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Introduction

The best contemporary chemotherapy for childhood acute
lymphoblastic leukemia (ALL) now yields 5-year overall survival
(OS) rates above 90%, which reflects intensified chemotherapy
with treatment stratification directed by the somatic mutations
and early response to chemotherapy, better use of conventional
anti-leukemic agents, and improved supportive care, including
broad-spectrum antibiotics to combat opportunistic infections'~.
However, a significant proportion of leukemic deaths, not least
for lower-risk patients, are caused by therapy rather than by the
leukemia itself, and this is just the tip of the toxicity iceberg’.
Nearly all patients encounter mucositis and serious, though man-
ageable, infections, and although various other severe, acute
toxicities individually have relatively low incidences, almost
50% of all patients will be affected by at least one of these’.
Whereas recent high-throughput, cost-effective technologies have
revolutionized our insight into the somatic mutational landscape
of ALL, disease pathogenesis, and drug resistance mechanisms’,
our understanding of non-infectious chemotherapy-associated
acute toxicities remains limited, including how to prevent and treat
them. This reflects their rarity (calling for international collabo-
ration), diverse definitions and capture strategies across study
groups, lack of tissue specimens to map pathogenesis, and
uncertain associations with common germline DNA variants®’.
This review summarizes recent advancements in the exploration
of non-infectious, chemotherapy-associated acute toxicities and
outlines strategies for future research.

The toxicity scenario

Every organ can be affected by acute side effects of anti-
leukemic chemotherapy, the most common being opportunistic
infections, mucositis, central or peripheral neuropathy (or both),
bone toxicities (including osteonecrosis, ON), thromboembo-
lism (TE), sinusoidal obstruction syndrome (SOS), endocrinopa-
thies (especially corticosteroid-induced adrenal insufficiency and
hyperglycemia), high-dose methotrexate (HD-MTX)-induced
nephrotoxicity, asparaginase-associated hypersensitivity, pancrea-
titis, and hyperlipidemia. Other toxicities, including myopathy
and some rare inflammatory toxicities (for example, epidermoly-
sis), will not be addressed in this review.

Few of the non-infectious acute toxicities are associated with
clinically useful risk factors, and comparison of their frequency
across various anti-leukemic treatment programs has been ham-
pered by wide diversities in toxicity definitions, capture strate-
gies, and reporting, thus hampering meaningful comparisons
of toxicity incidences. The toxicities have traditionally been
defined and graded according to the US National Cancer Institute
Common Terminology Criteria for Adverse Events (CTCAE)".
However, these are generic in their grading and frequently inap-
propriate for children’ and for the acute toxicities seen during
childhood ALL therapy. Accordingly, 15 international childhood
ALL study groups (Ponte di Legno Toxicity Working Group,
or PTWG) have developed consensus definitions for 14 acute
toxicities’.
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Mucositis

Mucositis is a debilitating adverse effect that is reported to occur
in at least 40% of patients after high-dose anti-metabolites or
DNA-damaging drugs, including high-dose alkylating agents
given as part of conditioning therapy prior to hematopoietic stem
cell transplantation (hSCT)'*-".

Risk factors for mucositis include low body weight, reduced
renal function, low neutrophil counts, and elevated pre-
therapeutic levels of inflammatory mediators'*'>'*>, In addition,
the risk of severe mucositis has, albeit with conflicting results,
been associated with common DNA polymorphisms, including
the folate pathway methylenetetrahydrofolate reductase (MTHFR,
particularly C677T)'® and DNA repair'’.

Oral mucositis ranges from soreness with erythema and edema to
painful, ulcerative mucositis requiring narcotic analgesics, which
may lead to poor nutritional status'®. Intestinal mucositis typically
develops in parallel with abdominal pain, diarrhea or constipation,
nausea, and vomiting, but oral and intestinal mucositis may not
coincide'®. They both tend to peak at the time of neutrophil nadir
10 to 14 days after chemotherapy and typically resolve during the
subsequent 5 to 10 days.

