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Abstract

A large literature links early-life environmental shocks to later outcomes. This paper uses

seasonal variation across the Democratic Republic of the Congo to test for nutrition smooth-

ing, defined here as attaining similar height, weight and mortality outcomes despite different

agroclimatic conditions at birth. We find that gaps between siblings and neighbors born at

different times of year are larger in more remote rural areas, farther from the equator where

there are greater seasonal differences in rainfall and temperature. For those born at adverse

times in places with pronounced seasonality, the gains associated with above-median prox-

imity to nearby towns are similar to rising one quintile in the national distribution of household

wealth for mortality, and two quintiles for attained height. Smoothing of outcomes could

involve a variety of mechanisms to be addressed in future work, including access to food

markets, health services, public assistance and temporary migration to achieve more uni-

form dietary intake, or less exposure and improved recovery from seasonal diseases.

Introduction

We define nutrition smoothing as the ability of an individual, a household or a population to

maintain stable nutrition and health outcomes, despite potentially adverse changes in local cir-

cumstances. Smoothing nutrition goes beyond maintaining food security and diet quality to a

deeper level of resilience, including prevention and recovery from disease [1]. Measuring and

comparing degrees of nutrition smoothing is a first step towards identifying how people

achieve stable nutritional outcomes, which is likely to depend on initial conditions and the

type of shock to be absorbed. Many different mechanisms could be involved, such as agricul-

tural production and food purchases to smooth dietary intake, health care services to prevent

and treat seasonal diseases, or sanitation and vector control to block seasonal disease transmis-

sion. This study aims to define and measure nutrition smoothing using only cross-sectional

data on the child’s birth month and nutrition outcomes, their location in terms of seasonal
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variation in rainfall and temperature, and their distance to towns or cities. Future work using

other kinds of data would be needed to investigate which urban resources account for this

smoothing effect, and how the more remote rural households might achieve the same degree

of smoothing obtained by those closer to towns and cities.

The outcomes of interest for this study are child mortality, height, and weight, which collec-

tively are indicators of past nutrition and health conditions as well as predictors of future well-

being. The setting is the Democratic Republic of Congo (henceforth DRC), one of the world’s

poorest countries whose vast expanse generates a wide range of degrees of rural isolation, with

differences in latitude north and south of the equator creating variation in the timing and

severity of seasonal cycles. Since household location cannot be assigned experimentally, we use

the randomness of a given child’s birth month to identify the causal effect of exposure to sea-

sonal risk factors, in a spatial difference-in-differences approach. Spatial difference-in-differ-

ences has been used primarily in economic studies, for example to estimate the value of

greening vacant urban land [2], or the effect of an invasive species on land values [3]. We use

this method to estimate the effect of proximity to towns on the degree to which child health

depends on seasonal circumstances, controlling for unobservable and observable risk factors.

Proximity to towns and nutrition smoothing in remote areas

In DRC and other settings, infrastructure and other investments to improve rural households’

access to markets and public services are well known to increase average productivity and wel-

fare [4]. As another example, proximity to nearby healthcare clinics was a key factor for utiliza-

tion of healthcare services by families in Tanzania [5]. Proximity to town facilitates access to

virtually all man-made resources, from health care and government services to markets for

goods and services. In the DRC and other very low income settings, remote rural households

are much more reliant on natural resources and attendant environmental shocks, including

seasonal variation in agroclimatic conditions. We do not observe how urban resources are

used by each household; we only know that they can access those resources more easily if they

live closer to a town or city. Households could use the services of a nearby town or city to buy

or sell goods, visit the health clinic, or seek solutions for a livestock disease or pest infestation.

Here we control for average nutrition outcomes to identify whether amenities in towns facili-

tate smoothing as such, using the natural experiment created by birth timing and exposure to

season fluctuations. This strategy builds on the large and growing literature using birth timing

as a natural experiment, such as research in Indonesia testing whether a supplemental nutri-

tion program protected children exposed to a financial crisis in 1997–98 [6].

Study contribution

The main contribution of this study is to define and measure the concept of nutrition smooth-

ing. A secondary contribution is to demonstrate that this can be done using purely cross-sec-

tional data, through a spatial difference-in-differences approach. In effect we treat each region

as a repeated cross-section, using randomness in the timing of conception to identify the

causal effect of exposure to seasonal rainfall and temperature, and various robustness checks

on our tests for effect modification associated with proximity to town. DRC has many unique

features influencing the study design, but the concept of nutrition smoothing and our method

to measure it may have broad applicability in other settings.

