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Introduction

To include nominal and ordinal variables as predictors in

regression models, their categories first have to be trans-

formed into so-called ‘dummy variables’. There are many

transformations available, and popular is ‘dummy coding’

in which the estimates represent deviations from a prese-

lected ‘reference category’. A way to avoid choosing a

reference category is effect coding, where the resulting

estimates are deviations from a grand (unweighted) mean.

An alternative for effect coding was given by Sweeney and

Ulveling in 1972, which provides estimates representing

deviations from the sample mean and is especially useful

when the data are unbalanced (i.e., categories holding

different numbers of observation). Despite its elegancy,

this weighted effect coding has been cited only 35 times in

the past 40 years, according to Google Scholar citations

(more recent references include Hirschberg and Lye 2001

and Gober and Freeman 2005). Furthermore, it did not

become a standard option in statistical packages such as

SPSS and R. The aim of this paper is to revive weighted

effect coding illustrated by recent research on the body

mass index (BMI) and to provide easy-to-use syntax for

SPSS, R, and Stata on http://www.ru.nl/sociology/mt/wec/

downloads. For didactical reasons we apply OLS regres-

sion models, but it will be shown that weighted effect

coding can be used in any generalized linear model.

One favored way of transforming categories into

dummy variables is dummy coding (Hardy 1993). In this

transformation, units (e.g., respondents) within a specific

category are coded as 1 and all other units as 0 on a new

(dummy) variable. The parameter for this dummy variable

then is the estimated mean difference in the scores on the

dependent variable between that specific category and the

chosen reference category. As an example we examine

the well-known relationship between BMI and Educa-

tional attainment (Hermann et al. 2011), a categorical

variable containing three levels: low, middle, and high

and we use the first level (low) as the point of reference

(see Table 1 for the coding scheme). In Table 2 the

empirical results are shown, using random cross-sectional

samples (total n = 3314) drawn from the general Dutch

population aged 18–70, in 2000, 2005, and 2011 including

self-reported body length and weight (Eisinga et al.

2002, 2012a, b). In Model 1 of Table 2, second column,

an estimated mean BMI of 26.15 is found for the inter-

cept, and represents the estimated mean BMI for the ‘low’

(reference) category. Respondents with mid-level educa-

tion have an estimated mean BMI that is 1.17 points

lower and for the high educated respondents the estimated

mean BMI lies 1.85 points lower, both compared to the

respondents with low levels of education. These devia-

tions from the mean BMI in the low educated differ

significantly from 0. To test whether the difference of

0.68 BMI points (1.85–1.17) between the middle and high

educated respondents is significant, one has to change the

reference category (this difference turned out to be
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significant as well, details can be found on the website

that goes with this text).

After controlling for sex (also dummy coded), (log)age,

and year of interview (dummy coded) (these three control

variables were obtained from Krul et al. 2011; Hermann

et al. 2011; Stevens et al. 2012), the initial differences of

the middle and high educated with the low (reference)

category are somewhat smaller (see Table 2, Model 2). The

controlled estimates of the dummy variables, however, still

represent the estimated mean difference between a specific

category (here: middle and high) and the reference cate-

gory (low).

Table 1 Coding schemes for dummy coding, effect coding, and weighted effect coding (example with 3 levels of educational attainment and

lowest educational level omitted from the regression model)

Dummy variables Dummy coding Effect coding Weighted effect coding

Middledc Highdc Middleec Highec Middlewec Highwec

Categories

Low 0 0 -1 -1 -(nm/nl)
a -(nh/nl)

b

Middle 1 0 1 0 1 0

High 0 1 0 1 0 1

a nm = number of observations (n) in category Middle, nl = n in category Low
b nh = n in category High

Table 2 Ordinary least squares (OLS) regression effects on the body mass index (BMI), using dummy coding, effect coding, and weighted

effect coding without controls (Model 1) and with controls (Model 2), number of cases per category between brackets (n) Data source: (Eisinga