Gastrointestinal mucositis reflects release of damage-associated
molecular patterns that are sensed by pattern recognition recep-
tors such as Toll like-receptors, causing release of inflammatory
cytokines propagating an inflammatory response'*~'. This is fol-
lowed by an ulceration phase and finally resolution'”. The normal
intestinal microbiome may play a protective role by stimulating
endothelial cell proliferation and mucous production, and intesti-
nal dysbiosis due to chemotherapy and antibiotics could aggravate
mucositis, but this awaits clinical validation*'~*. Severe mucositis
disrupts the intestinal immunological barrier and is a risk factor for
systemic infections, although it has been most intensively studied
in the hSCT setting””*. Accordingly, intestinal mucositis defined
by hypocitrullinemia reflecting a reduced population of functional
enterocytes may be better than neutropenia at defining the risk
period for bacteremia™.

Although several studies have demonstrated temporal associa-
tions between gastrointestinal toxicity, systemic inflammation, and
fever, infections can be proven in only less than 50% of febrile
neutropenic episodes”*, and the cause in microbiologically nega-
tive cases is more likely systemic inflammation—for example,
C-reactive protein, interleukin-6, and in vitro cytokine produc-
tion—than opportunistic microorganisms'**’~*”. This has led to the
introduction of febrile mucositis as a complementary term to the
ubiquitous febrile neutropenia’. hSCT studies have linked systemic
inflammation to adverse outcome and increased treatment-related
mortality’™*'. Tt is conceivable, but not yet shown, that this also
holds true for ALL.

Numerous interventions have been tested for the prevention or
amelioration of mucositis as reviewed and regularly updated by
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the Mucositis Study Group of the Multinational Association of
Supportive Care in Cancer and International Society of Oral
Oncology™. Parenteral non-steroid anti-inflammatory drugs, anti-
epileptics, neuroleptics, and opioids are still the mainstay of pain
control, despite often being insufficiently effective™. Probiotics
containing lactobacillus species seem to reduce chemotherapy-
induced diarrhea and mucositis but have been tested only in highly
specific treatment settings and await formal testing in patients with
chemotherapy-induced neutropenia and mucosa barrier dysfun-
tion*7 (NCT02544685). Other less established interventions of
some efficacy include intravenous glutamine, cryotherapy, recom-
binant keratinocyte growth factor-1, and low-level laser therapy
for oral mucositis*”. However, most of these approaches have been
studied only insufficiently (if at all) during ALL chemotherapy.

Central neurotoxicity

Central nervous system (CNS) toxicities during treatment occur
in 10% to 15% of patients with childhood ALL and cover a wide
spectrum of syndromes with overlapping symptoms, including
seizures®, HD-MTX-related stroke-like syndrome (MTX-SLS)*
with or without reduced consciousness, posterior reversible
encephalopathy syndrome (PRES)", and steroid psychosis'*,
and these may result in permanent or progressive neurocognitive
defects (for example, attention, executive function)*~ with or
without white matter changes on magnetic resonance imaging
(MRI).

Corticosteroids frequently cause transient changes in sleep
pattern, mood, and cognition, and this can be quite burdensome to
both patients and parents™. Corticosteroids may affect the neuro-
transmitters dopamine or serotonin, deregulate the hypothalamic-
pituitary-adrenal (HPA) axis, and cause hippocampal injury”’.
In general, the risk of acute, severe neurotoxicity cannot be pre-
dicted, but the risk is higher for children below six years and for
treatment with dexamethasone compared with prednisolone,
potentially reflecting higher CNS penetration and longer half-life
in CNS of dexamethasone~". Germline DNA polymorphisms in
genes related to drug disposition or neurogenesis or both have been
associated with neurotoxicity’', but these candidate gene associa-
tions remain to be validated.

Seizures occur in approximately 10% of children with ALL*.
They can occur both as an isolated symptom, together with vari-
ous other CNS toxicities (for example, intracranial hemorrhage
or thrombosis, PRES, or MTX-SLS), or second to electrolyte and
metabolic disturbances or to infections. Many patients subsequently
require long-term anti-convulsive therapy, female sex being a
significant risk factor’”.

