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Abstract: Recent evidence indicates that maternal dietary intake, including dietary supplements,
during pregnancy and lactation may alter the infant gut or breastmilk microbiota, with implications
for health outcomes in both the mother and infant. To review the effects of maternal nutritional
supplementation during pregnancy and lactation on the infant gut or breastmilk microbiota a
systematic literature search was conducted. A total of 967 studies published until February 2020
were found, 31 were eligible and 29 randomized control trials were included in the qualitative
synthesis. There were 23 studies that investigated the effects of probiotic supplementation, with the
remaining studies investigating vitamin D, prebiotics or lipid-based nutrient supplements (LNS).
The effects of maternal nutritional supplementation on the infant gut microbiota or breastmilk
microbiota were examined in 21 and 12 studies, respectively. Maternal probiotic supplementation
during pregnancy and lactation generally resulted in the probiotic colonization of the infant gut
microbiota, and although most studies also reported alterations in the infant gut bacterial loads, there
was limited evidence of effects on bacterial diversity. The data available show that maternal probiotic
supplementation during pregnancy or lactation results in probiotic colonization of the breastmilk
microbiota. There were no observed effects between probiotic supplementation and breastmilk
bacterial counts of healthy women, however, administration of Lactobacillus probiotic to nursing
women affected by mastitis was associated with significant reductions in breastmilk Staphylococcal
loads. Maternal LNS supplementation during pregnancy and lactation increased bacterial diversity
in the infant gut, whilst vitamin D and prebiotic supplementation did not alter either infant gut
bacterial diversity or counts. Heterogeneity in study design precludes any firm conclusions on the
effects of maternal nutritional supplementation during pregnancy and lactation on the infant gut or
breastmilk microbiota, warranting further research.

Keywords: infant gut microbiota; breastmilk microbiota; microbiome; maternal nutritional supple-
mentation; diet; pregnancy

1. Introduction

The human microbiota is a rich and diverse community of 10 to 100 trillion microbes
including bacteria, archaea, parasites, fungi and viruses. Accumulating evidence indicates
that the human microbiota, in particular the gut microbiota, which represents the largest
reservoir of microorganisms in humans, plays an essential role in health and disease [1].
Changes in maternal diet during pregnancy and lactation have been linked to alterations
in the maternal gut and breastmilk microbiota but also in the infant gut microbiota, with
greater effects observed among breastfed infants compared to formula-fed infants [2]. These
findings indicate that maternal nutrition is a key factor that shapes the infant gut microbiota,
supporting the potential for maternal nutritional interventions to improve health outcomes
and reduce disease risk. Recent advances in biomolecular technologies and bioinformatics
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have enabled a better understanding of the development of the gut microbiota and the
complex commensal and symbiotic human-to-microorganism relationships [1]. These
developments have highlighted three stages where the vertical transfer of microbial species
from mother to infant and the establishment of the infant gut microbiota may occur; in
utero, at birth and through breastfeeding, each route is briefly summarized below.

It has been traditionally believed that the uterus is sterile, with infant gut colonization
occurring from birth, supported by recent evidence indicating that the placenta does
not present a microbiota, though it may harbor microbial pathogens [3]. However, in
contrast, some studies have detected microbial species in the placenta, amniotic fluid, fetal
membranes and umbilical cord, providing evidence that vertical microbial transfer may be
initiated in utero [4]. With the evidence remaining equivocal on the existence of a placental
and/or fetal microbiota, the role of maternal diet during pregnancy on the development of
the infant gut microbiota in utero remains uncertain.

In contrast, there is clear evidence to indicate that infant gut colonization may occur
at birth, with a study demonstrating that the mode of delivery influences the acquisition
and composition of the infant gut microbiota, with differential outcomes between infants
born vaginally compared to those born by caesarean section [5]. While vaginally born
infants present a predominance of bacterial communities similar to those detected in the
mother’s vagina including Lactobacillus and Prevotella, infants born by caesarean section,
present a predominance of bacterial communities detected on the skin surface such as
Staphylococcus and Corynebacterium [6]. This indicates that childbirth may be a critical time
point for vertical transfer of microbial species and initiation of the human microbiota.

The process of labor, whereby the newborn is exposed to both vaginal and fecal
bacterial species was widely accepted as the period for infant microbial colonization [7].
This theory can be challenged with studies demonstrating the presence of bacterial species
including Escherichia coli, Escherichia fecalis and Staphylococcus epidermis in the infant meco-
nium [8]. More recent studies have aimed to identify the origins of the meconium micro-
biota, and have established that it is more closely related to the amniotic fluid compared to
the maternal fecal or vaginal microbiota [9]. This evidence again supports the hypothesis
that infant gut colonization occurs in utero, indicating that maternal diet during pregnancy
may indeed alter the infant gut microbiota.

Finally, breastmilk and the process of breastfeeding have also been identified as key
factors shaping the infant gut microbiota through both the breastmilk microbiota itself and
breastmilk molecules such as human milk oligosaccharides (HMOs), anti-microbial factors
and antibodies [10]. The breastmilk microbiota is a dynamic, complex unit, which evolves
overtime and in close relation to the developing infant gut microbiota [10]. HMOs are
abundant in the breastmilk, and are thought to selectively feed beneficial Bifidobacterium
species in the gut of breastfed infants [11], resulting in a greater abundance of these
bacterial species in breastfed infants compared to formula-fed infants [12]. Reductions in
gut microbiota diversity or species richness have been reported among formula-fed infants
and have been associated with increased future risks of atopic and metabolic diseases
including, diabetes, obesity, and irritable bowel syndrome [13]. There is uncertainty
whether maternal diet or maternal nutritional supplementation can alter the infant gut
microbiota, and whether infant breastfeeding modulates these effects. To address this
question, we conducted a systematic literature search in PubMed, Embase and Web of
Science to summarize and evaluate the findings of these studies and determine whether
reported effects differ by the type of nutritional supplement and infant feeding practice,
and whether changes in the infant gut or breastmilk microbiota were associated with
improved health outcomes.

2. Materials and Methods

This study was performed based on the PRISMA (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses) checklist [14] (Supplemental Table S1). The
protocol has been registered in PROSPERO, registration number: CRD42020167909.
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2.1. Search Strategy

A systematic literature search was conducted using PubMed, Embase and Web of Sci-
ence using combinations, variations and synonyms of the terms “maternal”, “supplement*”,
“breastmilk”, “microbiota”, “infant” and “gut”, to identify relevant studies published up to
February 2020. The full search strategy is given in the Supplementary Material.

2.2. Inclusion and Exclusion Criteria

Randomized controlled trials (RCTs), quasi-randomized controlled studies and cohort
studies were included in the systematic review. Conference abstracts and unpublished
reports were only included if they provided sufficient information regarding the study
design, participant characteristics and stated results, however, single case reports, system-
atic reviews and expert opinions were excluded. Only studies published in the English
language were included. Studies of poor quality of evidence were excluded from the
narrative synthesis after full-text screening if there was concern about the accuracy and
reproducibility of the data provided. The participants included in the studies were women
aged 18 years or older who were randomized to receive nutritional supplements during
pregnancy and/or lactation. All participants included must have provided breastmilk
samples and/or stool samples from their infants. Participants were not excluded based
on their health status, allowing for both infants and women with health conditions such
as mastitis, allergy or eczema, clinically diagnosed during the study or with a family
history to be included. Nutritional supplements were defined as concentrated sources of
nutrients or other substances that have a nutritional or physiological effect and enhance
the normal diet [15]. Thus, the review included interventions with any form of nutritional
supplementation taken during pregnancy; from conception to delivery and/or postnatally;
during lactation. Any studies examining the effects of maternal diet or dietary food intake
were excluded. Nutritional supplements may have been self-administered or prescribed
and given at any dose, duration and frequency. Included studies had a comparator group
of women who either did not consume a supplement during pregnancy or lactation, or who
received a placebo defined as a compound not containing the active nutritional supplement
ingredient and given in the same condition as the supplement.

