNOS, inducible nitric oxide synthase. NO, nitric oxide. TLR, toll like receptor.
and further downregulates both BDNF and its receptor TrkB, leading
to a reduction of p-TrkB and inhibition of its downstream signalling
pathway, which is important for learning and memory [28,29]. BNDF
reduction may be mediated by phosphorylation of the glucocorticoid
receptor GR [26].
strocyte

•Neuronal apoptosis
•↓Hippocampal neurogenesis
•Loss of synaptic connections 
•Impaired synaptic plasticity

•↑ risk of Alzheimer’s disease
•Post-operative cognitive dysfunction

α

downstream pathway involved in inducing the production of TNFα, as well as other
grity, due to endothelial dysfunction occurs and increased permeability of the BBB. As a
glia and astrocytes are activated. Cytokines induce the synthesis and release of NO via
es cause an increase in intracellular Ca2+. In addition, GSK-3 dysfunction occurs in
ls to produce NO and TNFα via NF-κB activation. Subsequently, neuroinflammation leads
a loss of synaptic connections. All of this, in turn, leads to neurodegenerative conditions
ood brain barrier. DAMP, danger associated molecular pattern. GSK-3, Glycogen synthase
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2.3. Iron accumulation

Iron is necessary to ensure a normally-functioning CNS, as it is in-
volved in DNA and RNA synthesis, myelin formation, and serves as a
co-factor for multiple reactions [30]. As the brain ages there is also
an accumulation of iron, and this has been associated with neurode-
generative diseases, such as Parkinson's disease and Alzheimer's
disease [31,32]. Iron accumulation may also be a result of surgical
trauma, in which oxidative stress may contribute to POCD in rodents
[34]. Peripheral surgical trauma has been shown to cause changes
in hippocampal iron homeostasis, resulting in post-surgical neuroin-
flammation and cognitive decline, which is attenuated with the ad-
ministration of deferoxamine [35]. Deferoxamine is thought to
reduce the effects of post-surgical hippocampal iron accumulation by
ameliorating oxidative stress, microglial activation and neuronal apo-
ptosis, thus potentially reducing the incidence of POCD [36]. Clinical
studies are required to determine if there is a significant relationship
between iron accumulation and post-operative neurological disease
in humans.

2.4. Surgical stress response and the cholinergic anti-inflammatory
pathway

As discussed, direct traumatic injury results in the activation of local
inflammatory processes, whilst unregulated stress responses may lead
to SIRS andmulti-organ failure. It is important to note that the stress re-
sponse to surgical trauma is comprised of a sequence of physiological
processes involving biochemical alterations and changes to the meta-
bolic, cardiovascular, endocrine and immune systems.

Local tissue injury acts as an afferent stimulus which causes activa-
tion of autonomic and somatic responses. This results in stimulation of
the sympathetic nervous system and activation of the hypothalamic-
pituitary-adrenal (HPA) axis. Following activation of the hypothalamus,
there is an increase in adrenocorticotropic hormone (ACTH) release
from the anterior pituitary and a subsequent increase in cortisol release
from the adrenalmedulla. Cortisol, in humans, and corticosterone, in ro-
dents, are the primary glucocorticoid hormones responsible for the
stress response. Overall, the release of cortisol causes an increase in
blood glucose levels due to significant changes in protein, fat and carbo-
hydratemetabolism. Furthermore, activation of theHPA axis also causes
an increased synthesis of adrenaline and noradrenalinewithin the adre-
nal medulla, resulting in hypertension and tachycardia. Other hormonal
changes include an increase in glucagon, anti-diuretic hormone and
growth hormone, as well as activation of the renin-angiotensin-
aldosterone system.

Activation of the cholinergic anti-inflammatory pathway is a vital re-
sponse in dampening the effects of the sympathetic nervous system fol-
lowing surgical trauma. Cholinergic inhibition is mediated via the vagus
reflex, whereby afferent vagus nerve fibres sense peripheral inflamma-
tory mediators and convey these signals to the dorsal motor nucleus,
subsequently inducing an efferent signal and acetylcholine release
which acts on nicotinic α-7 receptors of macrophages and pro-
inflammatory cells. Vagal activation therefore suppresses local and sys-
temic inflammation by inhibiting the release of pro-inflammatory cyto-
kines, including IL-1β, IL-18 and TNF-α [37]. Following surgical trauma,
the body needs to maintain an intricate balance between an inflamma-
tory state, which is required for physiological processes such as wound
healing, and the cholinergic anti-inflammatory response, which is im-
portant in preventing SIRS and its associated complications [38].