MTX-SLS, which is characterized by focal neurological deficits
or hemiparesis and often accompanied by disturbances in speech,
affect, or consciousness (or a combination of these), develops
within two to three weeks (usually 2 to 14 days) after HD-MTX
or intrathecal MTX administration and waxes and wanes over the
subsequent hours to days and then resolves within a few days*>.
MTX interferes with the methionine/homocysteine pathway
and purine de novo synthesis pathways, disrupts myelin, causes
accumulation of homocysteine and adenosine, and influences

F1000Research 2017, 6(F1000 Faculty Rev):444 Last updated: 07 APR 2017

neurotransmitter status with a strong excitatory effect on the
N-methyl-D-aspartate receptor (NMDAR). Vitamin B , deficiency
can promote these disturbances’*. The incidence of SLS varies from
less than 1% to 15% in the literature and appears to vary accord-
ing to the scheduling and intensity of MTX and co-administration
of other agents such as cyclophosphamide and Ara-C and appears
more frequently in children older than 10 years”. Most patients
make a full recovery, although there are reports of persisting
neurological deficits, and the risk of recurrence with subsequent
MTX therapy is low". Dextromethorphan, a non-competitive
antagonist to NMDAR, or aminophylline (more relevant for acute
MTX-induced neurotoxicity) has been advocated on the basis of
small series’”°. The effect may be dramatic, but the use of these
interventions awaits formalized validation. MRI will not always
be able to confirm MTX-SLS but often reveals characteristic
changes allowing discrimination of MTX-SLS from PRES”".

PRES is a clinico-radiological entity frequently seen dur-
ing the first months of ALL therapy, reflecting disturbances of
cerebrovascular autoregulation and inconsistently character-
ized by headache, altered mental status, seizures, and visual
disturbances'**°. It may have several causes, predominantly
arterial hypertension, chemotherapy, and corticosteroids, but the
exact cause can frequently not be determined in the individual
patient’™®. On cranial MRI, areas of vasogenic edema are pre-
dominant but not restricted to the posterior regions of the brain
or being exclusively bilateral. Affected areas are hypointense on
T1-weighted and hyperintense on T2-weighted MRI*. In contrast
to MTX-SLS, PRES is hyperintense on apparent diffusion-
weighted coefficient MRI images.

Some patients develop frank psychosis during corticosteroid
therapy*'*”. There are no clear guidelines for their clinical manage-
ment, but sleep medication and tranquilizers and, in severe cases,
anti-psychotics (for example, risperidone) can be indicated®.

Transverse myelitis is a very rare complication seen in children
with or without hematological malignancies®. It may occasion-
ally be associated with malignant infiltration®” but can also be seen
as a result of intensive chemotherapy, and high-dose cytarabine,

63

MTX, and vincristine have been suspected to play a role®.

Peripheral neuropathy

Peripheral motor or sensory neuropathy or both are common,
usually caused by vincristine, and in general completely revers-
ible but may require many months for improvement®-*. In severe
cases, they are occasionally associated with Charcot-Marie-Tooth
disease®*"’.

Metabolic drug-drug interactions may enhance vincristine
neurotoxicity®. Vincristine is inactivated by the major drug-
metabolizing CYP isoform in humans, CYP3A4, and the azoles
ketoconazole, itraconazole, and posaconazole are potent inhibitors
of CYP3A4%. The potency of the azoles fluconazole and voricona-
zole as CYP3A4 inhibitors are much lower but may be clinically
significant at high doses. A few germline DNA variants and gene
expression profiles have been associated with the risk of vincris-
tine-induced neuropathy® .
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Bone toxicities

The pathophysiology of osteoporosis during ALL therapy is
uncertain, but the leukemia itself and the use of corticosteroids
may cause osteoporosis and fractures, including multifocal
compression fractures of the spine’'~, and osteoporosis affects
up to 20% of newly diagnosed children with ALL”™. Five-
year cumulative incidence of fractures has been reported to
be 10% to 15% with no overall incidence difference between
post-induction prednisolone or dexamethasone, although for
adolescents dexamethasone seems to be associated with a higher
risk”>7¢,

The most severe skeletal complication is symptomatic ON,
caused by bone death resulting from poor blood supply”’. The
PTWG has published a consensus definition of ON that accounts
for localization of ON, joint deformation and the impact of ON
on symptoms and self-care’. If routine MRI is performed, an even
higher frequency of non-symptomatic ON will be detected’®. Thus,
the overall reported frequency varies from less than 5% to more
than 70%, and females and adolescents have the highest risk’**.
ON is mainly diagnosed during the second year of ALL therapy
(that is, during maintenance therapy), although presentation can
occur earlier or even after cessation of therapy’®*'. Hips and knees
are most commonly affected in both subclinical and clinical cases,
and often multiple joints are involved’’*'. Many will suffer from
daily pain, decreased ability of physical activity (or even need
of a wheelchair), and reduced quality of life**>. ON can lead to
joint articular surface collapse with debilitating arthritis and need
for joint-preserving or joint replacement surgery during the early
phase of ON or months or years later.