The studies eligible for inclusion in the review provided information on the effects
of maternal nutritional supplementation during pregnancy or lactation on the infant gut
microbiota and/or the breastmilk microbiota. The outcomes measured comprised any
alterations of the composition, diversity, function and abundance or lack of alterations in
the infant gut microbiota and/or breastmilk microbiota. Details on additional outcomes
were also collated and included any reported differences in clinically diagnosed health
conditions and infant feeding practices during the study.

2.3. Data Extraction and Analysis

Two of the authors (AZ and SO) reviewed all articles and performed the study selection
independently according to the inclusion and exclusion criteria. Disagreements were
resolved by discussion to reach a consensus. The data were extracted and stored on a data
extraction table. Extracted information included: title, year, study design, geographical
location, study population; including the sample size and participant demographics, aims
and/or objectives, intervention and control; including the dose, duration and frequency of
the supplement, study methodology and study results.

Studies were initially appraised individually, before comparing and summarizing
the findings. This allowed for a descriptive synthesis of data, followed by a review by
themes. Generated tables included a summary of the participant characteristics and
the main results for all studies included in the review. The results of all studies were
compared to assess the impact of maternal nutritional supplementation on the infant gut
or breastmilk microbiota. The studies were then examined for links between maternal
nutritional supplementation and health outcomes and whether reported effects were
influenced by infant feeding practice.
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2.4. Risk of Bias and Quality of Information Assessment

The Cochrane Collaboration’s tool [16] was used to assess the risk of bias in the
selected studies. Each type of bias was graded as low, high or unclear based on provided
evidence. The GRADE approach [17] was also used to determine the overall quality of each
study. This grades each study as either high, moderate, low or very low quality of evidence
based on the degree of confidence in the estimate of effect. The approach incorporates
numerous factors including the study design, risk of bias, indirectness of evidence and
inconsistency or imprecision of results to determine the quality of each study.

2.5. Statistical Analysis

Studies included in the review differed widely by type of supplements, duration of
treatment and population characteristics, therefore a meta-analysis could not be performed
on the primary outcomes. However, one sub-group meta-analysis could be performed
on whether maternal probiotic supplementation during pregnancy and lactation results
in the colonization of the breastmilk microbiota by the supplemented probiotic due to
homogeneity across these studies. This meta-analysis was performed using RevMan 5.
An odds ratio (OR) and 95% confidence intervals (CI) were calculated for individual
studies and then a combined estimate OR for the pooled results was generated using a
random-effects method; DerSimonian and Laird inverse variance.

3. Results
3.1. Study Selection and Characteristics

The search from selected databases yielded 965 publications and two studies were
identified through backward chaining. After the removal of 212 duplicates, 753 articles
were screened based on their title and abstract, 722 studies were excluded, resulting in
31 studies assessed for eligibility. After full-text screening, two studies were eliminated
due to inadequate quality of evidence, resulting in 29 studies included in the systematic
review (Figure 1).
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Figure 1. Study selection procedure.

Selected studies were all randomized controlled trials published between 2005 and
2020, including 22 (76%) studies published in the last 10 years. The studies largely took
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place in high-income countries, with the exception of two studies which were both con-
ducted in Malawi; a setting with a high prevalence of maternal and infant malnutri-
tion [18,19]. The study locations covered all six WHO regions and 19 (66%), were con-
ducted in Europe (Figure 2). Ethical approval was sought in 27 of the studies, and four
studies [20–23] failed to mention ethics, leaving their ethical approval status unclear.
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Figure 2. Distribution of the included study’s location sites by WHO region.

3.2. Population Characteristics

All studies included women of reproductive age (18 to 45 years old), however, the
health status and participant demographics differed across the studies. A total of 18 out of
the 29 studies involved women or infants with high risk of atopic disease [23–40]. Of these,
six studies were part of allergy prevention trials [23,25,26,28,29,33], one study specifically
did not exclude women with a history of allergic disease [31] and the remainder, recruited
participants who either had a diagnosis of the atopic condition before recruitment or had
a positive family history for the condition (Figure 3). Conditions included were asthma,
eczema, hay fever, food allergy and allergic rhinitis. Three studies involved lactating
women with health conditions related to breastfeeding [41–43]. Two studies included
women suffering from acute breastfeeding illness [42,43]; women with clinical symptoms of
Staphylococcal mastitis, [42], and women with painful breastfeeding not related to lactational
mastitis [43], respectively (Figure 3). One paper included healthy women with a history
of lactational mastitis after at least one previous pregnancy [41]. In eight studies, selected
participants were healthy pregnant women with no stated health conditions or pregnancy
complications [18–22,44–46] (Figure 4).

Regarding the type of maternal nutritional supplementation, 23 studies administered
probiotic supplementation to the intervention arm [20–22,24–28,30,32–45]. The interven-
tion regime and strain of the probiotic varied greatly, with 10 studies administering a
multi-strain preparation [20,25–28,32,37,38,42,45]. There were 16 different bacterial species
present in the probiotics, however, the most abundant species present was a single strain
preparation of Lactobacillus rhamnosus. There were two studies that examined the effects of
prebiotic supplementation [31,46], while a further two studies supplemented women with
lipid-based nutrient supplements (LNS) [18,19]. The remaining two studies investigated
the effects of maternal nutritional supplementation with vitamin D [23,29].
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All 29 studies were assessed using the GRADE approach and ranked as high, medium,
low or very low study quality (Table 1). This approach incorporates the risk of bias assess-
ment (Supplemental Figures S1 and S2), to make an overall judgement on the study quality.

The reported impact of maternal nutritional supplementation on the infant gut
(Table 2) and breastmilk microbiota (Table 3) are described below. The studies inves-
tigating the effects of probiotic supplementation will be discussed first, followed by those
on the effects of prebiotic, LNS and vitamin D supplementation.
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Table 1. Participant characteristics in included studies (n = 29).

Reference Country Grade Sample
Size (n) Participants Health Conditions

Outcome Assessed
(Breastmilk, Infant Gut

Microbiota or Both)

Abrahamsson et al. [24] Sweden High 232 At least one family member with an allergic disease Allergic disease Both

Avershina et al. [25] Norway Medium 415

Part of the Probiotics in Prevention of Allergy Among
Children in Trondheim study (ProPACT). Pregnant women
≤36 weeks’ gestation, planning exclusive breastfeeding

(EBF) for 3 months

Not restricted to a family
history (FH) of

allergic disease *
Infant gut microbiota

Baldassarre et al. [20] Italy Medium 35 Healthy pregnant women Nil Both

Dewanto et al. [21] Indonesia Medium 70 Healthy pregnant women in their 3rd trimester, not
receiving antibiotics and planning EBF for at least 3 months Nil Breastmilk microbiota

Dotterud et al. [26] Norway High 415 See Avershina et al. [25] Infant gut microbiota

Fernández et al. [41] Spain High 108 Healthy pregnant women with a history of
lactational mastitis Lactational mastitis Breastmilk microbiota

Fonollá Joya et al. [22] Spain Low 291 Breastfeeding women Nil Both

Grönlund et al. [27] Finland High 80

High-risk allergy family; mother had clinical symptoms of
allergy with prick-test-proven reactivity against allergens.