3. Consequences of neuroinflammation

Post-surgical neuroinflammation causes a variety of deleterious
structural and functional alterations within the brain, ultimately
resulting in neurological impairment.
3.1. Synaptic dysfunction

Whilst synaptic impairment has classically been considered a char-
acteristic feature of late stage neurodegeneration, it has more recently
been heralded as an early indicator of dementia progression [39]. Sur-
gical trauma results in the pathological activation of astrocytes, thus
causing the release of pro-inflammatory cytokines and subsequent
synaptic dysfunction [40]. The release of pro-inflammatory mediators
triggers a vicious cycle whereby cytokines cause a reduction in
glutamate-induced Ca2+ increase in astrocytes, thus resulting in a det-
rimental effect on astrocyte reactivity, and subsequent synaptic dys-
function [41]. Synaptic dysfunction has been shown to precede the
development of irreversible neurodegenerative pathology, such as
tauopathies [42].

3.2. Neuronal death

The process of post-surgical neuroinflammation involves several
pro-apoptotic pathways. Activation of the TNF receptor-1 (TNFR1) sig-
nalling pathway results in the promotion of neuronal apoptosis, whilst
increased levels of TNFα correlate with increased hippocampal neuron
apoptosis [43]. In addition to cytokines, the release of NO from activated
microglia and astrocytes further promotes the inflammatory response,
thus resulting in neuronal apoptosis.

Zhang et al. showed that activated mast cells following surgery can
induce microglial activation via MAPK signalling pathway, resulting in
neuronal apoptosis [44]. In addition, activated mast cells are also di-
rectly involved in neuronal apoptosis, as indicated by increased levels
of proapoptotic factors Bax/Bcl-2 and caspase-3 following surgery [44].

Recent studies have identified that peripheral surgery causes a re-
duction in cerebral acetylcholine, thus triggering a complex
neuroinflammatory response [45], as well as subsequent degeneration
of cholinergic neurons. Plaschke et al. have demonstrated that choliner-
gic signallingmediates the secretion of pro-inflammatorymarkers, such
as IL-1β, following surgical stress [45], whilst decreases in cerebral ace-
tylcholine results in an increased secretion of numerous pro-
inflammatory cytokines [46]. Furthermore, increasing acetylcholine
levels by inhibiting acetylcholinesterase causes a sustained anti-
inflammatory effect, which may be a therapeutic option in reducing
post-surgical neuroinflammation [47].

3.3. Neurogenesis impairment

Neurogenesis describes the maturation and differentiation of neural
progenitor cells (NPCs) to neurons. The process of neurogenesis is con-
fined to subventricular zone on the walls of the lateral ventricles, and
the subgranular zone of the dentate gyrus within the hippocampus.
Pro-inflammatory cytokines can inhibit neurogenesis by causing the
death of NPCs and limiting neuronal differentiation. It has been pro-
posed that an age-related decline in hippocampal neurogenesis may
contribute, at least partially, to the cognitive deficits observed in neuro-
degenerative diseases. This may potentially indicate a relationship be-
tween neuroinflammation and the cognitive deficits observed in
conditions such as dementia [48].

3.4. GSK3 dysregulation

Glycogen synthase kinase-3 (GSK3) is a serine/threonine protein ki-
nase, which possesses significant pro-inflammatory effects within the
brain [49]. GSK3 potentiates the activation and migration of microglia,
and stimulates cells to produce pro-inflammatory mediators, including
nitric oxide and TNFα, via the activation of NFκβ-mediated pathways.
In addition, a positive correlation between GSK3 concentration and
BBB permeability has also been demonstrated [50], whilst GSK3 also fa-
cilitates themigration of leukocytes across the BBB. Inhibition of GSK3 is
associated with an upregulation of IL-10 mediated anti-inflammatory
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pathways, as well as a decrease in pro-inflammatory markers [49]. As
GSK3 has demonstrated a role in the pathophysiology of neuroinflam-
mation, it has been reasoned that it may possess a role in the develop-
ment of neurodegenerative pathology, whilst its inhibition may be a
novel therapeutic option to potentially dampen the neuroinflammatory
response associated with surgical trauma.