So far, the only proven preventive measure for ON is giving
dexamethasone intermittently rather than continuously”. Corti-
costeroids contribute to the development of ON through osseous
lipocyte hypertrophy with resultant increased pressure within
the bone, which can cause vascular collapse and necrosis, and
corticosteroids can cause direct toxicity to osteocytes. Fat emboli,
vasculitis, or microthromboemboli that cause vascular occlu-
sion can also contribute. Accordingly, hyperlipidemia induced
by corticosteroids and asparaginase has been suggested to be
associated with increased risk of ON, although most studies have
been inconclusive’**.

Genetic risk factors have been reported in pathways associated
with the glutamate receptor, bone, lipid and folate metabolism,
thymidylate synthase, corticosteroid disposition, and adipogenesis,
but the associations have in general not been validated’*—*.

The benefits of prognostication of ON by imaging await
validation®”*. Future research should focus on potential risk
factors for various grades and for single-versus-multiple site ON,
on the association with metabolism of drugs that may influence
lipid profiles and coagulation’, on the long-term outcome of ON,
on improved guidelines for treatment adaptation and interventive
surgery, and on the association of germline DNA variants with
phenotype subsets.
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Thromboembolisms

TE located to the venous system is most common, and half of
the cases involve the CNS®"'. The cumulative incidence of
symptomatic venous TE is 2 to 8%”, but asymptomatic cases
have been reported in up to 70% of patients’*”". Risk factors for
TE include the leukemia itself, older age, central line catheters,
immobilization, infections, systemic inflammation, and therapy
with asparaginase or corticosteroids or both’*""***%  whereas
inherited thrombophilia risk factors, including common germline
DNA polymorphisms, do not seem to play a role or at best remain
uncertain”®. The fatality rate of venous TE is highest in children
with thromboses in cerebral veins, and studies on the benefits of
anti-thrombotic prophylaxis, preferably with the novel oral anti-
coagulants, are needed”*".

Sinosoidal-obstruction syndrome

Until recently, SOS, previously known as veno-occlusive
disease”, has primarily been a serious complication of hSCT
and is otherwise rare during childhood ALL therapy except with
continuous oral thioguanine'”, not least in patients who carry
low-activity alleles for thiopurin methyl transferase'’’. Doppler
ultrasound showing reversed hepatic portal flow may aid the
diagnosis, but a normal flow does not exclude the diagnosis and
thus is not a mandatory diagnostic requirement. Instead, at least
three of five criteria need to be fulfilled: that is, hepatomegaly,
hyperbilirubinemia above upper normal limit (UNL), ascites,
weight gain at or above 5%, and thrombocytopenia (transfusion-
resistant or otherwise unexplained by treatment or both)’.

The pathogenesis remains unclear, but drug-induced damage
to hepatic endothelium and microcirculation and subsequent
ischemic hepatocellular necrosis are the presumed mecha-
nism”*'%>'% Previously, SOS occurred extremely rarely during
6-MP therapy'®™ but recently has been described as a frequent com-
plication to continuous polyethylene glycol-linked Escherichia
coli asparaginase preparation (PEG-asparaginase) during
6-MP-based maintenance therapy when combined with pulses
of either HD-MTX or vincristine/dexamethasone, probably
reflecting the impact of asparaginase on 6-MP pharmacokinet-
ics causing higher drug metabolite levels'*’. Management of SOS
during thiopurine therapy follows the same principles as manage-
ment of SOS following hSCT: that is, fluid and sodium chloride
restriction, diuretics, and, in the rare severe cases, defibrotide.

Endocrinopathies

There is a paucity of prospective longitudinal studies determin-
ing endocrine changes during ALL therapy, and the existing
studies have small sample sizes. Growth retardation and relative
growth hormone deficiency are common during ALL therapy,
but usually an adequate growth catch-up is obtained after cessa-
tion of therapy in children who do not receive radiotherapy'®>'*,
but with a trend toward reduced final height'”’.