Planning EBF for a minimum of 4 months, followed by
partial/EBF for a further 2 months

Allergic disease Infant gut microbiota

Grześkowiak et al. [28] Finland and
Germany Medium 79

Part of an ongoing allergy prevention study and planning to
EBF for a minimum of 4 months, followed by partial/EBF

for a further 2 months.
Nil Infant gut microbiota

Hjelmsø et al. [29] Denmark High 736 Part of the Copenhagen Prospective Studies on Asthma in
Childhood (COSPAC2010) cohort Nil Infant gut microbiota

Hurtado et al. [44] Spain High 291
Healthy pregnant women who received preventative

antibiotics 48 hours before/after childbirth and had the
intention to breastfeed for 16 weeks

Nil Breastmilk microbiota

Ismail et al. [30] Australia High 98 Doctor-diagnosed allergy Asthma, eczema, food
allergy and allergic rhinitis Infant gut microbiota
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Table 1. Cont.

Reference Country Grade Sample
Size (n) Participants Health Conditions

Outcome Assessed
(Breastmilk, Infant Gut

Microbiota or Both)

Jiménez et al. [42] Spain Medium 20

Clinical symptoms of staphylococcal mastitis including;
breast pain, redness, flu symptoms (fever > 38.5), milk
staphylococcal count higher than 4 log10 CFU/mL and

milk leukocyte count higher than 6 log10 CFU/mL.
Women received antibiotics for 2–4 weeks, but the

antibiotic (which was completed 2 weeks before the
study) did not improve their symptoms

Staphylococcal mastitis Breastmilk microbiota

Jinno et al. [31] Japan Medium 84 Healthy pregnant women. History of allergic disease
was included

Not restricted to history of
allergic disease * Infant gut microbiota

Kamng’ona et al. [18] Malawi Medium 869 Ultrasound confirmed pregnancy < 20 weeks’ gestation Nil Infant gut microbiota

Korpela et al. [32] Finland High 1223 At least one parent had diagnosed allergic disease Asthma, allergic rhinitis,
atopic eczema Infant gut microbiota

Kortekangas et al. [19] Malawi Medium 631 See Kamng’ona et al. [18] Nil

Lahtinen et al. [33] Australia High 122 Part of the Prevention of eczema in infants at high risk of
developing allergic diseases study

Infants had increased risk of
allergic disease Infant gut microbiota

Maldonado-Lobón et al. [43] Spain Medium 148 Painful breastfeeding and milk bacterial
counts >3 log10 CFU/mL

Painful breastfeeding not
associated with
acute mastitis

Breastmilk microbiota

Mastromarino et al. [45] Italy Medium 66 Healthy pregnant women Nil Breastmilk microbiota

Murphy et al. [34] New Zealand High 600 Mother or biological father had a history of
allergic disease Asthma, eczema, hay fever Infant gut microbiota

Rinne et al. [36] Finland High 96 One close relative (mother, father or sibling) with
allergic disease

Atopic dermatitis, allergic
rhinitis, asthma Infant gut microbiota

Rinne et al. [35] Finland High 132 See Rinne et al. [36] Infant gut microbiota

Rutten et al. [37] Netherlands High 123
Pregnant women with diagnosis of allergic diseases or

families in which the biological father, as well as at least
1 sibling, suffers from allergic disease

Atopic eczema, food allergy,
asthma, allergic rhinitis Infant gut microbiota
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Table 1. Cont.

Reference Country Grade Sample
Size (n) Participants Health Conditions

Outcome Assessed
(Breastmilk, Infant Gut

Microbiota or Both)

Shadid et al. [46] Germany Medium 48 Healthy pregnant women with an uncomplicated pregnancy
and aiming for a vaginal delivery Nil Infant gut microbiota

Simpson et al. [38] Norway Medium 252 See Avershina et al. [25] Breastmilk microbiota

Sordillo et al. [23] USA High 880
Part of the Vitamin D Antenatal Asthma Reduction Trial
(VDAART). Infants with a maternal history or biological

father history of allergic disease

Asthma, eczema,
allergic rhinitis Infant gut microbiota

Wickens et al. [39] New Zealand High 423 Woman or biological father had a history of allergic disease.
Healthy women intending to breastfeed Asthma, eczema, hay fever Breastmilk microbiota

Wickens et al. [40] New Zealand High 474 See Wickens et al. [39] Infant gut microbiota

* Participants in the study may or may not have a FH of allergic disease. A FH of allergic disease was not part of the exclusion criteria. ˆ The study did not state their exclusion criteria as part of their methodology.

Table 2. Summary of results of the effects of maternal nutritional supplementation on the infant gut microbiota.

Reference
Intervention

Main Outcome
Outcome

Observed (Yes/No) Main Finding
Supplement Timing Duration

Abrahamsson et al. [24] Probiotic
(single strain) Pregnancy

36 weeks’
gestation–12 months

postpartum
Bacterial counts Yes

Higher counts of Bifidobacteria in the infant stool in the
intervention group; highest at 5–6 days after birth (82% in the

treated vs. 20% in the placebo group, P < 0.001).

Avershina et al. [25] Probiotic
(multiple strain)

Pregnancy
and

lactation

36 weeks’
gestation–3 months

postpartum
Bacterial counts Yes

Children presenting with symptoms of atopic dermatitis not
prevented by probiotic treatment have a different microbiota

with an increased number of Bifidobacterium dentium (P = 0.001).

Baldassarre et al. [20] Probiotic
(multiple strain)

Pregnancy
and

lactation

36 weeks’
gestation–4 weeks

postpartum
Bacterial counts Yes Number of Lactobacilli in the faeces of neonates from the

probiotic group was higher than the control (P < 0.05).

Dotterud et al. [26] Probiotic
(multiple strain)

Pregnancy
and

lactation

36 weeks’
gestation–3 months

postpartum

Bacterial
diversity and

colonization of
the probiotic

Yes (colonization),
no (diversity)

No change in the bacterial diversity. At 10 days and 3 months
postpartum, both the prevalence and abundance of Lactobacillus

rhamnosus (P < 0.005) were significantly increased in the
infant stool.
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Table 2. Cont.

Reference
Intervention

Main Outcome
Outcome

Observed (Yes/No) Main Finding
Supplement Timing Duration

Fonollá Joya et al. [22] Probiotic
(single strain) Lactation

16 weeks of
intervention whilst

breastfeeding
Bacterial counts Yes

Significant correlation was observed in the load of Lactobacillus,
Staphylococcus, Bacteroides and Escherichia coli present in the

infant faeces of supplemented mothers (P < 0.05).

Grönlund et al. [27] Probiotic
(multiple strain)

Pregnancy
and

lactation

2 months before
delivery–2 months

breastfeeding

Colonization of
the probiotic

Yes (after cessation
of supplement), no

(during
supplementation)

Association between maternal probiotic treatment and infant
gut was non-significant during supplementation (P = 0.11 for

Bifdobacterium and P = 0.40 for Bifidobacterium longum) but
significant after cessation of supplementation (P = 0.043 for

Bifidobacterium and P = 0.023 for Bifidobacterium longum)

Grześkowiak et al. [28] Probiotic
(multiple strain)

Pregnancy
and

lactation

2 months before
delivery–2 months

breastfeeding
Bacterial counts Yes

Higher percentages of faecal Lactobacillus/Enterococcus
(P < 0.003) and lower Bifidobacteria levels (P = 0.018) were

detected in the intervention group compared to the
control group.

Hjelmsø et al. [29] Vitamin D3 Pregnancy 24 weeks gestation–1
week postpartum

Bacterial
diversity No

No significant differences were observed between the vitamin D
supplementation group and the control group for the bacterial
diversity at 1 week, 1 month or 1 year postpartum (P = 0.955,

P = 0.865, P = 0.971).