Background and Motivation

In DRC, approximately 75% of the population doesn’t consume sufficient calories for a healthy

and active life [7–9], and the country has some of the world’s highest rates of child stunting
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(45.8%), wasting (14%), and underweight (28.2%) [10]. These deprivations reflect both long-

standing poverty and recent disruptions associated with a protracted civil war. The Food and

Agriculture Organization (FAO) estimated that per-capita food supply declined from 2595

kcal per person per day in 1994 to 1833 kcal per person per day in 2009 [7]. Various other indi-

cators are also worsening over time, in contrast to encouraging trends in neighboring coun-

tries [11–12]. As in most of Africa, the majority of DRC’s population is agricultural, and arable

land per person or per agricultural worker have declined sharply in recent decades [7]. The

volume and value of crops commonly grown in DRC, such as cassava, sugar cane, maize, and

plantains has also been declining since 1997 [7], and the lack of infrastructure or markets and

services ensures that many households cannot effectively smooth consumption or protect chil-

dren against adverse health shocks.

Environmental variability and child health

Variation in environmental conditions has opened countless opportunities to study the causes

of differences in health and other child development outcomes [13–14]. The substantial and

illuminating body of literature in this area uses severe shocks such as a drought, famine, or

war, as well as milder and sometimes predictable variation in temperature or other conditions

in early life [15–25], and often finds important long-term consequences for an individual’s risk

of disease, attained height, and labor productivity [26–31]. A key feature of child development

is its sensitivity to environmental shocks at critical ages and developmental periods [32–34].

Seasonal cycles in birth outcomes, child health, and farmer well-being has been observed

around the world, including most recently in Brazil [35], and Indonesia [36]. Both Brazil and

Indonesia are similar to DRC in terms of vast sizes, locations in relation to the equator, pre-

dominant ecosystems, and high proportions of people with agricultural livelihoods. Even

though seasons are relatively predictable, Gambian children born at unhealthy times have sys-

tematically lower weight-for-age and height-for-age than others [37], and have increased risk

of mortality as young adults [38]. Seasonal patterns of this type can be extremely robust, for

example even after controlling for within-mother and within-community characteristics by

comparing siblings and children residing in the same village [39].

The worst time to be born is an empirical question, and is likely to depend on the type of

shock and the circumstances of the household. One of the few biological constraints is that

total energy demands on the mother are typically greatest in the last trimester of pregnancy, at

birth and while breastfeeding [40]. This could help explain why children born during lean sea-

sons may be most disadvantaged, as the harm they experience just before conception and

around 0, 12 and 24 months of age outweighs the benefits of favorable conditions in mid-preg-

nancy and around 6, 18 and 30 months of age.

Proximity to towns and child health

The aim of this study is to test whether proximity to towns and cities helps rural households

avoid differences in health outcomes associated with seasonal fluctuations in rainfall and tem-

perature. We build on the rich body of literature investigating the relationships between prox-

imity to towns, price volatility, and consumption smoothing [41–43], particularly the finding

that expansion of railroads in India had a protective effect in maintaining real incomes and

reducing mortality in the face of environmental shocks [44]. Households that rely on agricul-

ture for income and food may be most susceptible to climate variation and most unable to

smooth consumption across seasons [45–47]. Anthropological evidence from Peru suggests

that these fluctuations may be greatest for the most isolated rural households [48], but in other
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settings such as Bangladesh, even city-dwellers may experience seasonal shifts in food security

and child weight-for-age [49].

Methods

Our analytical method is spatial difference-in-differences, across three dimensions. First, we

use climate data to identify regions with and without seasonal fluctuations. Next, we use the

randomness of birth timing to identify exposure to seasonal risk where it exists. Finally, we

use remoteness of households to identify whether proximity to towns confers resilience for

children born in those places at riskier times. We use continuous variables for diagnostic

regressions and exploratory exercises, then aggregate observations into dichotomous cate-

gories, add mother and community fixed effects and conduct various robustness checks

against our identification strategy to address concerns about endogeneity and correlated

errors [50].