A significant weight gain is seen in up to 40% of children with

ALL, primarily reflecting exposure to corticosteroids and
reduced physical activity with insulin resistance, hyperglycemia,
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and prediabetes, which could indicate the need for dietary
modifications and insulin therapy'*™™'"'. The risk of corticos-
teroid-induced hyperglycemia is aggravated by asparaginase
therapy''>'"*. The prevalence of hyperglycemia during ALL
therapy has been reported to be 10% to 20% during treatment
with asparaginase and corticosteroids, most frequently in children
above 10 years of age, with resolution after cessation or taper-
ing down of these drugs''*'"°. Medication-induced diabetes may
be a marker for metabolic disease later in life''. Finally, hyper-
glycemia and obesity both have been associated with reduced
event-free survival''''%,

Fasting hypoglycemia is common during MTX/thiopurine-
based maintenance therapy, especially in children below 6 years
of age, but resolves after discontinuation of therapy''*'*". It may
reflect lowered plasma levels of the gluconeogenic amino acids
(alanine and glutamine) as well as impaired glycogenolysis or
glyconeogenesis''*!*!.

Corticosteroids cause a suppression of the HPA axis with
secondary adrenal insufficiency and impaired stress response
in nearly all patients, which for some patients may last several
months after cessation of corticosteroid therapy irrespective of
whether prednisolone or dexamethasone has been used'””. It may
be aggravated by co-administration of fluconazole'*’. Thus, corti-
costeroid replacement is indicated during the first weeks to months
after cessation of corticosteroid therapy, not least during episodes
of serious stress unless a stimulation test has shown a normal
adrenal response'”*'*’. The duration of adrenal insufficiency has
been ascribed to variants of the GR gene'”, but formal genome-
wide association analyses are lacking.

HD-MTX-related nephrotoxicity

Alkalinization and vigorous hydration reduce the risk of significant
nephrotoxicity with HD-MTX, but approximately 3% of patients
will experience severe renal toxicity that will further compromise
MTX clearance'”~'*, The nephrotoxicity is likely to be related
to precipitation of MTX crystals in the kidneys and this is partly
due to insufficient hydration and alkalization'*'*". Plasma creati-
nine usually peaks within a few days after initiation of the HD-
MTX infusion and returns to baseline after a few weeks. Nearly
all patients will subsequently tolerate full-dose HD-MTX with-
out recurrent nephrotoxicity'?”'**. Higher doses of folinic acid,
adjusted by the plasma MTX levels, are essential to limit the risk
of life-threatening myelosuppression and mucositis, but whether
over-rescue could increase the risk of relapse remains an unsolved
challenge'"'~'*. In cases with extremely delayed MTX clear-
ance, glucarpidase may be helpful to degrade MTX by enzymatic
cleavage to 2,4-diamino-N10-methyl-pteroic acid (DAMPA)
and glutamate'””'*, but it does not promote restoration of renal
function. Proton pump inhibitors and non-steroidal anti-inflam-
matory drugs'**~'** as well as foodstuff (for example, licorice'*)
and beverages (with low pH or sweetened with licorice extract)
have been suspected to affect the MTX clearance'*. Since the
introduction of 5-HT3 receptor antagonists, emesis is not a
problem during HD-MTX and not linked to acute kidney injury.
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Trimethroprim-sulfamethoxazole used as Pneumocystis jiroveci
prophylaxis during ALL therapy does not seem to interfere with
HD-MTX PK'*.

Several germline DNA variants are associated with MTX clear-
ance, most notably in SLCOIB"*'*, but none has yet been
implemented in HD-MTX dosing strategies or been shown to be
associated with extremely delayed MTX clearance.

Toxicities secondary to asparaginase therapy
Asparaginase causes a range of toxicities due to asparagine
depletion and disturbed protein synthesis. These toxicities may
occur in up to 20 to 25% of all patients’ and may lead to discon-
tinuation of asparaginase therapy, which may increase the risk of
relapse, not least in the CNS'**-'%!,

Asparaginase-associated allergy

The various asparaginase preparations and recombinant analogs
differ in their biologic half-lives (shortest for Erwinia chrysan-
themi-derived asparaginase and longest for PEG-asparaginase)
and in their immunogenicity (lowest for PEG-asparaginase)'>*'>.
Asparaginase can induce antibody formation that neutralizes
asparaginase with or without (so-called silent inactivation) clinical
signs of hypersensitivity'>*-°°. Identification of silent inactivation
requires measurement of plasma asparaginase activity levels.