4. Post-surgical neuroinflammation related neuro-disorders

4.1. Post-operative delirium (POD)

Delirium is an acute confusional state that is characterised by itsfluc-
tuating nature and reversibility, associated dysfunctional mental state
and inattention, and typical time course. A diagnosis is usually made
when the patient conveys differentiating perceptions. POD has an inci-
dence of 37–46%, which differs depending on the type of surgical-
procedure carried out, with reports as high as 51% [51]. Adverse events
are also common; these include increased length of hospital stay and as-
sociated healthcare costs, and increased mortality. Whilst anaesthesia
has classically been considered the major contributor to post-
operative delirium, animal studies indicate that surgery-induced in-
flammation may be a significant cause of POD-associated neurological
impairment [45,47].

The peripheral inflammatory response affects the brain, underlying
the pathogenesis of POD. Cytokines, especially IL-1β, TNF-α and IL-6,
are believed to interact with the brain. The mechanism by which pe-
ripheral cytokines make their way to the brain is either via vagal affer-
ents, via the blood-brain barrier, or through the circumventricular
region [52]. These peripheral cytokines cause microglial-induced cyto-
kine synthesis and result in a cycle of neuroinflammation. A recent
meta-analysis of human observational studies demonstrated that an in-
crease in the concentration of peripheral and cerebrospinal fluid (CSF)
inflammatorymarkers, such as CRP and IL-6, has demonstrated an asso-
ciation with both POD and POCD [53]. Furthermore, an increase in cen-
tral and peripheral levels of S-100β and IL-8 levels has been shown to be
significantly associated with POD, rather than POCD.

Further clinical evidence is required to understand these underlying
mechanisms in humans.

4.2. Post-operative cognitive dysfunction (POCD)

Due to the surgery-induced systemic inflammatory response, pa-
tients may suffer ‘post-operative cognitive dysfunction’ (POCD). POCD
is characteristically observed in the immediate post-operative period
and manifests as a transient disturbance in cognition. This disturbance
presents as a spectrum, from lethargy to social withdrawal and reduced
concentration, to severe cognitive dysfunction. POCDmay also result in
fluctuating consciousness and sleep-wake-cycle irregularities.

Elderly patients have the highest incidence of POCD. Amongst hospi-
talized post-operative patients aged 60 years and older, rates as high as
40% have been observed [55].Whilst a transient fluctuation in cognition
within the post-operative period is often not considered to be particu-
larly concerning, it is important to note that POCD has been shown to
predict the onset of dementia in the future and may contribute to
chronic neurodegeneration, particularly with repeated surgical proce-
dures [4,56].

An increase in pro-inflammatory cytokines intra-operatively poten-
tiates short-term cognitive impairment [57]. In addition, reports from
animal studies have suggested that TNFα-mediated dysfunction of the
BBB, and the subsequentmigration of leukocytes into the hippocampus,
has the ability to cause memory impairment [58].

POCD is more common following major surgery and in the presence
of postoperative complications. Although POCD is traditionally consid-
ered a complication that occurs following cardiac surgery, epidemiolog-
ical evidence suggests that the condition is also prevalent following
various other surgical procedures, including abdominal surgery [59].
Both surgical trauma and neurodegenerative disorders are associated
with increased cytokine release, resulting in numerous preliminary
studies that have suggested that patients with Alzheimer's disease
may be prone to the development of post-operative cognitive decline
[60,61]. Furthermore, this relationship is thought to be due to a periph-
eral inflammatory stress response that promotes a neuroinflammatory
process that results in cognitive dysfunction [62,63]. Increased levels
of CRP and IL-6 have been noted in both POCD and POD, whilst in-
creased levels of neuron-specific enolase (NSE) centrally and peripher-
ally in patients with POCD specifically has been reported [53].

4.3. Other neurodegenerative conditions

Alzheimer's disease (AD) is a chronic neurodegenerative condition
and is the most frequently diagnosed dementia. Both POCD and AD
share the common feature of increased microglial activity, which ulti-
mately results in profound neuroinflammation, cholinergic dysfunction
and synaptic impairment. It is important to consider the fact that these
inflammatory processes are not resolved as efficiently in elderly pa-
tients, in comparison to the younger population. It is hypothesized
that this is due to a process known as microglial priming, whereby the
accumulation of abnormally folded proteins and neurodegenerative
changes result in abnormal microglial activation and multiplication
[64]. Furthermore, thismay explainwhy retrospective studies have sug-
gested that the rates of POCD and post-operative dementia are high in
older patients. For instance, Vanderweyde et al. (2010) states that 1/3
of patients aged 65 and over develop POCD, with 70% of these patients
developing dementia 3 to 5 years later [65].