To address our research question, we merge spatial and temporal data on child health,

household characteristics, roads, terrain, land cover, towns, and civil conflict incidents across

DRC. The spatial units of observation are one degree by one degree grid cells, which avoids

endogeneity problems that may arise with administratively-chosen boundaries [51]. Each one-

degree grid cell is approximately 69 square miles in size, an area which varies only slightly in

tropical areas like the DRC; distances between degrees of longitude and latitude are more vari-

able closer to the poles.

Our main source of data on nutrition outcomes is the DRC’s nationally representative

Demographic and Health Survey (DHS), which was conducted in 2007 and again in 2013.

Data collection for the DHS complied with the Helsinki Declaration of 1983 on ethics in

research on human subjects [52]. The heights and weights of a sub-sample of children

for each of the survey rounds were measured for N = 2,931 children in 2007 and N = 5,504

children in 2013. We dropped observations for families that had moved in the previous 6

years (n = 4,060) to ensure that children’s location at the time of survey was also their loca-

tion at the time of birth. Observations flagged by DHS for biologically implausible measure-

ments (where the absolute value of HAZ or WHZ is greater than 5) were also dropped

(n = 3,302).

Our results control for exposure to civil conflict, which was and remains widespread in the

study area. Conflict data are from the Armed Conflict Location and Event Dataset (ACLED),

which details specific incidents of civil insecurity between 1997 and the present day for DRC

and other countries [53].

We also incorporate geocoded data on 160 major towns from the Multipurpose Africover

Database on Environmental Resources [54], calculating the Euclidean distances from the cen-

ters of each DHS survey cluster to the centers of each nearest major town point location using

ArcGIS 10.0 [55]. ‘Proximity,’ defined as inverse distance (km-1), enters as a measure of access

to all kinds of markets and public services.

In DHS data, the coordinates of each survey cluster have been randomly displaced by up to

two kilometers in any direction for urban areas, and up to five kilometers for rural areas, with

one percent of all survey clusters randomly displaced by up to 10 kilometers [52]. This inten-

tional measurement error is designed to maintain the anonymity of survey participants and

their communities, resulting in non-differential misclassification bias which attenuates the

magnitude and significance of effects associated with household location [56]. Results obtained

with more accurate location data would be somewhat larger in absolute value with smaller

standard errors, but the estimates are still consistent and provide a conservative lower bound

on the effect sizes and significance that would be obtained without error [57].

Nutrition Smoothing
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Identification strategy

The naturally occurring random variation we exploit is the child’s month of birth, and hence

their exposure to seasonal differences in rainfall and temperature. Our nutrition smoothing

hypothesis is that potentially adverse conditions have smaller effects on child heights, weights

and survival in locations that are closer to towns and cities. We control for time-invariant

unobservable attributes of the child’s family and community using mother fixed effects in the

mortality regressions, and cluster fixed effects in the height and weight regressions. We thereby

compare each child to their siblings (for mortality regressions) and neighbors (for height and

weight regressions) who were born at other times in the same place. To address the potential

for spatially correlated errors, we pool children by risk exposure into dichotomous groups

based on birth timing, degree of seasonal variation in rainfall, and distance to the nearest

town. This dichotomous triple-difference approach to cross-sectional data mirrors standard

difference-in-difference approaches with panel data, in which the identifying assumption of

parallel trends is strengthened by comparing two pooled periods [50] and tested against pla-

cebo specifications in which any observed effect would be an artifact of the method.

Our analytical approach is illustrated in Table 1, showing how each subsample is classified

in terms of exposure to seasonal risk and the potentially protective effect of proximity to town.

As shown by the first two rows of Table 1, our first hypothesized effect is that, in regions

with distinct seasons, being born in one half of the year is associated with worse outcomes

than being born in the other half. Inferring a causal effect of seasons relies on randomness of

the child’s birth month. We tested that assumption and found no evidence that other correlates

of heights and weights cause selection bias into births at times with adverse outcomes. A fur-

ther robustness check comes from testing for birth timing effects only in regions farther from

the equator, against the benchmark of birth timing closer the equator where there is much less

seasonal fluctuation in rainfall and temperature. In those ‘placebo’ regions, any statistical sig-

nificance of birth timing would be an artifact of our study design. Our main hypothesis, shown

in the third row of Table 1, is that among children born in places and at times where they are

vulnerable to seasonal risk, being closer to towns is associated with less harmful outcomes.

Here, inferring a causal effect relies on the a priori “parallel trends” observation that seasonal

variation in local rainfall and temperature is unrelated to the household’s proximity to town.