et al. 2000, 2012a, b), total n = 3314

OLS effects on BMI Dummy coding Effect coding Weighted effect coding

b-estimates t values b-estimates t values b-estimates t values

Model 1

Intercept 26.15 184.15 25.14 368.75 24.98 383.32

Education

Low (698) 0.00 (ref) 1.00 9.44 1.17 9.27

Middle (1419) -1.17 -6.74 -0.16 -1.82 -0.00 ns -0.00

High (1197) -1.85 -10.36 -0.84 -9.12 -0.68 -7.87

Variance explained 3.1% 3.1% 3.1%

Model 2

Intercept 25.88 143.74 25.10 373.04 24.98 394.00

Education

Low (698) 0.00 (ref) 0.74 6.98 0.85 6.78

Middle (1419) -0.73 -4.22 0.01 ns 0.15 0.12 1.67

High (1197) -1.49 -8.45 -0.75 -8.31 -0.64 -7.59

Control variables

Sex

Male (1561) 0.00 (ref) 0.24 3.78 0.26 3.78

Female (1753) -0.48 -3.78 -0.24 -3.78 -0.23 -3.78

Age (log)a 2.42 12.90 2.42 12.90 2.42 12.90

Year of interview

2000 (987) 0.00 (ref) -0.20 -2.19 -0.20 -2.08

2005 (1351) 0.20 1.31 -0.00 ns -0.04 -0.00 ns -0.03

2010 (937) 0.41 2.48 0.21 2.22 0.21 2.11

Variance explained 8.4% 8.4% 8.4%

ns not significant (t value\1.65), t values are presented for illustrative purposes
a Because the relationship between age and BMI turned out to be positive and non-linear, we used the natural logarithm of age and mean

centered log(age) to ensure that the intercept equals the sample mean of 24.98 in weighted effect coding
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Effect coding

Effect coding (also known as deviation contrast, or

ANOVA coding) was developed out of the desire to test all

category means against one overall mean value (Hardy

1993). By doing so one avoids preselecting a (frequently

arbitrary) reference category as in dummy coding. In

general terms, effect coding uses a constraint in which the

sum of all estimates (b) in a set of dummy variables (I) is 0:

XI

i¼1

bi ¼ 0: ð1Þ

As a consequence, parameters related to effect coded

dummy variables are deviations from an unweighted grand

mean. This grand mean is the average of the estimated

means of all categories of a specific variable, without

taking into account the possible unequal number of

observations per category (see also Table 1 for the

coding scheme). In our example, the effect coded dummy

variables for education show that the lower educated

respondents differ most from the grand mean of 25.14

(intercept), namely 1 BMI point (see Table 2, Model 1).

The middle-educated are on average 0.16 points below that

grand mean and in high educated individuals the difference

is -0.84. Note that the predicted mean BMI is 26.14

(25.14 ? 1) for the low category, 24.98 (25.14–0.16) for

the middle category, and 24.3 (25.14–0.84) for the high

category. The grand mean of 25.14 is the average of these

three BMI means ((26.14 ? 24.94 ? 24.3)/3). So in effect

coding, the reference, i.e., the grand mean to which the

statistical tests relate, does not depend on possible different

numbers of observations per category. After taking into

account the three aforementioned control variables, the

deviations from the grand mean (which has shifted

somewhat to 25.1) become smaller within all three

categories of education and for the middle-educated the

deviation approaches 0 (see Table 2, Model 2).

Effect coding is well-suited whenever the data are bal-

anced, i.e., when the numbers per category of a nominal or

ordinal variable are (roughly) equal. We like to note that

this is not a necessary condition for the sample data; it

suffices to assume a population with such a balanced

design. The usefulness of effect coding is illustrated in

Table 2, Model 2, where effect coded estimates for males

and females are exact counterparts (0.24 vs. -0.24), which

is congruent with the (almost) 1:1 sex-ratio in the target

population.

The effects for the years 2000, 2005, and 2011 are also

non-problematic, because population sizes did not change

much over these years. However, the number of individuals

differs profoundly across the three main educational cate-

gories in the Dutch population and this is also reflected in

our sample (see Table 2 for the numbers of observation per

category). If a researcher wants to take into account these

different sizes, effect coding is less appropriate as we will

show in the next paragraph.

Weighted effect coding

To take into account the unequal number of observations

across categories, Sweeney and Ulveling (1972) introduced

a coding scheme that enables testing against the sample

(arithmetic) mean. To achieve this, the sum of all weighted

(wi) estimates (b) in a set of dummy variables (I) equals 0:

XI

i¼1

wibi ¼ 0: ð2Þ

The weight (wi) in Eq. 2 equals -(nx/no), where nx
stands for the number of observations in category x and no
is the number of observations in category o. The latter

category is omitted from the regression model as it is

statistically redundant. As a result of weighting, the

midpoint or reference shifts away from the unweighted

grand mean to the weighted sample mean. The procedure

is, therefore, known as weighted effect coding. Note that

contrary to the weights wi in Eq. 2, the weights in Eq. 1 in

fact all are set to 1 (and, therefore, omitted from Eq. 1),

ignoring the possible unequal number of observations

across categories (see Table 1 for the coding differences

between weighted effect coding and effect coding).

In our sample, we have 698 respondents who are low

educated, 1419 are middle educated and there are 1197

high educated respondents. Following Sweeney and

Ulvering, we created the weighted effect coded (wec)

dummy variable middlewec with code 1 for respondents in

the middle category and code 0 for all high educated

respondents. The code or weight wi for respondents in the

omitted low educated category equals -1419/698 in the

dummy variable middlewec (see also Table 1). For the

dummy variable highwec the codings are: 1 for high, 0 for

middle, and -1197/698 (wi) for low. Note that the

denominator in wi equals the number of observations (698)

in the omitted category (low). With these codings, we can

estimate the parameters for the middle and high educated.

