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Despite many changes in alternative splicing events (ASEs) are frequently involved in various cancers, prognosis-related ASEs and
drug treatment targets in glioblastoma multiforme (GBM) have not been well explored. ASEs participate in many biological
behaviors in the initiation and progression of tumors, the aberrant ASE has been considered another hallmark of cancer, and the
systematic study of alternative splicing may provide potential biomarkers for malignancies. In this study, we carried out a
systematic analysis to characterize the ASE signatures in GBM cohort. +rough comparing GBM tissues and nontumor tissues, a
total of 48,191 differently expressed ASEs from 10,727 genes were obtained, and these aberrant ASEs play an important role in the
oncogenic process. +en, we identified 514 ASEs independently associated with patient survival in GBM by univariate and
multivariate Cox regression, including exon skip in CD3D, alternate acceptor site in POLD2, and exon skip in DCN. +ose
prognostic models built on ASEs of each splice type can accurately predict the outcome of GBM patients, and values for the area
under curve were 0.97 in the predictive model based on alternate acceptor site. In addition, the splicing-regulatory network
revealed an interesting correlation between survival-associated splicing factors and prognostic ASE corresponding genes.
Moreover, these three hub splicing factors in splicing regulation network are the potential targets of some drugs. In conclusion, a
systematic analysis of ASE signatures in GBM could serve as an indicator for identifying novel prognostic biomarkers and guiding
clinical treatment.

1. Introduction

Glioblastoma multiforme (GBM) is the most aggressive
cancers in the central nervous system, and the 5-year overall
survival rate of this disease is only 0.05% to 4.7% [1–3]. For
GBM patients in China, the 1- and 5-year overall survival
(OS) rates are 61% and 9%, respectively [4]. Until now,
standard therapy for GBM consists of surgical resection to a
safe and feasible extent, followed by radiotherapy and ad-
juvant temozolomide, an alkylating agent [5]. Temozolo-
mide is the only first-line drug in the treatment of recurrent
glioma, and the levels of DNA repair gene O6-methyl-
guanine DNA methyltransferase (MGMT) indicated

sensitivity to the drug [6]. Median survival time for patients
with methylated and unmethylated MGMT is 23 and 13
months, and the ratios of patients who survive more than 5
years in two groups are 14% and 8% separately [7]. Once to
be a GBM patient, there are currently no effective curative
options. Such limited treatment and poor outcome enable
biomarkers of GBM, an ongoing research area, and need
more exploration from scientists and oncologists.

Protein is the executor of life activities, and protein
diversity is essential for the significant regulation and
functional complexity of eukaryotic cells. Alternative
splicing is a biological process leading to structural tran-
script changing and providing the possibility of diversity at
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the protein level [8, 9], so alternative splicing is a crucial
system, and variation in splicing patterns is tightly associated
with the function of proteins. Many alternative splicing
events (ASEs) are closely related to biological activity, not
only to physiological functions, such as cell development
and differentiation [10], but also to pathological processes,
including cancer-associated phenotype [11]. Alternative
splicing is extensively perturbed in cancer, which produces
transcripts with and without biological functions. Also,
tumor progression is partially led by the cancer-specific ASE
[9].

In recent decades, numerous genomic and functional
studies have found that splicing defects and the production
of specific isoforms are the drivers of cancer [12]. +ere is
growing evidences proved that ASE plays an important role
in oncogenic processes, such as cell proliferation, anti-
apoptosis [13], epithelial-mesenchymal transition (EMT)
[14], metabolism, angiogenesis, immune escape, and me-
tastasis [15–17]. In addition, it is proved that splicing factors
(SFs) influence the site selection of splicing regulatory by
combining pre-mRNA on the exon splicing enhancer or
silencers [18] and changes in SFs are also associated with the
initiation and progression of cancer [19]. Hence, it is also
necessary to explore potential regulatory interactions be-
tween SFs and ASEs and further to seek the effect of ab-
normal ASEs on potential target drug therapeutic response.