Ismail et al. [30] Probiotic
(single strain) Pregnancy 36 weeks’

gestation–delivery
Bacterial
diversity No

Supplementation did not alter the mean number of peaks in the
infant faeces (AluI 14.4 vs. 15.5, P = 0.17, 95% CI -0.4, 2.5; Sau96I

17.3 vs. 15.8, P = 0.15, 95% CI -3.5, 0.5).

Jinno et al. [31] Prebiotic
Pregnancy

and
lactation

26 weeks’ gestation–1
month postpartum Bacterial counts

Yes (Bifidobacterium
longum) and no
(Bifidobacterium)

No significance in the number of Bifidobacterium in the
intervention group compared to the control (P = 0.50), however,
increased numbers of Bifidobacterium longum in the intervention

group were seen (P = 0.01).

Kamng’ona et al. [18] LNS
Pregnancy

and
lactation

Pregnancy–6 months
postpartum

Bacterial
diversity Yes

Higher alpha diversity (Shannon index P = 0.032), Pielou’s
evenness function (P = 0.043), and increased species richness

(P = 0.08) at 18 months in infants of mothers in the
intervention group.

Korpela et al. [32] Probiotic
(multiple strain) Pregnancy 35 weeks’

gestation–delivery Bacterial counts Yes
Infants of mother’s supplemented and also breastfed had a

twofold increase in abundance of Lactobacilli, and a 29% increase
of Bifidobacteria (P < 0.0001).
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Table 2. Cont.

Reference
Intervention

Main Outcome
Outcome

Observed (Yes/No) Main Finding
Supplement Timing Duration

Kortekangas et al. [19] LNS or MMN
Pregnancy

and
lactation

Pregnancy–6 months
postpartum

Bacterial
diversity No

A higher microbiota maturity and diversity at 6 months was
associated with a lower incidence rate of fever in the following

6 months (P < 0.007 and P < 0.031, respectively).

Lahtinen et al. [33] Probiotic
(single strain) Pregnancy 36 weeks’

gestation–delivery Bacterial counts

Yes (Bifidobacterium
longum and breve),
no (Bifidobacterium

adolescentis and
angulatum)

Bifidobacterium longum group was detected more frequently in
the probiotic group (P < 0.01; prevalence ratio, 1.35; 95% CI,

1.06-1.72). An increased prevalence of Bifidobacterium breve was
also seen (prevalence ratio, 1.39; 95% CI, 0.88-2.21) however,

there was a decreased prevalence of Bifidobacterium adolescentis
(prevalence ratio, 0.64; 95% CI, 0.35-1.19) and Bifidobacterium

angulatum (prevalence ratio, 0.68; 95% CI, 0.30-1.53) in the
probiotic group.

Murphy et al. [34] Probiotic
(single strain)

Pregnancy
and

lactation

35 weeks’
gestation–6 months

postpartum

Bacterial
diversity and

colonization of
the probiotic

Yes (colonisation),
no (diversity)

No significant differences in bacterial diversity (Bray–Curtis
distance) (P > 0.05). Lactobacillus rhamnosus DNA was detected
almost exclusively in participants in the Lactobacillus rhamnosus
probiotic group. Bifidobacterium lactis DNA was observed in all

groups and was most abundant in the B. lactis group overall,
(P = 2.1×1013, Kruskal–Wallis test).

Rinne et al. [36] Probiotic
(single strain)

Pregnancy
and

lactation

36 weeks’
gestation–6 months

postpartum
Bacterial counts No

Total numbers of bacteria in faecal samples decreased from 3 to
12 months of age; (P < 0.0001). Numbers were comparable

between probiotic and placebo groups; (P = 0.70).
Bifidobacterium counts followed a decreasing trend in both
control and probiotic groups, (P < 0.0001 and P < 0.0001)

Rinne et al. [35] Probiotic
(single strain)

Pregnancy
and

lactation

36-38 weeks’
gestation–6 months

postpartum
Bacterial counts

Yes (Clostridia), no
(Bifidobacteria,

Bacteroides and
Lactobacil-

lus/Enterococcus)

No differences in Bifidobacteria, Bacteroides or
Lactobacillus/Enterococcus species at 6 months between the

intervention and control groups (P = 0.145, P = 0.882, P = 0.817,
respectively). At 6 months, there were less Clostridia in the

faeces of the control compared with the probiotic group
(P = 0.026).

At 2 years, there were less Lactobacilli/Enterococci and Clostridia
in the faeces of the probiotic group (P = 0.011 and

P = 0.032, respectively).
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Table 2. Cont.

Reference
Intervention

Main Outcome
Outcome

Observed (Yes/No) Main Finding
Supplement Timing Duration

Rutten et al. [37] Probiotic
(multiple strain)

Pregnancy
and

lactation

34 weeks’
gestation–1yr
postpartum

Bacterial
diversity and

colonization of
the probiotic

Yes

Diversity of Bacteroidetes was higher after two weeks in the
placebo group. Detection of Bifidobacteria was higher at 1 month
(P = 0.003) and Lactococcus lactis was higher at 2 weeks of age

(P = 0.001), and 1 month (P = 0.03) in the probiotic group.

Shadid et al. [46] Prebiotic Pregnancy 25 weeks’
gestation–delivery Bacterial counts No

Bifidobacteria counts in the maternal gut were significantly
higher in the supplemented group (P = 0.026), however, no

significance was observed in the infant gut.

Sordillo et al. [23] Vitamin D3 Pregnancy 10-18 weeks’
gestation–delivery

Bacterial
diversity No

No significant differences between vitamin D supplementation
on either the alpha diversity or beta diversity of the infant gut

microbiota (P > 0.05).

Wickens et al. [40] Probiotic
(single strain)

Pregnancy
and

lactation

35 weeks’
gestation–6 months

postpartum

Colonization of
the probiotic Yes Probiotic group had increased detection rates for the probiotic

in faecal samples at 3, 12, and 24 months of age (P < 0.0001).

Table 3. Summary of results of the effects of maternal nutritional supplementation on the breastmilk microbiota.

Reference
Intervention

Main outcome
Outcome

Observed (Yes/No)
Main Finding

Supplement Timing Duration

Abrahamsson et al. [24] Probiotic
(single strain) Pregnancy

36 weeks’
gestation–12

months
postpartum

Colonization with
the probiotic Yes

Prevalence of Lactobacillus reuteri was higher in the
colostrum compared to mature breastmilk in the

intervention vs. control group (12% vs. 2%, P = 0.002).

Baldassarre et al. [20] Probiotic
(multiple strain)

Pregnancy and
lactation

36 weeks’
gestation–4 weeks

Postpartum
Bacterial counts Yes

Lactobacilli and Bifidobacteria counts were higher in the
colostrum of the intervention group (P = 0.099 and

P < 0.05).
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Table 3. Cont.

Reference
Intervention

Main outcome
Outcome

Observed (Yes/No)
Main Finding

Supplement Timing Duration

Dewanto et al. [21] Probiotic (single
strain)

Pregnancy and
lactation

Enrolment in the
study–4 months

postpartum

Colonization with
the probiotic Yes

14% of supplemented women were positive for the
probiotic at delivery, and 20% were positive at

3 months postpartum.

Fernández et al. [41] Probiotic
(single strain) Pregnancy 30 weeks’

gestation–delivery

Bacterial counts
and colonization

with the probiotic
Yes

Small (0.19 [95% CI, 0.09–0.30] log10 CFU/mL) but
significant difference was observed (P < 0.001) in the

mean bacterial counts of women receiving the probiotic
compared to those in the control. The probiotic was
detected in the breastmilk of 59% of supplemented

women and 12.5% of the placebo group.