Measuring exposure to seasons

To capture seasonality in the DRC context, we use the absolute value of latitude of each DHS

cluster’s location. Locations closer to the equator have generally uniform temperature and

rainfall throughout the year, while locations both north and south of the equator have a more

Table 1. Spatial variation in exposure to seasons, birth timing and access to towns.

Analytical design and hypothesized effects over triple difference-in-differences(region x birth timing x access to town)

Region has a distinct rainy season? (= farther from the equator) Yes No

Child was born in or after rainy season? (= Jan-Jun if lat.<0, Jul-Dec otherwise) Yes* No Yes No

Household is closer to town? (= distance to town in km) Yes No** Yes No Yes No Yes No

Hypothesized status: Vulnerable to seasonal variation Not vulnerable to seasonal

variation

Protected* Affected** Unexposed No effect

Note: Asterisks indicate hypothesis of significantly worse child nutrition relative to other groups in the same row.

*: the identifying assumption is that birth timing occurs randomly between seasons (tested).

**: the identifying assumption is that seasonal risk factors would have been similar in the absence of towns (untestable).

doi:10.1371/journal.pone.0168759.t001
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pronounced dry “winter” season [58]. The country stretches from approximately +5 degrees

north to about -14 degrees south of the equator. Demarcation lines for our data are chosen to

divide the sample into two roughly equal halves, which occurs at +4 and -4 degrees of latitude.

Thus, most of the surveyed households subject to seasonal fluctuations were in the southern

hemisphere, where the drier winter season occurs around June-August. Less than 20 percent

of our sample (13,841 of the 69,641 births) is in the northern hemisphere where the timing of

seasons is shifted by six months so that winter occurs around December- February. To con-

struct a single variable that indicates births in a given season, we defined “rain months” to be

the calendar month for households located in the southern hemisphere, and shifted 6 months

forward for households in the northern hemisphere. For example, children born in the calen-

dar month of January were recorded as such if in the southern hemisphere, and that month

was recorded as “June” for the few children born in the northern hemisphere. These birth

months were then aggregated into birth seasons, capturing a child’s exposure to similar sea-

sonal conditions anywhere in the country using a single variable. With constructing this proxy

measure of exposure to seasons, we were concerned with variations that are entirely predict-

able, and yet people may have been unable to avoid their negative impact. One reason could be

that so many factors move together: during the hungry or lean season, food supplies from the

previous harvests dwindle, gainful employment may be more difficult to find, disease inci-

dence often increases, and maternal labor time and calorie expenditure may rise [59–60].

Controlling for age to avoid survey timing effects

DHS data are typically collected in waves at specific times of year. The data we use were pri-

marily collected in June 2007 and in December of 2013, as detailed in the supporting informa-

tion. So, children born in earlier months (e.g. in May and in November of the respective

survey round years) were surveyed at a younger age than those born in later months (e.g. in

July or January, respectively). Since height and weight z scores vary systematically with age, to

avoid artifacts due to survey timing we follow [61] and control for age using a linear spline

specification based on the average time path of stunting and wasting actually observed in our

data. For HAZ, the piecewise linear controls have three splines with knots at 6 months and 22

months of age, and for WHZ we have two splines with one knot at 12 months of age. The num-

ber and location of these splines approximates the nonparametric relationship we observe in

the DRC data, which is similar to the age effects found in other settings [33].

Econometric specification

Our primary specification is an OLS regression with interaction terms to test for difference in

differences, and mother or community fixed effects to absorb unobservable characteristics and

compare siblings or neighbors born at different times of year. Standard errors are clustered at

the community level, of which there are 300 in the 2007 survey and 540 in the 2013 survey, for

a total of 840 locations.

There are three dependent variables of interest, indicated collectively by Zi on the left-hand

sides of the equations: whether the child was alive at the time of the survey, the height-for-

age z score (HAZ) and weight-for-height z score (WHZ). Each regression controls for age in

months (Ai), or time elapsed since birth in the case of mortality regressions, in piecewise linear

form as described above, and for child sex (Si) defined as 1 = male. Birth season (as BSi) enters

as a binary variable (with 1 = births occurring between January through June in the southern

hemisphere and occurring between July through December in the northern hemisphere). The

absolute value of latitude for each DHS cluster j is used to stratify the sample between children

around the equator who face little seasonal variation, and those farther from the equator who

Nutrition Smoothing
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experience a dry winter season. Household wealth (Hi) enters as a categorical variable com-

puted by DHS as quintiles of the national distribution, based on ownership of durable goods

in the household. To control for civil conflict, we use a continuous measure (Cj) defined as the

number of conflict fatalities recorded in the child’s grid-cell from their conception over their

lifetime to the survey date. The underlying civil conflict data span from 2001 to 2013 for every

grid cell in the country.