Research studies on cancer-related ASEs have received
more and more attention from researchers. With the de-
velopment of high-throughput technology, RNA-seq data of
clinical samples accumulate rapidly, and it is possible to
study the alternative splicing to identified “cancer-specific”
ASE and to explore the protein regulation network that ASE
involved in. Recently, research studies on ASE in GBM are
continually emerging [20, 21], and ASEs play an important
role in GBM processes. For example, manipulation of
MKNK2 alternative splicing by splice switching oligonu-
cleotides is a novel approach to inhibit GBM cell prolifer-
ation and to enhance activity with chemotherapeutic drugs,
which suggested a novel treatment strategy for clinical
practice [22]. circSMARCA5 is an upstream regulator of
pro- to antiangiogenic VEGFA alternative splicing isoform
ratio within GBM cells, and a highly promising GBM
prognostic and prospective antiangiogenic molecule could
be a prognostic biomarker and a therapeutic target [23].
However, systematic analyses of alternative splicing in drugs
therapeutic response in GBM have been lacking.

In our study, we systematically analyzed the ASE in GBM
cohort. From +e Cancer Genome Atlas (TCGA), exon,
splice, and transcript isoform expression level datasets are
available [24]. By comprehensive analysis, we identified a
number of survival-related ASEs in GBM. +en, we con-
structed networks between prognosis-related ASEs and SFs
and uncovered interesting splicing networks which could be
underlying mechanisms. More importantly, we revealed that
hub SFs were associated with drug therapeutic response.
+rough this method, we hope to find target markers to
predict the prognosis and the therapeutic targets of GBM
patients and further to guide clinical individualized
treatment.

2. Materials and Methods

2.1. Data Curation from TCGA GBM. RNA-seq data, 450K
methylation data, and copy number variation (CNV) data of
TCGA GBM cohorts were downloaded from TCGA data
portal (https://tcga-data.nci.nih.gov/tcga/). We used Spli-
ceSeq tool [25], a Java program application, to analyze the
splicing patterns of GBM samples from RNA-seq data. +e
percent-spliced-in (PSI) value, a common, intuitive ration
for quantifying splicing events from zero to one [26], was
computed for seven ASEs in each sample: alternate acceptor
site (AA), alternate donor site (AD), alternate promoter
(AP), alternate terminator (AT), exon skip (ES), mutually
exclusive exons (MEs), and retained intron (RI). Annotation
from GENCODE version 27 was used as the transcript
model reference to guide the assembly process [27].

2.2. Identification and Enrichment Analysis of Different ASEs.
To detect different ASEs, we used the Wilcoxon test to
compare the PSI value distributions between GBM samples
and adjacent normal samples. Multiple testing was corrected
by using the Benjamini–Hochberg method to obtain the
corrected P values. ASEs with adjusted P value< 0.05 and
PSI |fold change|> 1.5 were identified as significant differ-
ences. To investigate the intersections between seven types of
different ASEs, we applied UpSetR to visualize intersection
sets and their aggregates, which is more scalable alternative
to the traditional Venn diagram when addressing more than
five sets [28].

In order to observe the biological functions involved in
different ASEs and their roles in tumorigenesis, we per-
formed the Gene Ontology (GO) enrichment analysis using
R package “clusterProfiler.”

2.3. Survival Analysis. To analyze the association between
ASE and OS of patients, we divided patients into two groups
by the median PSI value of each splicing event and per-
formed univariate Cox regression. Multivariate Cox re-
gression was further conducted to determine splicing events
that were independent prognostic factors and to build
predictive models. +e efficacy of predictive models which
distinguish patients with various survival times was shown
by Kaplan–Meier curves. +e receiver operator character-
istic (ROC) curves draw by R package “survivalROC” was
further employed to evaluate the predictive model.

2.4. Construction of Network between Survival-Associated
ASEsandSFs. To explore the regulation of SFs on prognostic
ASEs, we collected 71 SFs from previous reports [29]. First,
we curated TCGA level 3 mRNA-seq data of these SFs and
determined the survival-associated SFs. +e expression level
of survival-associated SFs in GBM tissues and adjacent
normal tissues was also compared. To assess the association
between SFs and ASEs, we performed Matrix_eQTL_engine
function in R package “MatrixEQTL,” and P value< 0.05
was considered to be significantly correlated. +e regulation
networks were plotted using Cytoscape (version 3.4.0).