Fonollá Joya et al. [22] Probiotic
(single strain) Lactation

16 weeks of
intervention whilst

breastfeeding

Presence of
bacterial species Yes

A significant correlation was observed between
supplementation and the breastmilk load of Lactobacillus,

Staphylococcus and Streptococcus (P < 0.05).

Hurtado et al. [44] Probiotic
(single strain) Lactation 16 weeks after

delivery Bacterial counts Yes

In healthy women, lower levels of Staphylococcus
subspecies were seen in the probiotic group (-48%;

P = 0.013). The effect was also seen in cases of mastitis,
with lower levels of Staphylococcus in the probiotic group
(-58%. P = 0.065). Staphylococcus species load was lower

in the breastmilk of women in the probiotic group
(P = 0.025) at the end of the intervention.

Jiménez et al. [42] Probiotic
(multiple strain) Lactation 30 days of

treatment Bacterial counts Yes
On day 30 of treatment, the mean Staphylococcal count in

the probiotic group (2.96 log10 CFU/mL) was lower
than the control group (4.79 log10 CFU/mL), (P = 0.002).

Lahtinen et al. [33] Probiotic
(single strain) Pregnancy 36 weeks’

gestation–delivery
Colonization with

the probiotic Yes
At birth, 66.7% of mothers in the probiotic group were
colonized, compared to 11.8% in the placebo (P < 0.001;

prevalence ratio, 5.67; 95% CI, 2.19–14.64).
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Table 3. Cont.

Reference
Intervention

Main outcome
Outcome

Observed (Yes/No)
Main Finding

Supplement Timing Duration

Maldonado-Lobón et al. [43] Probiotic
(single strain) Lactation 3 weeks Bacterial counts Yes

A significant decrease in Staphylococcus load in the
probiotic group (P = 0.045) was seen on completion of

the study. Probiotic supplementation showed a
significant decrease (P = 0.011) in bacterial load when

treated with 3 × 109 CFU.

Mastromarino et al. [45] Probiotic
(multiple-strain)

Pregnancy
and lactation

36 weeks’
gestation–4 weeks

postpartum

Bacterial counts
colonization with

the probiotic
Yes

Counts of Bifidobacteria were significantly higher in the
colostrum (median 1.7 × 104 cells/mL) and mature milk
(median 1.4 × 104 cells/mL) of supplemented mothers.
3 mothers were colonised with the Lactobacillus species
present in the probiotic in the placebo group, compared

with 7 mothers in the treatment group.

Simpson et al. [38] Probiotic
(multiple strain)

Pregnancy
and lactation

36 weeks’
gestation–3 months

postpartum

Colonization with
the probiotic and
bacterial diversity

Yes (colonization),
No (diversity)

8 women in the probiotic group and 1 woman in the
placebo group had detectable levels of the administered
bacteria. Probiotics had no statistically significant effect

on the alpha or beta diversity of the
breastmilk microbiota.

Wickens et al. [39] Probiotic
(single strain)

Pregnancy
and lactation

12-16 weeks’
gestation–6 months

postpartum

Colonization with
the probiotic No The probiotic could not be detected in the breastmilk of

supplemented women.
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3.3. Probiotics
3.3.1. Infant Gut Microbiota

There were five studies that measured whether maternal probiotic supplementa-
tion administered during pregnancy and lactation resulted in the probiotic colonization
of the infant gut, with all studies demonstrating significant results for the outcome as-
sessed [26,27,34,37,40]. However, a meta-analysis could not be performed due to hetero-
geneity in the probiotic composition, timing of regimen and the presentation of the results.
In a large Norwegian RCT study (n = 415), women were administered a multiple strain
probiotic consisting of Lactobacillus rhamonosus, Lactobacillus acidolphilus and Bifidobacterium
animalis subspecies lactis or a placebo from 36 weeks of gestation up to 3 months postnatally
while breastfeeding. The results of this trial showed that only the Lactobacillus rhamon-
sus bacteria colonized the infants gut of women who were adminstered the probiotic as
observed with an increased abundance of this bacteria in their infants stool samples at
10 days and 3 months of age compared to the control group (both, P < 0.005). However, at
1 or 2 years of age, there were no longer any significant differences in the abundance of the
administered probiotic bacteria in their infants. [26]. Similarly, in a 3-arm RCT conducted in
New Zealand (n=600) where women (from 35 weeks gestation until 6 months post-partum
if breastfeeding) and their infants (from birth to 2 years) were administered Lactobacillus rha-
monsus, Bifidobcaterium animalis subspecies lactis or a placebo, only Lactobacillus rhamnosus
colonized the infants gut in the probiotic group with detection levels ranging from 71.5% of
the samples at 3 months to 62.3% at 24 months of age [34]. In another 3-arm trial conducted
in New Zealand (n = 474) with the same treatment groups and administration regimen as
the aforementioned study, Lactobacillus rhamonsus was significantly more abundant at all
measurement time points from birth to 24 months of age in the probiotic group compared
to the control group [40]. A study conducted in the Netherlands found that administration
of a multiple strain probiotic to pregnant women during the last 6 weeks of pregnancy and
to their infants up to one year of age, containing Bifidobacterium and Lactococcus species
resulted in a significant increase in Bifidobacteria counts at one month of the infant’s age
(P = 0.0033) and Lactococcus lactis counts at 2 weeks of the infant’s age (P = 0.001) [37].
This can be contrasted with a separate study, conducted in Finland, whereby women were
supplemented with a multiple strain probiotic two months before delivery and two months
after delivery or until they stopped breastfeeding. This study showed no evidence of infant
gut colonization during supplementation (P = 0.11 for Bifidobacterium and P = 0.40 for
Bifidobacterium longum), however, after cessation of the supplement, evidence of probiotic
colonization in the infant gut couple be detected (P = 0.043 for Bifidobacterium and P = 0.023
for Bifidobacterium longum) [27].

The impact of maternal probiotic supplementation on bacterial counts present in the
infant’s gut varied across studies. Three out of five studies found that probiotic supple-
mentation administered during pregnancy and/or lactation increased Bifidobacteria counts
in the infant’s gut. In a study conducted in Sweden (n = 232), women were randomized
to receive 1 × 108 CFU of Lactobacillus probiotic or a placebo during the last 4 weeks of
pregnancy, thereafter, the infants continued with the same study product from birth to
one year of age. In this study, significantly higher counts of Bifidobacteria were detected in
infants in the probiotic group compared to the control group, with highest counts measured
at 5 to 6 days of age (82% vs. 20%, P < 0.001) [24]. Likewise, in an Australian study (n = 122)
using the same concentration of a Lactobacillus probiotic, Bifidobacterium longum species
were detected more frequently in the intervention group than in the control group (82% vs.
61%; P < 0.01; prevalence ratio, 1.35; 95% CI 1.06–1.72) [33]. In a study conducted in Finland
where women were randomized to receive either supplementation with multiple strain
probiotics or a placebo 2 months prior and 2 months after delivery, no significant differences
in Bifidobacteria counts were detected in infants stool samples between the groups at one
month of age. However, at 6 months of age, a significant difference was observed (P = 0.043
for Bifidobacterium genus and P = 0.023 for Bifidobacterium longum) [27]. Conversely, in
two other studies conducted in Finland where women were administered 1 × 1010 CFU
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of Lactobacillus rhamnosus probiotic during pregnancy and lactation, Bifidobacteria counts
detected in infants stool samples at 6 months were comparable between the supplement
and the control groups (P = 0.70, [36] and P = 0.145, [35]).