Household proximity to the nearest major town enters as a binary indicator (Rj) of whether

the household is relatively remote, with 1 = household faces greater distance to travel to the

nearest major town. The cut-off is 28.8km based on the median Euclidean distance in our sam-

ple. The Rj binary variable also enters in interaction with birth season to construct our differ-

ence-in-differences specification, where the estimated coefficients on that interaction (AT̂Eij)

can be interpreted as the average treatment effect of household remoteness on child mortality,

heights or weights, given their exposure to the seasonal risk (i.e. the average treatment effect

on the treated). A negative estimated ATE would indicate that being located far from town lim-

its households’ ability to protect their children from harm.

The reduced form econometric models are shown below in Eqs 1 and 2. These estimating

equations could be derived from a typical health production function where health status at

the time of survey is a function of current and lagged health inputs, as well as key environmen-

tal characteristics such as sanitation, disease exposure, and parents’ health and childcare

knowledge. For our empirical purposes, the reduced form model is sufficient. The main path-

way through which we expect birth season to affect the health production function is through

adverse conditions such as low food supply or high rates of disease transmission, either of

which could have affected a child directly or indirectly through the mother’s health during the

sensitive periods of gestation and infancy. The subscript i indexes children, k indexes the linear

age splines, and j indexes DHS clusters (household locations). εi is a stochastic error term with

the usual properties, and δfe refers to mother or location fixed effects.

Eq 1 is a diagnostic regression using continuous variables and no interaction terms, esti-

mated using Ordinary Least Squares (OLS). In this specification, the absolute value of latitude

(Latj) enters linearly and continuously as degrees, and household remoteness enters continu-

ously as proximity to the nearest major town in km-1 (Pj). Eq 2 is the spatial difference-in-dif-

ferences specification, which pools observations into binary variables for the child’s location

and birth timing. We split the sample by distance from the equator to construct a placebo

region where no effect is expected, and estimate the models with mother and survey commu-

nity fixed effects to account for time invariant regional factors omitted from the model. Robust

standard errors are clustered by survey community to account for potential correlations

among respondents in the same areas. Management of the spatial data was done in ArcGIS 10

[55], and econometric analysis was performed in Stata/MP Version 12 [62].

Zi ¼ aþ
Xn

k¼1

bkAk þ g1Si þ g2Hi þ g3Cj þ g4Pj þ g5BSi þ g6Latj þ εij ð1Þ

Zi ¼ aþ
Xn

k¼1

bkAk þ g1Si þ g2Hi þ g3Cj þ g4Rj þ g5BSi þ ATEijðBSiRjÞ þ dfe þ εij ð2Þ

Results

Descriptive statistics are presented in Table 2, for the whole sample and for each sub-sample

used in the regressions. There is some variation in means and standard deviations by group,
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with children in regions with a dry winter were particularly thin with mean WHZ scores

around -0.5 versus -0.2 for children around the equator. Conflict events are more frequent or

intense in locations closer to the equator.

Exploratory t-tests for differences in child mortality, heights and weights across groups are

shown in Table 3, for effects of the child’s gender, remoteness, and birth season. Mean HAZ

and WHZ is lower for boy children than for girls, and mean HAZ but not WHZ is lower in

remote areas compared to other locations. Boys have higher mortality risk, as do children liv-

ing in remote locations. Mean HAZ is also lower for children born during January-June in

southern hemisphere locations (or July-December in the northern hemisphere) as opposed to

births during the other half of the year.

The onset and duration of stunting follow standard age patterns as shown in Fig 1, which

uses Epanechnikov kernel-weighted local polynomial regressions to estimate mean HAZ val-

ues for each age in months, separately for remote households in areas with seasons versus the

rest of the sample. Households in remote areas with seasons were hypothesized to have the

worst outcomes, and Fig 1 shows that this group is indeed worse off than the rest of the sample.