2 Journal of Oncology

https://tcga-data.nci.nih.gov/tcga/


2.5. Determination of Hub SFs Associated with Drug 8era-
peutic Response. +e Genomics of Drug Sensitivity in
Cancer (GDSC) project measured the responses of 1000
human cancer cell lines to a host of chemical drugs by the
IC50 [30]. +e value of IC50 greater than μ+ standard de-
viation (SD) means that the cell line resists the drug, while
this value less than μ− standard deviation (SD) indicates the
cell line is sensitive to the drug. However, if this value is
within μ± SD, we thought the cell line to be intermediate
and excluded it in further analysis. In the following analysis,
we only considered drugs that had at least 3 resistant or 3
sensitive cell lines.

For each drug, Student’s t-test was applied to identify the
genes that differently expressed between resistant and
sensitive cell lines. P value< 0.05 indicates that the ex-
pression of this gene was related to chemoresponse of the
corresponding drugs.

2.6. Statistical Analysis. All statistical analysis and figure
plotting in our study were performed using R software
(http://www.r-project.org). Heatmaps and Circos plots were
generated by the R packages “pheatmap” and “OmicCircos,”
respectively. Additionally, statistical tests were two-sided,
and a P value< 0.05 was considered statistically significant,
unless indicated otherwise.

3. Results

3.1. 8e ASE Profile Landscape in GBM. To systematically
characterize the human GBM ASE profiles, we collected 153
GBM samples and 5 adjacent normal samples from the
TCGA. +e GBM patients included 99 (64.7%) male and 54
(35.3%) female patients, among which 151 patients (98.7%)
were untreated primary tumors. +e median age of these
patients was 60 (range, 21–89 years), and the median follow-
up period after surgical resection was 357 days (range,
5–2681 days). +e detailed characteristics of these patients
are summarized in Table S1. In GBM cohort, we identified a
total of 48,191 ASEs from 10,727 genes. According to their
splicing pattern, these ASEs can be roughly divided into
seven types, including 4029 AA events in 2796 genes, 3441
AD events in 2376 genes, 9248 AP events in 3693 genes, 8530
ATevents in 3730 genes, 19,809 ES events in 7201 genes, 201
ME events in 196 genes, and 2933 RI events in 1953 genes,
which are illustrated in Figure 1(a). We found that ES was
the predominant type, since 41.1% of the ASEs were ES
events and noticed that one gene might have two or more
splicing types; as shown in Figure 1(b), the UpSet plot
demonstrated that one gene might have up to five types of
ASEs. For example, 50 genes had AA, AD, AT, ES, and RI
events and 69 genes had AA, AD, AP, ES, and RI events,
simultaneously.

We further explored the detective frequency of ASEs
with distinct PSI levels in all samples. As a result, splicing
events with low PSI levels (PSI≤ 0.2) and high PSI levels
(PSI> 0.8) constituted the majority of all types of ASEs
(Figure 1(c)). In addition, according to GENCODE (v27),
transcripts were categorized into four types of genes

(Figure S1), including protein-coding genes, processed
transcript genes, pseudogene, and others. In our GBM ASE,
about half of the transcripts in every splicing events are
classified as protein-coding genes (Figure 1(d)), indicating
that not all transcripts could be translated into proteins, but
nearly half of them may inevitably affect protein translation,
modification, and regulatory functions.