There were two studies that measured whether probiotic supplementation admin-
istered during pregnancy and lactation altered Lactobacilli counts in the infant’s gut. In
a study conducted in Italy (n = 35), where women were administered a multiple strain
probiotic or a placebo during late pregnancy and lactation, higher Lactobacilli counts were
detected in neonatal faecal samples from the probiotic group compared to the control group
(P < 0.05) [20]. Conversely, in a study conducted in Finland (n = 132), where women were
administered Lactobacillus rhamnosus or a placebo before delivery to 6 months post-delivery,
no differences in Lactobacilli/Enterococci counts were observed at 6 months of age between
the probiotic and control groups, but at 2 years of age lower Lactobacilli/Enterococci counts
were observed in the probiotic group compared to the control group (P = 0.011) [35].

There were four studies examining the effects of maternal probiotic supplementation
administered during pregnancy and/or lactation on the diversity of the infant gut micro-
biota [26,30,34,37]. In a study conducted in New Zealand (n = 600), with women receiving
either a single strain probiotic or a placebo during pregnancy and lactation, no significant
differences in infant gut microbiota were observed as measured by Bray–Curtis distance
(P > 0.05) for the beta diversity, or Shannon’s index for the alpha diversity [34]. Similarly,
in an Australian study (n = 98), with women receiving either Lactobacillus rhamnosus or
a placebo during pregnancy, no significant difference in the mean number of peaks was
detected in infant faecal samples at one week of age between the groups as measured by
terminal restriction fragment length polymorphism using restriction enzymes [30]. In a
study conducted in the Netherlands (n = 123), with women in the last 6 weeks of pregnancy
and their infants in the first year of life receiving either a multiple strain probiotic or a
placebo, significantly higher Bacteroidetes and Proteobacteria diversity were observed in the
placebo group at 2 weeks and 2 years of age compared to the probiotic group (P < 0.05) [37].

3.3.2. Breastmilk Microbiota

There were seven studies that investigated whether probiotic supplementation during
pregnancy and lactation resulted in probiotic colonization of the breastmilk [21,24,33,38,39,41,45].
A total of six studies observed the outcome assessed, with only one study reporting no
detection of the probiotic in the breastmilk of supplemented women [39]. A meta-analysis
was also performed due to homogeneity across these studies regarding the intervention and
outcome measured. The results demonstrate that maternal probiotic supplementation may
result in colonization of the breastmilk microbiota (OR 5.93; 95% CI 2.32-15.20, P = 0.0002)
(Figure 5).Nutrients 2021, 13, x FOR PEER REVIEW 16 of 25 
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There were three studies that included lactating women either at risk of, or suffering
from lactational mastitis [41,42,44]. Overall, all three studies demonstrated that mater-
nal supplementation with Lactobacillus probiotic administered during pregnancy and/or
lactation reduced Staphylococcal counts in the breastmilk of supplemented women. In
a Spanish RCT (n = 108), where women were administered 9log10 CFU of Lactobacillus
salivarius, there was a small but significant difference in mean Staphylococcal bacterial counts
in the milk samples from healthy women who had received the probiotic compared to
healthy women in the placebo group (0.19 [95% CI 0.09–0.30] log10 CFU/mL) [41]. The
remaining two studies found significantly lower levels of Staphylococcus subspecies in
the breastmilk of women treated with the probiotic during lactation [42,44]. Of these, a
further study conducted in Spain (n = 291), administered 3 × 109 CFU of Lactobacillus
fermentum for 16 weeks to the intervention group. This group observed a reduction by 48%;
(P = 0.013) of Staphylococcus subspecies amongst healthy women and a greater reduction by
58% (P = 0.065) in women with diagnosed mastitis. Overall, at the end of the intervention,
the bacterial load was lower in the breastmilk of women in the probiotic group compared
to the control group (P = 0.025) [44]. A similar result was reported in a smaller Spanish
study (n = 20) where the intervention group was administered 200mg of 10log10 CFU of
a multiple strain probiotic for 4 weeks. At the end of the study, the intervention group
had a bacterial count of 2.96 log10 CFU/mL which was significantly lower than in the
control group at 4.79 log10 CFU/mL (P = 0.002) [42]. Another Spanish study (n = 148),
included women suffering from breast pain and elevated milk bacterial counts, not associ-
ated with acute mastitis and also reported a significant decrease in Staphylococcus load in
the intervention compared to the control group (P = 0.045) [43]. Notably, treatment with
3 × 109 CFU of Lactobacillus fermentum for 3 weeks significantly reduced Staphylococcus
load in the breastmilk (P = 0.011).

A Norwegian RCT (n = 252), found no significant effects of supplementation with a
multiple strain probiotic administered 4 weeks before delivery to 3 months after birth on
the alpha or beta diversity of the breastmilk microbiota [38]. However, this study indicated
that the supplement may have a positive influence on the stability of the breastfeeding-
associated microbiota (RR of stable breastfeeding-associated microbiota after probiotic
supplementation: 2.37, 95% CI 0.94–5.97, Fisher’s exact P = 0.050).

3.4. Prebiotics

The effects of prebiotic supplementation on infant bacterial counts were investigated
in two studies conducted in Japan and Germany [31,46]. In the study based in Germany,
with women receiving prebiotics; galactooligosaccharides (GOS) and long-chain fruc-
tooligosaccharides (lcFOS) or a placebo from 25 weeks’ gestation until delivery (n = 48),
no significant differences in percentages of Bifidobacteria present in the infant stool at 5,
20 and 182 days of age between the groups were observed [46]. Conversely, in the study
based in Japan (n = 84), with women supplemented during pregnancy and lactation with
FOS or a placebo, a borderline significant difference in the number of Bifidobacteria in the
intervention group compared to the control group (P = 0.50), and an increased number of
Bifidobacterium longum species were detected (P = 0.01) [31].

3.5. Lipid-Based Nutrient Supplements

The effects of LNS administered during pregnancy and lactation on the infant gut
microbiota were assessed in two large RCTs conducted in Malawi [18,19]. In the first study,
869 women were supplemented with either multiple micronutrients (MMN), iron and folic
acid (IFA) tablet-based supplements or LNS during pregnancy until 6 months postpartum.
The infants in the LNS group received LNS from 6 to 18 months of age, whilst infants
in the control group did not receive any supplements during the study. A higher alpha
diversity (Shannon index P = 0.032), Pielou’s evenness function (P = 0.043), alongside a
trend for increased species richness (P = 0.08) were observed in the LNS group in infants at
18 months of age compared to the IFA and MMN groups but no differences in beta diversity
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were detected at any age [18]. Conversely, in the second study (n = 631), women were
randomly assigned to the intervention group, supplemented with LNS or MMN during
pregnancy and until 6 months postpartum, or the control group, supplemented with only
IFA tablet-based supplements. The infants born were thereafter supplemented with either
LNS or no intervention between 6 and 18 months of age depending on which arm of the
trial their mother was assigned to. Overall, this study demonstrated that there were no
significant effects of LNS on the infant gut microbiota diversity and maturity in samples
collected from 6 to 30 months of age [19].

3.6. Vitamin D

The impact of vitamin D supplementation during pregnancy on the infant gut mi-
crobiota were assessed in two RCTs conducted in Denmark (n = 880) and the USA
(n = 736) [23,29]. In both studies, there were no significant differences on either the al-
pha diversity or beta diversity in infants gut microbiota within the first year of life between
the groups receiving vitamin D supplementation or a placebo.