There is a steep decline in HAZ before 24 months of age, and then the slope flattens but is still

negative. For WHZ, the decline ends at around 12 months of age with catch-up back to near

zero by 5 years of age. Comparing remote versus other households, we see no significant differ-

ences at each month, although the HAZ path is consistently lower and the overall difference is

significant as shown in Table 3. Fig 2 shows that children in remote areas are systematically

more likely to have died, and this disparity increases with the time elapsed since birth.

Variation in stunting and mortality by month of birth is shown in Figs 3 and 4, which like

the previous charts use Epanechnikov kernel weighted local polynomial smoothing to estimate

mean HAZ and mortality risk values for children born in each month, accounting for the

inversion of seasons by hemisphere. Fig 3 reveals that the children born in July-December are

systematically taller, and that children in remote areas are systematically shorter for each

month of birth. Fig 4 shows that the fluctuations in mortality risk by month of birth had

Table 2. Descriptive statistics by birth timing and exposure to seasonal variation.

Birth timing:Presence

of seasons:

Jan.-

JuneNoneN = 18,009

Jan.-JuneDry

winterN = 18,973

July-Dec.

NoneN = 16,724

July-Dec.Dry

winterN = 15,935

All

BirthsN = 69,641

Child status

Children Alive (%) 84.6% 84.5% 83.7% 85.2% 84.5%

HAZ -1.51 (1.68) -1.51 (1.62) -1.61 (1.92) -1.26 (1.80) -1.47 (1.86)

WHZ -0.31 (1.25) -0.47 (1.12) -0.24 (1.41) -0.45 (1.31) -0.38 (1.33)

Age (months) 28.24 (17.57) 28.00 (17.29) 29.70 (17.10) 29.88 (16.69) 29.16 (16.53)

Firstborn (%) 23.8% 24.9% 23.8% 23.5% 24.5%

Short interval (%) 28.2% 27.9% 26.1% 19.74% 25.6%

Boys (%) 50.5% 51.2% 50.4% 50.2% 50.6%

Household

Wealth (quintile) 2.61 (1.27) 3.20 (1.46) 2.60 (1.26) 3.25 (1.45) 2.92 (1.40)

Proximity (km-1) 0.11 (0.23) 0.16 (0.27) 0.10 (0.23) 0.15 (0.27) 0.13 (0.26)

Environment

Conflicts 108.72 (716.5) 15.03 (65.7) 93.52 (596.8) 15.95 (69.7) 31.28 (66.9)

Latitude (abs val) 1.91 (1.36) 6.14 (2.01) 1.98 (1.17) 5.99 (2.02) 4.31 (2.64)

Note: Data shown are means and standard deviations (in parentheses). Births labeled as January-June occurred in calendar months July-December for

children born in the Northern hemisphere (N = 17,159). Conflicts are total number of fatalities during the child’s year of birth in the respondent’s 1-degree

square grid-cell of residence.

doi:10.1371/journal.pone.0168759.t002
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greater amplitude in remote areas with seasons, and that the children in remote areas with sea-

sons are more likely to have died. These charts provide further evidence that the most disad-

vantaged group is those exposed to seasonal risk but not protected by a nearby town.

To address the relationship among all our variables, Table 4 presents results of a diagnostic

OLS regression which estimates the association between children’s z scores and their age, sex,

Table 3. Two-sample T-tests with equal variances.

Alive HAZ WHZ

Gender

Girls 0.85 -1.31 -0.33

Boys 0.84 -1.48 -0.44

Difference 0.009 0.17 0.10

Pr(T>t) 0.00** 0.000** 0.00***

Household Location

Not Remote 0.85 -1.26 -0.38

Remote 0.83 -1.53 -0.39

Difference 0.03 0.26 0.02

Pr(T>t) 0.00** 0.00*** 0.28

Birth season

Born Jan.-June 0.84 -1.50 -0.39

Born July-Dec. 0.84 -1.28 -0.38

Difference -.001 0.22 0.01

Pr(T>t) 0.69 0.00*** 0.28

Data shown are means of each outcome across groups;

* p < .10,

** p < .05,

*** p < .01.

doi:10.1371/journal.pone.0168759.t003

Fig 1. HAZ by child age and household remoteness. Notes: A local polynomial smoothing regression of

child heights at each month of age, stratified by place of residence and the presence of seasons. Remote with

seasons is dashed line. 95% Confidence Intervals included.