3.2. 8e Biological Function of Aberrant ASE. To fully de-
scribe the abnormal ASE that occurs in GBM, we identified
different ASEs between tumor and adjacent normal samples.
+rough the Wilcoxon test, we identified 1555 ASEs in 1243
genes with the threshold of |log 2FC|> 1.5 and adjusted P

value< 0.05, among which there are 29 AA events in 27 genes,
17 AD events in 16 genes, 333 AP events in 308 genes, 505 AT
events in 475 genes, 639 ES events in 505 genes, 10 ME events
in 10 genes, and 22 RI events in 21 genes.+ese different ASEs
are shown in the volcano plot (Figure 2(a)) and Table S2, and
all downregulated and upregulated ASEs are exhibited in the
heatmap, respectively (Figures S2(a) and S2(b)). +e detailed
information of the top 10 upregulated and top 10 down-
regulated ASEs is listed in Table 1. In addition, we also noticed
that one gene might have two or more events which were
significantly different (Figure S2(c)) and the proportion of
ASE between aberrant ASE and the entire ASEwas consistent,
and ES event was the predominant type.

+e aberrant ASEmay directly affect the expression of its
corresponding genes, and in order to investigate the rela-
tionship between aberrant ASE and differently expressed
genes (DEGs), we analyzed the aberrant ASE that occurred
in DEG. A Venn diagram summarized the results
(Figure 2(b)). +e unique number of aberrant ASE in its
corresponding DEG was 1243, and the number of DEG was
1100; as we expected, all differently expression genes were
occurred aberrant ASE. Furthermore, for intuitively showing
the difference of these ASEs, we generate graphs in which the
scatter plot is overlaid with the boxplot about 5 representative
ASE-related genes, for example, AP in ENPP2, ES in
EPB41L2, AT in CCDC148, AP in DMTN, and ATin KALRN
(Figure 2(c)). Considering all of these evidences, it suggested
that, like GBM-related genes, GBM-related ASEs play a vital
role in GBM biological and further research is needed.

To further explore the changes of abnormal ASEs in
other omics, we examined the aberrant ASE and corre-
sponding genes via epigenetic and CNV mechanisms
(Figure 2(d)). Since there was only one normal sample in the
GBM methylation data and no normal sample in the CNV
data, we roughly observed the changes of the different ASEs
in the two omics and concluded that the methylation and
CNV level are also different, and the multiomics regulation
requires further exploration.

+ere was evidence that ASEs could directly affect the
protein diversity and function through several mechanisms.
+us, we can shed light on the potential influence of the
aberrant ASE by analyzing its corresponding protein. As
shown in Figure 3, different splicing events have different
functions. For example, the main function of different AP
event corresponding genes was regulation of focal adhesion
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assembly; however, the different ES event corresponding
genes were establishment of organelle localization. Taken
together, above results indicated that the corresponding
genes of aberrant ASEs play an important role in regulating
the GBM-related biological process.

3.3. 8e Prognostic Predictor of Aberrant ASE in GBM. In
order to investigate the relationship between aberrant ASE
and GBM patient prognosis, we performed univariate Cox
regression. In the result, we detected a total of 2512 survival-
associated ASEs in GBM. +e top 20 most significant
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Figure 1: Overview of ASE profiling in GBM. (a)+e number of ASEs and involved genes from the GBM patients was depicted according to
the AS types. Salmon and cyan bars represent the preliminarily detected ASEs and involved genes, respectively. (b) UpSet plot of interactions
between the seven types of detected ASEs in GBM. One gene may have up to five types of alternative splicing. (c) Bar plots demonstrate the
fraction of every event of distinct PSI levels in different frequency ranges. AA, AD, AP, AT, ES, ME, RI, and ALL represent alternate acceptor
site, alternate donor site, alternate promoter, alternate terminator, exon skip, mutually exclusive exons, retained intron, and all splicing
types, respectively. (d) Bar plot of the proportion of four types of transcripts in different alternative splicing types.
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survival-associated genes in seven types of ASEs are pre-
sented in Table 2. Among these prognostic ASEs, genes such
as AA of B7H3 and ES of MAPKAP1 were included. In
addition, we found that one gene might have two or more
events which were significantly associated with patient
survival; for example, ES, AP, and AA events in gene COPS3
were significantly associated with OS in GBM cohort.