As discussed previously, GSK3 dysregulation has been hypothesized
to play a role in post-surgical neuroinflammation due to its ability to
control cellular proliferation and migration, inflammation, apoptosis
and immune modulation. However, GSK-3 dysregulation has also
been described as a hallmark of Alzheimer's disease [66,67], thus sug-
gesting a common pathogenesis between stress-induced neuroinflam-
mation and neurodegenerative disorders. Despite this, there have
been limited studies investigating the direct impact of surgical trauma
on the development of dementia. Evidence is predominantly limited
to animal studies [68],whilst a retrospective cohort study demonstrated
an increased 5-year risk of developing AD after coronary artery bypass
grafting compared to patients who underwent transluminal coronary
angioplasty [69]. This is corroborated in other surgeries, including der-
matological, musculoskeletal, genitourinary, ophthalmological, and
ENT, where there is almost a reported two-fold increase in dementia
within 3–7 years [70].

5. Therapeutic options for post-operative neurological
complications

A summary of the potential drugs that may be effective in treating
POCD, as well as their proposed mechanisms, are summarised in
Table 2.

5.1. Novel use of existing licenced medications

5.1.1. Anti-inflammatory drugs
Due to the close association between neuroinflammation and post-

operative neurological complications, several studies have investigated
the effect of both steroids and non-steroid anti-inflammatory drugs.

The therapeutic value of peri-operative corticosteroids is conflicted
in the current literature. Several randomised control trials of peri-
operative methylprednisolone administration failed to show any im-
provement in post-operative cognitive function [71,72]. However,
more recent studies using high dose intra-operative Dexamethasone
(8 mg to 1 mg/kg) have reported a significantly lower rate of POD and
POCD [73,74].
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Parecoxib is a cyclooxygenase (COX)-2 selective NSAID thought to
have good CNS distribution. Animal models of post-operative SIRS
have reported that parecoxib administration results in significantly
lower IL-1β and TNF-α expression, as well as lower Prostaglandin E
levels in the hippocampus [75]. This is associated with better-
preserved cognitive performance. In clinical trials, both single-dose
parecoxib during anaesthesia and regular parecoxib in the post-
operative period are associated with significantly lower rates of POD
and POCD [76,77].

Paracetamol is a centrally acting antipyretic and analgesic thought to
act through inhibition of the COX enzyme in the central nervous system.
A recent animal study by Zhao et al. reported significantly reduced hip-
pocampal IL-1β, IL-6, TNF-α, aswell as better cognitive performance as-
sociated with paracetamol administration [78]. However, this has not
yet been confirmed in human studies.

Ibuprofen works by inhibiting both COX-1 and COX-2. Its inhibition
of COX-1 may be responsible for its unwanted gastrointestinal effects
[79]. Conversely, the inhibition of COX-2 provides ibuprofenwith its an-
algesic, antipyretic, and anti-inflammatory properties. Research onmice
by Huang et al. [80], has demonstrated improved cognitive perfor-
mance, reduced systemic inflammation and glial activation upon the
utilisation of ibuprofen perioperatively. Pre-operative administration
of IV ibuprofen has been shown to improve post-operative cognitive
function in the clinical setting, where the level of cytokines, cortisol,
and catecholamines were reduced [81].
5.1.2. Dexmedetomidine
Dexmedetomidine is a α2 adrenoceptor agonist first licenced for

clinical use in 1999 by FDA, with an initial use for sedation. In animal
models of SIRS and surgical insult, dexmedetomidine has been shown
to reduce the severity of neuroinflammation and neuroapoptosis
[82–86]. Dexmedetomidine administration is associated with reduced
hippocampal expression of IL-1β, IL-6, TNF-α and TLR-4, as well as re-
duced astrocyte and microglial activities [83,87].