To have an estimate for the low educated as well, we

excluded the category high from the regression model and

included the dummy lowwec (coded 1 for low educated, 0

for middle educated and -698/1197 (wi) for high educated)

and the dummy middlewec (coded 1 (middle), 0 (low), and

-1419/1197 (high)), details can be found on our website.

According to the results in Model 1 of Table 2, the low

educated have an estimated mean BMI that is 1.17 points

higher than the actual sample mean of 24.98. The middle

category does not differ significantly from the sample
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mean, whereas the high educated respondents’ mean BMI

lies 0.68 points lower. If we compare these results with

effect coding then the different outcomes for the middle

educated are most clear. The reason for this lies in the

shifted reference: the estimated BMI for the middle edu-

cated equals 24.98, so the difference with the sample mean,

which also happens to be 24.98, is 0. However, when

compared with the grand mean of 25.14 the effect coded

estimate for middle educated is -0.16. The latter outcome

is of much less interest than the former, because the

observed differences in the number of observations

between the three education categories are considered

relevant as they reflect important size differences in the

population.

We again expanded the model by including the con-

trol variables sex (weighted effect coded), year of

interview (weighted effect coded), and (log)age (see

Table 2, Model 2). As a result of controlling, especially

the deviation of the low education category changed

(from ?1.17 to ?0.85). Note that because the intercept

represents the sample mean, it retains the same value

(24.98), whether control variables are included (Model

2) or not (Model 1). Again the difference in estimates

for the middle educated is most striking: in weighted

effect coding the difference with the sample mean is

0.12 and significant, whereas in effect coding the dif-

ference with the grand mean is almost 0. In other words,

the estimated mean BMI among the middle educated

respondents is almost identical to the grand mean after

controlling for age, sex, and year of interview, but lies

0.12 above the sample mean. Because the numbers per

category of education differ in the Dutch population, the

latter is a more informative and realistic outcome. Note

that for the variables sex and year of interview it is

rather irrelevant whether effect coding or weighted effect

coding is being used. Further note that in Table 2 the

explained variances are equal in all three models 1 and

in all three models 2. The only difference is the point of

reference. In dummy coding this reference relates to a

specific, existing category, in effect coding it is a grand

mean (neglecting the possible unbalance in the data),

while in weighted effect coding the point of reference is

the sample mean.

In general, the results from effect coding and weighted

effect coding increasingly deviate as the differences

between the numbers of observation per category increase.

For instance, for the following category means 2, 3, and 10,

effect coding uses 5 ((2 ? 3 ? 10)/3) as a reference,

whereas in weighted effect coding this is rather close to 10

if the bulk of observations (say 80 %) is located in the

category with mean = 10 (example: 2 9 0.1 ? 3 9 0.1

? 10 9 0.8 = 8.5).

In sum, weighted effect coding is preferred over effect

coding if a categorical variable has categories of different

sizes, and if these differences are considered relevant.

Contrary to most experimental designs in which the data

are often balanced, this relevancy is often apparent when

cross-sectional surveys (or other observational data) are

being analyzed.

Weighted effect coding in generalized linear models

In the previous section we showed that in weighted effect

coding, sets of dummies are tested against the sample mean

of the dependent variable Y. Of course it depends upon the

scaling of Y to what this sample mean relates. If one uses a

variable like BMI in an OLS regression model, then this

mean is the observed sample (arithmetic) mean in BMI

across all respondents in the model. If one would log-

transform BMI scores first, for instance because the origi-

nal BMI distribution is highly skewed, then the sample

mean is the average of all log-transformed BMI scores.

Likewise, if a researcher wishes to investigate obesity

(BMI[ 30) and, therefore, uses a dichotomy of BMI in a

logistic regression analysis, then the mean to be tested

against is the average of all log odds. We provide some

examples of weighted effect coding with log-transformed

and dichotomous variables on our website.

Weighted effect coding in SPSS, Stata, and R

Weighted effect coding has not yet been included in the

popular statistical packages R and SPSS. Therefore, we

designed for these statistical packages easy-to-use syntax.

In Stata there is only the possibility to obtain the weighted

effect estimates using the post-estimation command ‘con-

trast’. We, therefore, wrote a Stata ado-file to create the

weighted effect dummies before using any regression

model. All syntax, example data on BMI, and outcomes

can be downloaded from our website. In a follow-up Hints

and Kinks we discuss novel interactions between weighted

effect coded dummy variables representing the additional

effects over and above the main effects obtained from a

model without these interactions.
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