To choose independent prognostic factors, multivariate
Cox regression was conducted to all of survival-associated
ASEs to identify any events that might be an independent
factor in GBM. In total, we identified 32 AA events, 13 AD
events, 127 AP events, 161 AD events, 156 ES events, 5 ME
events, and 20 RI events, and Kaplan–Meier curves show
that every splice type performed reasonably well in

distinguishing outcomes of patients with GBM
(Figures 4(a)–4(g)). To further evaluate the efficiency of
these splicing types, ROC curves were applied to each type.
+e area under curve (AUC) was obviously different among
different splice type models, with the AUC values of 0.97 in
the GBM AA type predictive model (Figure 4(h)), indicating
that the AA splice type performed best in GBM in predicting
patient survival.

3.4. Survival-Associated ASE Correlation Network of SFs.
Splicing factors are RNA-binding proteins that mediated
pre-mRNA splicing with cis-sequence element and core
spliceosome [31]. SFs are closely related to many genes that
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Figure 2: Identification of GBM-related aberrant ASEs. (a) Volcano plot visualized the aberrant ASE identified in GBM. +e salmon and
cyan points in the plot represent the differentially expressed alternative splicing with statistical significance, salmon represents upregulated
ASE, and cyan represents downregulated ASE. (b) Venn diagram demonstrated the intersection set of aberrant ASE and DEG. (c) Scatter
plot is overlaid with the boxplot about 5 representative ASE-related genes. (d) Circos plot displaying the distribution of aberrant ASE in gene
expression, CNV, DNA methylation, and interactions between genes on chromosomes.
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Table 1: +e detailed information of the top 10 upregulated and top 10 downregulated ASEs.

Symbol AS type Exons MeanT MeanN log FC Adj.P
Upregulated
CREM ES 4 : 9.2 : 10.1 :14 0.119 0.000 5.797 <0.01
CREM ES 9.2 :10.1 :14 0.129 0.001 5.369 <0.01
TRPM3 AT 10.2 0.264 0.002 4.724 <0.01
KCNIP4 AP 4 0.557 0.008 4.268 <0.01
FRY AP 54 0.275 0.004 4.154 <0.01
STX1A AA 9.1 0.636 0.011 4.057 <0.01
VAMP2 AP 1 0.004 0.000 4.001 <0.01
PCSK1 AP 2 0.114 0.002 3.945 <0.01
IGSF3 ES 6 0.364 0.008 3.872 <0.01
GABARAPL1 ES 2.7 : 2.8 : 2.10 : 2.11 : 2.12 : 2.13 : 2.14 0.001 0.000 3.871 <0.01
Downregulated
C1QTNF1 AP 5 0.000 0.561 −8.675 0.001
PALLD AT 10 0.000 0.061 −6.864 0.004
CCDC53 ES 5 0.000 0.071 −6.849 0.004
FEZ2 AP 2 0.000 0.213 −6.080 0.017
KIF4A AT 29 0.002 0.884 −5.963 <0.01
ZNF283 AT 8 0.002 0.626 −5.941 <0.01
SAR1B ES 6 0.001 0.267 −5.476 0.010
DYNC2LI1 ES 2 0.002 0.323 −5.287 0.003
HAUS1 ES 3 0.004 0.653 −5.195 <0.01
IKBKB AT 8 0.001 0.085 −5.134 0.005
MeanT: the mean PSI value in GBM tissues; MeanN: the mean PSI value in adjacent normal tissues; log FC: log 2 fold change.+e Adj.P was calculated by the
Wilcoxon test and adjusted through BH correction.
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Figure 3: Continued.
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play an important role in tumorigenesis [9].+us, we further
explored the network of interactions between independent
prognostic-associated ASE corresponding genes and SFs.
First, using level 3 mRNA expression levels of SFs from
TCGA GBM cohort, we identified 9 SFs whose expression
levels were significantly associated with patient survival, and
all survival-associated SFs predicted a good prognosis
(HR< 1). We also compared the expression level of these SFs
in GBM tumor tissues and adjacent normal tissues and
found that 7 factors were significantly dysregulated, in-
cluding HNRNPA1, HNRNPC, HNRPLL, NOVA1, SF3B1,
KHDRBS2, and TIA1. +en, we used Matrix eQTL engine
function to evaluate the correlations between 7 SFs and
independent survival-associated ASE and the correlation
network was constructed using Cytoscape. In the correlation
analysis, a total of 101 significant relational pairs and 54
significantly associated ASEs were identified, with 37 pos-
itive (red lines) and 64 negative (blue lines) correlations. +e
majority of favorable prognosis of these ASEs (cyan dots)
was positively correlated (red lines) with expression of SFs
(orange dots), where most adverse prognosis ASEs (salmon