The reported frequency of allergic reactions ranges from 3 to 75%
depending on the type, dose, route, and duration of asparaginase
administration, and allergic reaction primarily occurs after the
first or second dose and virtually always is associated with zero
asparaginase activity”*'>*15712. The reactions range from mild,
local reactions to life-threatening systemic responses, including
urticaria, symptomatic bronchospasm, edema/angioedema, and
hypotension. Premedication with corticosteroid and anti-
histamines and increased infusion time can reduce allergic
symptoms but do not prevent asparaginase inactivation, and thus
symptoms of hypersensitivity indicate the need to switch from
E. coli-derived preparations to Erwinia asparaginase (or vice
versa)'®. Less immunogenic asparaginase preparations are
emerging but are not routinely used in first-line therapy'*~'*.

Allergic-like reactions (for example, vomiting, stomach ache, or
rash) with intact asparaginase activity can be seen but do not indi-
cate discontinuation of the drug’. Therapeutic drug monitoring can
be helpful for differentiating allergy and allergic-like reactions'™*.
HLA-DRB1*#07:01 and genetic variations in GRIAI have been
associated with a higher incidence of hypersensitivity and anti-
asparaginase antibodies'’'%*,

Asparaginase-associated pancreatitis

Asparaginase-associated pancreatitis (AAP) has a reported inci-
dence of 2 to 18% depending on the cumulative asparaginase dose
(that is, treatment duration) and toxicity capture strategies but
seemingly not on the route of administration”'7%!%-1 AAP is
most often diagnosed within two weeks of asparaginase exposure
(median of 11 days with PEG-asparaginase), but the interval may
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be longer'”. The diagnostic criteria defined by the PTWG’ are
similar to those developed for pancreatitis in general'”® and require
two of three criteria to be met: (i) abdominal symptoms sugges-
tive of AAP, (ii) characteristic findings of pancreatitis on imaging,
and (iii) serum lipase or amylase or both at least three times the
UNL, and both enzymes should be measured because of a poor
correlation between the two'”. If imaging shows pancreatic necro-
sis or hemorrhage and/or the abdomimal symptoms and elevated
pancreatic enzymes at least three times the UNL persist for
more than 72 hours, AAP is classified as severe and otherwise as
mild.

Most AAP episodes are accompanied by systemic inflammatory
responses (fever, elevated heart rate, elevated respiratory rate, or
hypotension) and thus may easily be misinterpreted as sepsis. In
addition to transient or permanent discontinuation of asparaginase
therapy, treatment of AAP includes appropriate triage, fluid resus-
citation, antibiotics (until an infection is ruled out), and monitoring
for and treatment of AAP-related complications'”’. The mortality
rate is low, but patients systemically affected at AAP diagnosis are
at increased risk of developing pseudocysts, acute or persistent dia-
betes mellitus, and chronic/relapsing pancreatitis'”!”®. Octreotide
has been tested in few patients, but the benefit thereof remains to
be determined'””'*".

The risk of a second AAP after re-exposing patients with AAP to
asparaginase is almost 50% and does not seem to be significantly
lower if the first AAP episode was classified as mild'"%7*!7>,

Risk factors for AAP are few, although the incidence is associated
with older age. Polymorphisms in PRSSI, SPINKI, ASNS, ULK2,
RGS6, and CPA2 genes have been associated either with pediat-
ric pancreatitis in general or with AAP'*>'"*!¥11%2 " although these
associations await validation.

Hyperlipidemia

Elevated triglycerides and cholesterol occur frequently during
ALL therapy and are associated with corticosteroid and aspara-
ginase therapy’’***'*). However, patients are generally com-
pletely unaffected, even when levels are 40 to 50 times the UNL,
the association with specific toxicities is very uncertain, and
accordingly neither routine measurements nor interventions are
recommended’.

The hypertriglyceridemia is likely related to an increase in the
endogenous hepatic synthesis of very low-density lipoprotein com-
bined with a decreased activity in lipoprotein lipase, an enzyme
involved in the removal of triglyceride-rich lipoproteins from the
plasma'®.

The most common preventive measures in cases of hypertriglyc-
eridemia are dietary restrictions (very limited effect), fibrates,
insulin infusions, heparin infusions, and in extreme cases plas-
mapheresis, but there are no data to support that any of these
interventions reduces the risk of hypertriglyceridemia-associ-
ated toxicities®'*-'*. In adults with non-malignant disorders,
hypertriglyceridemia (above 10 times the UNL) has been asso-
ciated with an increased risk of acute pancreatitis'*-'**'*", but so
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far this has not been replicated in children with ALL"'. A few
studies have indicated associations with development of ON and
thrombosis’®#*9>13%188192 = byt no randomized studies have
explored whether lipid-lowering interventions prevent these
complications.