doi:10.1371/journal.pone.0168759.g001
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birth order, preceding birth interval, conflict exposure, household wealth, proximity to the

nearest major town, and birth season. This exercise reveals the characteristic pattern that HAZ

and WHZ both decline with age, although for HAZ the rate of decline is not significant for the

first spline covering 0–6 months of age, and WHZ recovers significantly in the second spline

after 12 months of age. Risk of death also decreases as more time since birth has elapsed. Male

Fig 2. Child survival by child age and household remoteness. Notes: A local polynomial smoothing

regression of whether the child is alive at each month of age, stratified by place of residence and the presence

of seasons. Remote with seasons is dashed line. 95% Confidence Intervals included.

doi:10.1371/journal.pone.0168759.g002

Fig 3. HAZ by month of birth and household remoteness. Notes: A local polynomial smoothing regression

of child heights for births in each month of the year, stratified by place of residence and the presence of

seasons. Remote with seasons is dashed line. 95% Confidence Intervals included. To account for inversion of

seasons, birth date is shown by calendar month in the southern hemisphere, and for the northern hemisphere

is shown as 1 = July, 2 = Aug. etc.

doi:10.1371/journal.pone.0168759.g003
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children have consistently lower z scores and higher risk of mortality. Conflict incidents in the

grid cell of a child’s residence have statistically significant associations with nutritional out-

comes: a negative association with HAZ and a positive association with WHZ. Firstborn chil-

dren are more likely to have survived, and having a short preceding birth interval is associated

with poorer height and survival outcomes. Conflict exposure is associated with an increased

risk of death. Household wealth is positively associated with HAZ, but not WHZ. Wealth is

also positively correlated with survival. Having controlled for these key factors, our variables of

interest for the difference-in-difference design are not individually significant except in the

mortality regressions. These exploratory regressions are informative, but for our main results

we control for both observable and unobservable covariates using maternal or location fixed

effects.

Estimates from a pure difference-in-differences specification can be found in Table 5

below, where our main variable of interest is the triple interaction term indicating a child who

was born during January-June, in a location with a dry winter, that is also relatively far from

town. The estimated coefficient on this variable is statistically significant for heights, and not

for weight or mortality.

Results of our preferred difference-in-difference specification (Eq 2) are shown in Table 6.

Following the research design described in Table 1, this test splits the sample into areas of inter-

est with a dry winter season (columns 1 and 3) and the placebo regions with less seasonal varia-

tion in rainfall and temperature (columns 2 and 4). Each regression then includes interaction

terms between season of birth and remoteness, where both are specified as binary variables.

Regressions include either fixed effects for mothers (for mortality regressions), or for commu-

nities (for height and weight regressions), and standard errors clustered by survey site. Age pro-

files for HAZ are similar to the diagnostic regression and similar in the two regions. Gender

differences for mortality, HAZ, and WHZ are also similar to the diagnostic regression and

across the two regions. Interestingly, in this specification children are taller where there are

more reported conflicts, but only in the areas without a dry winter. In this final specification,

Fig 4. Child survival by month of birth and household remoteness. Notes: A local polynomial smoothing

regression of whether the child is alive at the time of the survey for births in each month of the year, stratified

by place of residence and the presence of seasons. Remote with seasons is dashed line. 95% Confidence

Intervals included.

doi:10.1371/journal.pone.0168759.g004
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wealth and other controls are omitted due to their collinearity with the fixed effects, which

absorb both observable and unobservable covariates.

The average treatment effect of living farther from town (remoteness) when exposed to sea-

sons is the estimated coefficient on the interaction term between them. Looking first at the

“treatment” regions (columns 1, 3, and 5), the average treatment effect of household remote-

ness is statistically significant for survival and heights, but only in the locations with a dry

winter season. The average treatment effect of remoteness is not significant for weights as an

outcome. The effects for survival and heights are quite large in magnitude, with the height

effect being similar to jumping about two quintiles in household wealth, and the survival effect

similar to jumping one quintile in household wealth.

Table 4. Exploratory regressions with continuous explanatory variables.