dots) were negatively correlated (blue lines) with expression
of SFs (orange dots) (Figure 5(a)). +is network suggested
that one binding site can be targeted by different SFs, which
partly explained why one gene can produce more than one
transcript. Relationship between SFs and the specific ASE
was exhibited in the dot plots. For example, splicing factor
NOVA1 and ES of CALM3 were good predictors for GBM
patients, and the expression of NOVA1 was positively
correlated with ES of CALM3 (Figures 5(b)–5(d)); splicing
factor KHDRBS2 was a good predictor for GBM patients,
while ES of U2AF1L4 was a poor predictor, and the ex-
pression of KHDRBS2 was negatively correlated with ES of
U2AF1L4 (Figures 5(e)–5(g)).

3.5. Identification of Hub SF-Associated Drug Response. In
the network of ASE and SFs, there are 7 SFs and 54 ASEs of
38 genes. +rough calculating the degree of the SFs and
genes, we found that splicing factor NOVA1 had the highest
degree, followed by SFs SF3B1 and HNRNPA1. In order to
evaluate the effect of the three SFs on drugs, we used GDSC
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Figure 3: GO enrichment analyses on corresponding genes from 7 aberrant splicing types in GBM. (a–g) Top 20 pathways of GO term in
biological process analyses of genes from aberrant AA events, AD events, AP events, AT events, ES events, ME events, and RI events,
respectively. +e dot size represents the enriched gene number, and FDR values are indicated by color scale by the side.
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Table 2: +e top 20 most significant survival-associated genes in seven splicing types.

ID AS type Symbol P value
ID_18990 ES CD3D 0.0001
ID_30765 AP ZNF280D 0.0001
ID_1507 AP SPOCD1 0.0001
ID_1508 AP SPOCD1 0.0001
ID_46847 ES PTPRS 0.0001
ID_30767 AP ZNF280D 0.0001
ID_40976 AP NKIRAS2 0.0001
ID_40977 AP NKIRAS2 0.0001
ID_13845 ES BRSK2 0.0001
ID_79475 AA POLD2 0.0001
ID_28104 ES ZFYVE26 0.0001
ID_32899 AP PIGQ 0.0001
ID_17207 ES RPS6KB2 0.0001
ID_70200 ES PPA2 0.0001
ID_89054 ES GRIPAP1 0.0001
ID_55511 AA GTDC1 0.0001
ID_76557 AT DST 0.0002
ID_23656 ES DCN 0.0002
ID_20539 ES EMP1 0.0002
ID_78886 AP HDAC9 0.0002
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data to evaluate whether these SFs’ expression was related to
chemoresponse. +e three SFs associated with the signifi-
cantly chemoresponse of drugs are shown in Table 3. In
Figure 6(a), we showed the expression levels of three SFs in
ponatinib-associated resistance and sensitivity cell lines. To
illustrate, the expression level of NOVA1was associated with
three drugs’ chemoresponse, including Kb NB 142-70, PHA-
793887, and ponatinib (Figure 6(b)). In addition, some genes
were associated with the same drug’s chemoresponse, which
might be potential drug targets for brain tumors, and these
drugs may be expected to be used to treat brain tumors.

4. Discussion

We have systematically analyzed the interaction relationship
between ASE and the prognosis of GBM patients. +e
method we applied to deeply analyze big datasets allowed us
not only to identity prognosis-related ASEs but also to devise
strategies for predicting the effectiveness of drug therapy in
GBM.