3.7. Additional Outcomes
3.7.1. Health Outcomes

There were four studies that investigated whether maternal probiotic supplementation
administered during pregnancy and lactation reduced the development of eczema in high-
risk infants [34,37,39,40]. A study conducted New Zealand (n = 474) showed that whilst
maternal supplementation with Bifidobacterium animalis subspecies during pregnancy and
lactation was not associated with a reduced risk of eczema in infants, supplementation with
Lactobacillus rhamnosus was associated with a significant reduced risk of eczema (hazard
ratio [HR], 0.51; 95% CI 0.30–0.85) compared to those in the control group (P = 0.01) [40]. A
beneficial effect of maternal supplementation with a probiotic mixture on the development
of eczema was also reported in a study conducted in the Netherlands, with a lower
prevalence of eczema in the first 3 months of life in the probiotic group compared to the
control group (12% vs. 29%) [37]. In contrast, two other studies conducted in Australia
(n = 600) and New Zealand (n = 423) did not observe effects of maternal supplementation
with probiotics during pregnancy and lactation on the prevalence of eczema [34,39].

There were four studies [41–44] that reported whether probiotic supplementation
during lactation either improved or prevented symptoms of mastitis. All studies observed
a reduction in either symptoms or bacterial counts amongst women in the intervention
groups. In a Spanish RCT including 108 women with a history of mastitis, there were
significantly lower level of bacterial counts in women with subacute and acute mastitis
who were administered 9log10 CFU of Lactobacillus salivarius probiotic from 30 weeks of
pregnancy until delivery, compared to those who were administered the placebo [41].
Similarly, a separate Spanish RCT (n = 291), observed significantly lower incidence rates
of mastitis in women administered 3 × 109 CFU of preventative Lactobacillus fermentum
probiotic for a 16 week period compared to those in the control group (IR = 0.130 vs. IR
= 0.263, P = 0.021) [44]. The odds of experiencing breast pain amongst women in the
probiotic group were also significantly lower than women treated with the placebo, (OR
0.65; 95% CI 0.44–0.97) [44]. In a Spanish study (n = 148), women with painful breastfeeding
and elevated breastmilk bacterial counts showed that administration of three different
concentrations of a Lactobacillus fermentum probiotic for 3 weeks all improved breast pain
scores and decreased bacterial counts [43].

Multiple studies measured cytokines and antibodies in the breastmilk as a proxy for
health status, with two studies out of four observing probiotic supplementation altering
levels. In a small Italian study of 35 healthy pregnant women probiotic supplementation
during pregnancy and lactation was associated with increased levels of TGF- β1 in the
colostrum and IL-10 levels in the mature milk [20]. In a Finish RCT (n = 96), infants at high
risk of allergic disease born to supplemented mothers who had been exclusively breastfeed-
ing for at least 3 months had higher total numbers of IgM, IgA, and IgG compared to those
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in the placebo group [36]. Conversely, in a large study conducted in New Zealand study of
474 women with a history of allergic disease, probiotic supplementation during pregnancy
and lactation did not affect the levels of TGF-β1, TGF-β2 or IgA in their breastmilk [40].

3.7.2. Impact of Feeding Practice

There were three studies that subcategorized mother-infant pars by mode of feeding.
In a large Finish RCT (n = 1223), women were administered a multiple strain probiotic or a
placebo during pregnancy and lactation. In this study breastfeeding was associated with
an increased abundance of Lactobacilli and Bifidobacteria by 100% and 29%, respectively, in
infant’s faecal samples from the probiotic groups whereas a slight, but significant decrease
in the total abundance of Bifidobacteria was reported in formula fed infants (7%, P < 0.0001)
from the same group [32]. Likewise, in another study conducted in Finland (n = 96), greater
effects of probiotic supplementation during pregnancy and lactation were observed in
infants who were exclusively breastfed for at least 3 months compared to formula fed
infants in the probiotic group with significantly higher faecal Bifidobacterium and Lactobacil-
lus/Enterococcus counts at 6 months reported in EBF infants (P < 0.0004 and P = 0.10) [36].
Conversely, in a RCT conducted in Sweden (n = 232), exclusive breastfeeding was associated
with lower levels of the probiotic Lactobacillus reuteri in the infant gut microbiota compared
to formula-fed infants (P < 0.001) [24]. The study also reported lower counts of Clostridium
difficile at 3 and 6 months (P < 0.001) in exclusively breastfed versus formula-fed infants.

4. Discussion

The present systematic review suggests that maternal nutritional supplementation
during pregnancy and lactation can impact on the infant gut microbiota or breastmilk
microbiota, but with varying effects according to participant characteristics, type of supple-
ment administered, and outcome measured. Despite the heterogeneity of the findings, this
review highlights the potential to improve the health of young infants through maternal
nutritional supplement-based interventions during pregnancy and lactation, although
further research is warranted.

Our review yielded 29 randomized controlled trials of relevance, with the majority
(23/29) focused on probiotic supplementation. Of these, most studies reported that mater-
nal probiotic supplementation during pregnancy and lactation resulted in the probiotic col-
onization of the infant gut [26,27,34,37,40] and breastmilk microbiota [21,24,33,38,39,41,45].
These findings were confirmed by the results of our meta-analysis including seven studies
which showed that maternal probiotic supplementation during pregnancy and lactation
result in the probiotic colonization of the breastmilk with the bacterial species administered.
Although a meta-analysis could not be performed across all the trials identified due to
high heterogeneity between studies, in a descriptive synthesis, we observed comparable
results indicating that probiotic supplementation during pregnancy and lactation and in
infancy were associated with the probiotic colonization of the infant gut. These findings
are in line with the entero-mammary hypothesis which suggests that dendritic cells may
capture bacteria cells from the maternal gut lumen, transport them to the mammary gland,
thereby enabling their transfer through breastfeeding [47]. In the five studies that reported
infant gut colonization by the probiotic, women were administered the probiotic across
pregnancy and lactation, therefore it is unclear as to whether the probiotic colonization
of the infant gut begun in utero or from birth. The principles of evolutionary biology
suggest that the intrauterine environment includes protective maternal barriers that may
limit microbial transfer during fetal life [48]. These barriers include placental trophoblasts
that recognise pathogens via Toll-like receptors (TLRs) and Retinoic acid-inducible gene
I (RIG-I)-like receptors (RLRs), thereby activating antimicrobial signaling pathways en-
suring a stable environment for the vulnerable fetus [49]. In four out of five studies, the
probiotic prevalence was the highest in the infant’s gut within the first few months of life
(26,34,37,40), before steadily declining, perhaps due to competition from other evolving
bacterial communities [50]. Some studies suggest that bacterial colonization may occur



Nutrients 2021, 13, 1137 20 of 25

immediately after birth and that the gut undergoes continuous development to establish a
mature microbiota by 3 years of age [51].

Although maternal probiotic supplementation during pregnancy and lactation ap-
peared to alter infant gut bacterial counts, no definitive conclusions could be drawn due
to broad differences in the methodology used to measure the outcome of interest with
some, particularly measuring counts of bacterial genus and others the counts of specific
species within the genus. However, there is some evidence suggesting that probiotic
supplementation during pregnancy and lactation may increase Bifidobacteria counts in
the infant’s gut, with three out of five studies reporting this finding [24,27,33]. The most
abundant bacterial species present in the human milk of healthy women is thought to be
Staphylococcal bacteria [52], followed by Lactobacilli and Bifidobacteria [53], therefore, the
natural high abundances of bacteria present in the human milk may limit the ability to
alter bacterial proportions.