Dexmedetomidine has demonstrated promising therapeutic bene-
fits in clinical trials. A randomised control trial by Su et al. reported a
60% reduced rate of post-operative delirium after an infusion of
dexmedetomidine [88]. Furthermore, a recent randomised controlled
trial discovered improved cognitive function and quality of life in
3-year survivors, as well as increasing survival up to 2-years after a
low-dose dexmedetomidine infusion in non-cardiac surgery [89]. In a
meta-analysis of 13 studies with over 1300 patients, Zhou et al. esti-
mated an effect size of 40% reduction in the risk of POCD [90]. In con-
junction with these findings, a meta-analysis of 18 human studies has
also demonstrated a significantly reduced POD risk after an administra-
tion of dexmedetomidine [91].
Table 2
Potential drugs that may be effective in treating POCD and their proposed effects.

Drugs Proposed effects References

Dexamethasone 71, 72
Parocoxib Reduction in IL-1β, TNF-α, prostaglandin E 73, 74, 75
Paracetamol Reduction in IL-1β, TNF-α, IL-6 76
Ibuprofen COX-2 inhibition and a reduction in peripheral

cytokines, cortisol, and catecholamines
77, 78, 79

Dexmedetomidine Reduction in IL-1β, TNF-α, IL-6, TLR-4 80–85
Statins Upregulation of α-secretase non-amyloidogenic

pathway of APP processing
92–97

Ulinastatin Reduction of inflammatory mediators and blood
brain barrier permeability

102, 103

Nicotinic
stimulation

Reduction of TNF-α 36, 44, 46,
104

HMGB-1 Reduction of inflammatory mediators 22, 105,
106

Hydrogen
sulphide donor

107, 108,
109

Nt-p65-TMD Inhibition of NF-κB p65 110
Whilst dexmedetomidine has demonstrated promising results, due
to concerns over its potential side effects on cardiopulmonary system
[92,93], its use needs to be further optimised in various clinical settings.

5.1.3. Statins
Statins, as shown through experimental models, have demonstrated

a reduction in the production of Aβ plaques. This is achieved by down-
regulating neuroinflammation secondary to an interrupted secretase
enzyme function. Theα-secretase non-amyloidogenic pathway of amy-
loid precursor protein (APP) processing is upregulated by statins, in ad-
dition to β-secretase dimerization's inhibition by statins [94–97]. As
such, statins in epidemiological studies have demonstrated a reduction
in AD incidence and POCD development [98,99]. Despite this, it is im-
portant to note that the association between statins and AD in humans
varies across different properties of statins, patient gender and ethnicity
[100]. Furthermore, evidence from both observational and randomised
trials have produced conflicting results, with no well-powered high-
quality data indicating a significant reduction in dementia with statin
use, including the Medical Research Council (MRC) and British Heart
Foundation (BHF) Heart Protection Study [101], pravastatin in elderly
individuals at risk of vascular disease trial (PROSPER) [102]and
Cochrane review and analysis [103]. Whilst these studies are dated,
they provide the most robust and well-powered evidence regarding
the relationship between statins and cognitive impairment.

5.2. Novel therapeutic targets

Ulinastatin is associated with reduced circulating inflammatory me-
diators and reduced blood brain barrier permeability in animal models
of SIRS [106]. A recent meta-analysis of 5 studies and over 450 patients
has reported a 60% reduction in the rate of POCD [107].

Nicotinic stimulation, in the form of a selective α7 nicotinic acetyl-
choline receptor agonist, has demonstrated improved hippocampal-
associated memory deficits and neuroinflammation. The proposed
mechanism involves the modulation of nuclear factor-kappa B (NF-
κB) activity in monocytes, as well as the attenuation of oxidative stress
responses by downregulating nicotinamide adenine dinucleotide
phosphate's (NADPH) signalling [108], and the eventual inhibition of
TNF- α [37]. Furthermore, it has been suggested that utilising
procholinergic drugs, such as physostigmine, may also be therapeutic
options in downregulating SIRS and neuroinflammation [45,47].

High mobility group box 1 (HMGB-1) is a DAMP that interacts with
TLR-4 to induce the expression of NFκB and other inflammatory media-
tors, as well as being involved in the recruitment of bone marrow de-
rived macrophages. In animal studies, administration of HMGB-1 has
been shown to lead to memory impairment [109], whilst inhibition of
HMGB-1 production and administration of anti-HMGB-1 antibodies
are both associated with reduced neuroinflammation and better cogni-
tive function [22,110].