Increasing evidence suggested that the ASEs were a
posttranscriptional biological process, a predominant
mechanism for RNA and protein diversity [32]. +e specific
dysregulation of splicing played critical roles in producing
isoform to boost proliferation, cancer cell survival, drug
resistance, and metastasis [12, 33, 34]. For instance, ES in
FLNB has been reported to promote EMTin breast cancer by
releasing the FOXC1 transcription factor and reducing
FLNB nuclear localization [35]. Notably, scientists have
found that high ECT2 splice variant including exon 5

(ECT2-Ex5+) levels was negatively related to prognosis in
breast cancer treated with doxorubicin [36]. In short, ab-
errant ASEs play an important role in many biological
processes, and these aberrant ASEs could serve as cancer
hallmarkers or therapeutic targets in cancer treatment.

In this study, using the RNA-seq, methylation, and CNV
datasets of TCGA GBM, we obtained a total of 48,191 ASEs
from 10,727 genes, and only about half of the transcripts
were the protein-coding genes, indicating that some tran-
scripts do not encode proteins, but involved in the regulation
of protein functions. We first systematically analyzed the
different ASEs between GBM tissues and nontumor tissues
and identified 1555 ASEs in 1243 genes, among which there
are 579 upregulated ASEs in 459 genes and 976 down-
regulated ASEs in 850 genes. During which, ES was the
predominant differentially spliced type, and we also found
that one gene might have up to five types of ASEs. +ese
results are similar to many previous studies about other
cancers, such as lung cancer [37], ovarian cancer [38], and
esophageal cancer [39].

In order to investigate the potential mechanism of ab-
normal ASEs, we performed GO enrichment analysis. For
instance, the most important function of AA, AD, AP, AT,
ES, ME, and RI was modulation of chemical synaptic
transmission, establishment of organelle localization, regula-
tion of focal adhesion assembly, cell-substrate adhesion, es-
tablishment of organelle localization, cellular response to
insulin stimulus, and modulation of chemical synaptic trans-
mission. +ese results indicated that abnormal ASEs involved
in many biological processes, which were necessary for tumors.
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Figure 4: Kaplan–Meier plots and ROC curves of predictive factors in GBM patients. (a–g) Kaplan–Meier curves of prognostic models built
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+en, we utilized univariate and multivariate Cox re-
gression and identified a total of 2512 survival-associated
ASEs in patients with GBM, among which 514 ASEs were the
independent prognosis factors. +e predictive model of each
splice type made a good distinction between patients with
GBM. +e AUC of predictive models constructed on each
splice type was distinct, and the best one is the AA predictive
model with an AUC value about 0.97. Such prognostic
models could accurately stratify patients with different
outcomes and thus promote precision medicine. To sum up,
our survival analysis on ASE features expanded the scope of
biomarkers for GBM.

In addition, the relationship between SFs and ASEs
enables us to reveal the underlying mechanism of alternative
splicing related to patient outcomes, and we focused on the
independent prognosis-associated ASEs and their splicing
correlation networks. Seven SFs were significantly related to
patient survival in the GBM cohorts. Among them,
HNRNPA1, HNRNPC, and HNRPLL are RNA-binding
proteins, which belong to the heterogeneous nuclear

ribonucleoproteins (hnRNPs) protein family and ubiqui-
tously expressed to influence pre-mRNA processing [40].
+ere are some studies which have confirmed that hnRNPs
are associated with tumor progression and patient survival
[13, 41]. By reviewing the literature, we get that the NOVA1
could regulate telomerase in most types of cancer cells [42],
the SF3b1 is associated with spliceosome assembly and
therapeutic targeting of its cancer dysfunction [43],
KHDRBS2 revealed frequent mutations in renal cell carci-
noma [44], and TIA1 could regulate expression of VEGF
producing more complexity to the angiogenic pattern of
colorectal cancer [45].

Furthermore, we constructed the splicing regulation
network between 7 SFs and 54 independent prognosis ASEs,
indicating that SFs influence oncogenic processes by regu-
lating the ASE. It is worth noting that the high expression of
SFs was associated with good OS in GBM, and many poor
prognostic-related ASEs were negatively associated with the
expression of SFs in GBM. +e splicing regulation network
between SFs and ASEs unveiled the biological mechanisms
underlying development and tumorigenesis and indicated
that aberrant alternative splicing was regulated by upregu-
lation of oncogenic SFs in GBM.