The effects of maternal probiotic supplementation on the bacterial counts present in
the breastmilk microbiota was dependent on the health status of participants. Maternal
supplementation with Lactobacillus probiotic during pregnancy and/or lactation reduced
Staphylococcal counts in the breastmilk of supplemented women at risk of or suffering
from mastitis [41,42,44] or with breast pain not associated with mastitis [43]. Although
these studies provided high-grade quality of evidence, some limitations should be noted;
with one study presenting a small sample size (n = 20) [42], and all studies using varying
Lactobacillus probiotic subspecies of different concentrations, limiting the interpretation of
the findings across studies.

Maternal supplementation during pregnancy and lactation with prebiotics including
GOS and lcFOS was found to have conflicting yet limited effects on infant gut Bifidobacteria
counts, with one study reporting no significant differences while another study showed
a borderline increase in the intervention group compared to the control group [31,46].
Prebiotics have the potential of modifying the gut microbiota, however these modifications
occur at the level of individual prebiotic strains and are therefore not easily predicted [54].
There is also evidence to suggest that responses to prebiotics are highly influenced by
gut pH [55], which also may provide an explanation for the uncertainty surrounding
the impact of maternal prebiotic supplementation on the infant gut microbiota in this
systematic review.

This review found that nutritional supplementation with probiotic [26,30,34,37,38] or
vitamin D [23,29] had very limited effects on the alpha and beta diversity of the breast-
milk and infant gut microbiota. However, a study conducted in Malawi indicated that
administration of LNS during pregnancy and lactation increased infant gut microbiota
diversity at 6 months of age [18], although a further study in the same setting did not
observe this effect [19]. LNS contain essential fatty acids as well as other micronutrients
including vitamin D and calcium [56]. The gut microbiota is involved in the metabolism
of lipids and is thus predicted to be affected by lipid supplementation [57]. Furthermore,
there is evidence to suggest that high-fat diets rich in long-chain fatty acids modulate the
gut microbiota resulting in dysbiosis, inflammation and even an increased risk of obesity
and metabolic syndrome [58]. This evidence suggests that there is rational for using LNS
to improve the infant gut microbiota and even minimise disease risk. However, currently,
there is limited evidence to support this hypothesis, leaving the impact of maternal LNS
supplementation on the infant gut microbiota unclear.

Maternal probiotic supplementation was found to generally improve clinical symp-
toms of mastitis and reduce atopic disease in infants. Systematic reviews that purely
investigate whether maternal supplementation reduced atopic disease in the infant con-
cluded that probiotics administered to pregnant or breastfeeding women were associated
with a reduction in risk of eczema in infants [59,60]. However, the authors also highlighted
that the imprecision of the estimated pool effects and likelihood of bias were high [59],
limiting the interpretation of these findings. Likewise, clear conclusions could not be drawn
from our systematic review as there were only four studies investigating this outcome
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and only two of these reported an association between maternal supplementation during
pregnancy and lactation and reduction in eczema in infants. Outcomes were also mea-
sured using different tools and often relied on clinical judgement, rather than quantitative
measurements, further limiting the quality of evidence. Future studies would, therefore,
benefit from standardized objective measurement tools.

In the three studies that subcategorized mother-infant pairs by mode of feeding, two
reported greater differences in bacterial counts in the gut microbiota of exclusively breastfed
infants compared to formula-fed infants both born to supplemented mothers. This result
is in line with a previous systematic review that demonstrated the microbial composition
differs between non-exclusively breastfed versus exclusively breastfed infants [61]. In the
current review, only three of the included studies categorized participants by infant feeding
practice precluding any conclusions on whether feeding practice modulates the effects of
maternal nutritional supplementation on either the infant gut or breastmilk microbiota.

Recent studies show that maternal nutritional supplementation during pregnancy
and lactation may modulate the infant gut and/or breastmilk microbiota [62] and sev-
eral reviews have been conducted to assess whether maternal probiotic supplementation
can improve infant health outcomes, namely reduce the risk of atopic disease [59,63–65].
However, to the best of our knowledge there are no reviews investigating the effects of
maternal nutritional supplementation on the infant gut or breastmilk microbiota. Overall,
this systematic review suggests that maternal nutritional supplementation may modulate
the infant gut or breastmilk microbiota. Probiotic supplementation during pregnancy and
lactation was found to colonize both the infant gut and breastmilk microbiota. There is
also some evidence to suggest that probiotic supplementation may modulate infant gut
bacterial counts and reduce bacterial counts in the breastmilk of women with mastitis.

Strengths and Limitations of the Review

This systematic review is strengthened by multiple aspects of the methodological
approach. The systematic search strategy carried out by two independent reviewers
ensured all relevant literature was identified and evaluated. This was accompanied by
a broad inclusion criterion with no restriction on the health status of participants or the
intervention regimen, allowing for all studies in this area of research to be included. The
eligible studies were then assessed for their risk of bias and an overall judgement was
made on their quality of evidence and the vast majority of included studies were of
good quality of evidence. There were 20 studies in this systematic review that used the
gold standard technique; real-time (RT) polymerase chain reaction (PCR) and primers
targeting specific 16S variable gene regions [66], to evaluate the bacteria present in the
microbiota, with the remaining nine studies utilizing a variety of alternative analytical
methods (Supplemental Table S2). Future studies assessing the infant gut and/or breastmilk
microbiota would therefore benefit from using this method of assessment to ensure a
consistency in methodology across all studies.

The main limitation of this review is the lack of homogeneity between studies con-
cerning the health status of participants and the composition and duration of nutritional
supplement administered, and the method used to measure the outcomes assessed. This
is largely due to the limited studies available on this area of research. A broad inclusion
criterion was decided following from the limited number of records identified on pre-
liminary searches with stricter inclusion criteria regarding both the participants included
and the nutritional supplements administered. There was concern that the varying health
status of participants across our selected studies may bias our results, with studies demon-
strating differences in the proportions of bacteria between the healthy population and
patients with allergic disease including atopic dermatitis [67]. In addition, these conditions
are associated with an imbalance of T helper (Th) 1/Th2 cells and higher proportions
of cytokine secretion. These immunological pathways can interact with probiotics by
either inducing immune activation signaling or trigger tolerance signaling through the
production of cytokines. Overall this may cause alterations in the gut microbiota, limiting
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the comparison between studies of healthy pregnant women versus studies of women
either suffering from or at increased risk of atopy in our systematic review. The majority
of the studies in our systematic review; 18 out of 29 studies involved women or infants
with high risk of atopic disease [23–40], and three studies specifically involved women
with breast-related illness [41–44], meaning in eight studies selected participants were
healthy pregnant women with no stated health conditions [18–22,44–46]. This means that
the comparability between the 18 studies of participants with high risk of atopic disease
and the eight studies of healthy participants mentioned may be limited. The heterogeneity
amongst our selected studies meant that a meta-analysis could not be performed on all the
main outcomes and may preclude any definitive conclusions. Nonetheless, this systematic
review presents to the best of our knowledge the first collation of evidence on the effects of
maternal nutritional supplementation during pregnancy and lactation on the infant gut or
breastmilk microbiota.

5. Conclusions

This systematic review indicates that maternal probiotic supplementation during preg-
nancy and lactation may result in probiotic colonization of the infant gut and breastmilk
microbiota. Furthermore, there is evidence that maternal probiotic supplementation during
pregnancy and/or lactation may alter bacterial counts in the infant gut microbiota and re-
duce Staphylococcal counts in the breastmilk of women with mastitis. The review highlighted
that knowledge and understanding of this area of research are promising but still limited
to form definitive conclusions. Recommendations are therefore directed towards the need
for further, high-quality RCTs examining the role of maternal nutritional supplementation
during pregnancy and lactation on the infant gut and/or breastmilk microbiota.
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