Although hydrogen sulphide donors are toxic at high concentrations,
research in recent years suggests that at smaller doses they may have
possesscytoprotective effects [111,112]. Several animal studies have
demonstrated that pre-treatment with sodium hydrosulphide is associ-
ated with significantly reduced SIRS-induced neuroinflammation and
cognitive impairment [113].

Inhibition of NF-κB p65 activation using the cell-penetrating fusion
protein, nt-p65-TMD, regulates and attenuates post-surgical systemic
inflammation [114]. These preliminary results indicate that NF-κB p65
inhibition may be a potential future therapeutic option in the preven-
tion of POCD.

5.3. Other novel approaches

Remote ischaemic preconditioning (rIPC), a technique whereby
blood flow to a limb is repeatedly impaired, has shown promising neu-
roprotective results. Rat studies have demonstrated that the rIPC is
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neuroprotective against cerebral ischaemia by altering peripheral im-
mune responses [115]. Clinical studies indicate that implementing
rIPC in colon and cardiac surgery results in improved post-operative
cognitive function [116,117]. Improved cerebral blood flow is believed
to play a part in this neuroprotection, as mediated by circulating nitrite
and its associated nitrosylation of complex I [118]. In addition, clinical
studies also suggest that rIPC prevents the deterioration of short-term
post-operative cognitive function in cardiac surgery patients [117], as
well as reduces post-operative ischaemic tissue damage in brain tumour
surgery [119]. However, the role of rIPC in neuroprotection has pro-
duced conflicting results, with findings from the multicentre,
randomised RIPHeart (Remote Ischaemic Preconditioning for Heart Sur-
gery) study demonstrating no effect on neurocognitive function or long-
term outcomes in cardiac surgery patients [120].

The termhuman ‘microbiota’ refers to themicrobes, includingbacte-
ria, fungi, arachaea and viruses, found within a specific environment,
whilst the microbiome refers to their respective genomes. It has been
suggested thatmicrobiota is critically involved in normal brain develop-
ment [121,122], whilst changes in gastrointestinal microbiotamay con-
tribute to memory decline and cognitive dysfunction in elderly patients
[ [121,123]. Furthermore, significant differences in microbiota have
been found between healthy, cognitively in-tact individuals and pa-
tients with depression, autism and neurodegenerative disorders
[121,123–126]. In fact, administration of a combination of antimicro-
bials, including amipicillin, meropenum, vancomycin, neomycin and
bacitracin, causes a reduction of gut microbiota and subsequently im-
pairs novel object recognition memory [127]. In addition, the systemic
use of cefazolin, an antibiotic commonly used in the peri-operative pe-
riod, causes changes in gut microbiota resulting in increased inflamma-
tion in the brain and gut, as well as learning impairment and cognitive
dysfunction [128]. Studies exploring specific microbiomic patterns
that may predispose to post-operative cognitive delirium and dysfunc-
tion may allow the therapeutic use of microbiome interference to re-
duce unwanted post-operative neurological sequelae. Furthermore,
avoiding specific combinations of anti-microbial agents may also pro-
vide benefit in reducing post-operative cognitive dysfunction. However,
further pre-clinical and clinical studies are warranted.

6. Concluding remarks and future perspectives

Studies have shown that surgery results in a systemic inflammatory
response,whichmay potentiate neuroinflammation and, in turn, trigger
deleterious neurological sequelae in some patients. Evidence suggests
that post-surgical neuroinflammationmay result in delirium and cogni-
tive dysfunction, as well as long-term, irreversible disorders such as de-
mentia per se.

Various therapeutic agents have been investigated for their neuro-
protective effects, including dexmedetomidine and statins, as well as
other novel agents targeting nicotinic and HMGB-1 pathways. Unfortu-
nately, clinical studies investigating the utility of these agents are cur-
rently limited by number and quality, with dexmedetomidine
demonstrating significant promise in recent studies. In addition, further
investigation of other therapeutic avenues, including remote ischaemic
pre-conditioning and microbiome interference, is required.

Overall, further pre-clinical andwell-powered clinical studies are re-
quired to further investigate the precise pathogenesis underlying the re-
lationship between surgery, neuroinflammation and the development
of neurological disorders, as well as the efficacy and safety profile of
therapeutic agents in ameliorating these post-surgical complications.
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