Given the high incidence of splicing defects in cancer, SF
regulators represent a potentially promising new treatment
strategy in cancer treatment [46]. To explore potential
targets of small molecule modulators, we used GDSC data to
assess the effect of the potential drugs of hub SFs. We found
that splicing factor NOVA1 is the potential target of Kb NB
142 70, PHA.793887 and ponatinib. Ponatinib is an orally
active multityrosine kinase inhibitor and approved by the US
Food and Drug Administration for patients with chronic
myeloid leukemia. Due to ponatinib’s unique multitargeted
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Figure 5: Construction of network between survival-associated ASEs and SFs. (a) Splicing correlation network in GBM constructed by
Cytoscape. ASEs whose PSI values were positively/negatively correlated with survival times were represented with salmon/cyan dots. Yellow
dots were survival-associated SFs. +e positive/negative correlation between expressions of SFs and PSI values of alternative splicing is
represented with salmon/cyan lines. (b) Dot plot of positive correlation between expression of NOVA1 and ES PSI values of CALM3. (c)
Splicing type of ES corresponding gene CALM3 higher expressed indicated good survival. (d) High expression (salmon line) of splicing
factor NOVA1 was significantly associated with good overall survival in GBM. (e) Dot plot of negative correlation between expression of
KHDRBS2 and ES PSI values of U2AF1L4. (f ) Splicing type of ES corresponding gene U2AF1L4 higher expressed indicated worse survival.
(g) High expression (salmon line) of splicing factor KHDRBS2 was significantly associated with good overall survival in GBM.

Table 3: +e three genes associated with different drugs’
chemoresponse.

Gene Name Drug name Target

NOVA1
Kb NB 142-70 Protein kinase D inhibitors
PHA.793887 Cyclin-dependent kinase inhibitors
Ponatinib Tyrosine kinase inhibitors

SF3B1
EHT-1864 GTPase inhibitor

PIK-93 PI4K
(PI4KIIIβ) inhibitor

HNRNPA1
Flavopiridol Cyclin-dependent kinase inhibitors

THZ-2-49 Cyclin-dependent kinase 9
inhibitor
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Figure 6: Hub SFs associated with drugs’ chemoresponse. (a) +e three SFs’ expression in Ponatinib resistance and sensitivity cell lines.
(b) +e example of NOVA1 expression level in sensitive and resistant cell lines for three drugs, including Kb NB 142-70, PHA-793887, and
ponatinib.
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characteristics, further studies have demonstrated its ability
in other human malignancies, such as GBM [47]. Eudocia Q
Lee et al. reported that they performed a phase II trial of
ponatinib in patients with bevacizumab-refractory GBM and
variants [48]. In addition, tyrosine-protein kinase that acts as
a cell-surface receptor for VEGFA tyrosine-protein kinase
inhibitors could reduce the VEGFA expression. NOVA1 acts
as a splicing factor which could regulate the expression of
VEGFA. However, the splicing regulation network is
complex, and the research of new drugs requires much work.
Further studies are needed to validate our conclusions and to
clarify the underlying mechanisms of these findings.

Of course, the alternative splicing represents only one
layer of biology, and these studies need to be integrated to
other “omics,” such as methylomics, genomic, and pro-
teomic. We should combine other omics date to conduct
integrated analysis but limited by normal samples. In ad-
dition, the data of drug target analyses were collected from
GDSC, which were assayed in human cell lines, not in vivo,
so these results need further validation in vivo.

In summary, we identified different expression ASEs and
illustrated that survival-associated ASEs can be a promising
indicator of GBM patients’ outcomes. +e correlation net-
works between prognostic ASEs and SFs indicated a new
latent mechanism in the progression of GBM and found
potential drug targets of SFs. +ese comprehensive and in-
depth analyses may provide insights to understand ASE-
related mechanism in GBM initiation and progression, and
reveal novel ASE-related hallmarks, potential treatment
targets, and drugs, so as to guide clinical medication and
individualized treatment.
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