Host genome variant associations

As mentioned above, multiple variants in germline DNA have
been associated with the pharmacology of anti-leukemic agents,
including the risk of toxicities®**'*, but their individual haz-
ard ratios are generally low (<2.0), the variants are rare or lack
validation in independent studies, and treatment alterations
according to such variants so far have not been implemented in
childhood ALL therapy. The main reasons for our current inabil-
ity to identify clinically actionable germline variants associated
with specific toxicities are lack of sufficient study power (since
each toxicity is rare and few trial groups are investigating genotype
variation), incomplete toxicity capture, lack of detailed phenotyp-
ing (for example, lumping all subtypes and grades of a toxicity),
and exploration of single-nucleotide polymorphisms rather than
biological pathways. To address these limitations, the PTWG is
now collecting phenotypes of several acute toxicities (pancreati-
tis, ON, and CNS toxicities) in hundreds of patients for each of
these toxicities to associate detailed phenotypes with germline
DNA variants'”.

Leukemia predisposition syndromes

Recent research has identified several germline mutations in
genes that play a critical role in hematopoiesis and lymphoid devel-
opment and that are also frequently somatically mutated in ALL,
such as PAX5"*'">, ETV6"*", RUNXI11", and IKZF1"°, which
align with the findings of high subtype concordance in famil-
ial cases of ALL!'">!?7200201 This indicates that pure familial ALL
syndromes may constitute a substantial part of ALL etiology and
that more such syndromes are expected to emerge in parallel with
a growing number of patients being germline-sequenced and with
a deeper understanding of the impact of coding and non-coding
DNA interactions'**. However, the impact of such germline DNA
mutations on toxicities, not least those involving the bone marrow
and immune system, remains to be determined. The risk of second
malignant neoplasms may also be increased when childhood ALL
arises due to a predisposition syndrome. Unusual acute toxicities
and second malignant neoplasms therefore should lead to clinical
suspicion of an underlying syndrome”””.

Down syndrome is the most frequent known germline mutation
predisposing to ALL and is associated with enhanced gastrointes-
tinal toxicity’”. However, reducing treatment intensity may also
increase the risk of relapse’” and should be considered only in case
of excessive toxicity in the 10 to 15% of Down syndrome-ALL
patients who harbor high hyperdiploidy or an ETV6-RUNX]I trans-
location, since these subsets have a superior cure rate’”.

Several other ALL-predisposing syndromes such as Li-Fraumeni,
ataxia telangiectasia, Nijmegen breakage, biallelic mismatch
repair, and Fanconi anemia can also exhibit syndrome-related
toxicities when exposed to DNA-damaging anti-cancer agents or
radiotherapy”“~". In such cases, a reduction of DNA-damaging
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drug doses must be considered on an individual basis, and at
least for ataxia telangiectasia and Nijmegen breakage dose reduc-
tion may not be associated with an increased risk of relapse’'’. In
contrast, thiopurine-based maintenance therapy may be less
efficient in patients with biallelic mismatch repair deficiency,
since this pathway is critical for thiopurine cytotoxicity”''.

Future research

The low frequency and poor definitions of most of the listed
organ toxicities have hampered their in-depth exploration, includ-
ing the impact of specific drug dosing regimens, and identifica-
tion of clear risk factors for certain phenotypic subsets. The recent
PTWG consensus definitions of 14 of these toxicities have pro-
vided a platform for international collaboration on these issues’.
The results from the first of such explorations demonstrate its
feasibility'”” and may allow exploration of the association
between risk factors, including host DNA variants, in well-defined
phenotypic subsets and provide evidence-based guidelines for
treatment adaptation. Furthermore, the association of these acute
toxicities with the risk of long-term organ toxicities (for example,
dementia, diabetes, arthrosis, and chronic pancreatitis) remains to
be mapped. Currently, event-free survival measures encompass
death during induction, resistance to first-line therapy, relapse
of leukemia, non-leukemic death during clinical remission, and
development of a second cancer. However, many patients with
a late relapse or a second cancer have a fair chance of cure’'**!,
whereas chronic toxicities are generally irreversible and challenge
patients’ ability to live a normal adult life’'". This calls for new
endpoint measures that include both survival and quality of life,
which will require common strategies for toxicity capture and
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