(1) (2) (3)

Variables Unit/type Child is alive Exploratory HAZ Exploratory WHZ Exploratory

Age spline 1 Linear spline -0.017*** -0.074** -0.107***

(0.000) (0.015) (0.000)

Age spline 2 Linear spline -0.002** -0.072*** 0.011***

(0.015) (0.000) (0.000)

Age spline 3 Linear spline -0.006

(0.104)

Child is male Binary -0.115* -0.133** -0.108**

(0.052) (0.046) (0.026)

Child is firstborn Binary -0.288*** 0.021 -0.026

(0.000) (0.811) (0.690)

Short preceding birth interval Binary -0.594*** -0.148* -0.020

(0.000) (0.060) (0.731)

Ln(fatalities during birth year) Continuous -0.062*** -0.114*** 0.031**

(0.000) (0.000) (0.032)

Household Wealth index Categorical 0.145*** 0.250*** 0.053***

(0.000) (0.000) (0.005)

Absolute value (latitude) Continuous -0.046*** -0.015 -0.017

(0.000) (0.313) (0.130)

Proximity to town km-1 0.281** -0.022 0.162

(0.045) (0.878) (0.137)

Born Jan.-June Binary 0.134** -0.107 0.075

(0.024) (0.114) (0.126)

Constant Constant 2.940*** -0.256 0.407***

(0.000) (0.200) (0.003)

Observations N 18845 3405 3473

R2 R2 0.179 0.073

The linear age splines are actually ‘time elapsed in months since birth’ for the mortality regressions.

Age splines control for child’s age at observation. Born Jan.-June is actually born July-Dec. in Northern hemisphere to account for inversion of seasons at

the equator. Conflicts are the cumulative count nearby to the child’s cluster of residence during the child’s birth year. Errors clustered by DHS survey cluster

(v001). p-values in parentheses;

* p < .10,

** p < .05,

*** p < .01.

doi:10.1371/journal.pone.0168759.t004
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Robustness tests

To check the robustness of our results, we can look first within Table 6 at results in the placebo

regions with less seasonal fluctuation in rainfall. Here, there were no statistically significant

average treatment effect estimates for any of the outcomes. To address any additional limita-

tions of our main result, we conducted a wide variety of other robustness tests, the results for

which can be found in the supporting information. Results do not change whether including

or excluding households which have lived in their survey location for fewer than 6 years at the

Table 5. Triple difference-in-differences results for the pooled sample.

(1) (2) (3)

Variable Unit/type Child is alive HAZ WHZ

Age spline 1 Linear spline -0.016*** -0.080*** -0.100***

(0.000) (0.006) (0.000)

Age spline 2 Linear spline -0.002*** -0.067*** 0.010***

(0.001) (0.000) (0.000)

Age spline 3 Linear spline -0.009***

(0.001)

Short preceding birth interval Binary -0.510*** -0.187*** -0.039

(0.000) (0.002) (0.387)

Child is male Binary -0.149*** -0.164*** -0.116***

(0.001) (0.002) (0.003)

Ln(fatalities during birth year) Continuous -0.057*** -0.087*** 0.018

(0.000) (0.000) (0.152)

Proximity to town km-1 0.744*** 0.369 0.144

(0.003) (0.127) (0.418)

Born Jan.-June Binary 0.080 -0.097 -0.022

(0.279) (0.281) (0.743)

Absolute value(latitude) Continuous -0.004 0.045*** -0.019

(0.783) (0.009) (0.138)

Born Jan.-June*Proximity Interaction 0.104 0.877** 0.232

(0.769) (0.013) (0.367)

Born Jan.-June*Abs(lat) Interaction -0.002 0.018 0.007

(0.914) (0.464) (0.686)

Abs(lat)*Proximity Interaction -0.053 0.038 -0.014

(0.247) (0.480) (0.728)

Born Jan.-June*Proximity*Abs(lat) Interaction -0.021 -0.201*** -0.000

(0.730) (0.006) (0.996)

Constant Constant 3.081*** 0.200 0.627***

(0.000) (0.244) (0.000)

Observations N 18845 3405 3473

R2 R2 0.144 0.056

The linear age splines are actually ‘time elapsed in months since birth’ for the mortality regressions.

Age splines control for child’s age at observation. Born Jan.-June is actually born July-Dec. in Northern hemisphere to account for inversion of seasons at

the equator. Conflicts are the cumulative count in the child’s cluster of residence during the child’s birth year. Errors clustered by DHS survey cluster (v001).

p-values in parentheses;

* p < .10,

** p < .05,

*** p < .01.

doi:10.1371/journal.pone.0168759.t005
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time of the interview (N = 4,060). Results also do not change whether including or excluding

households which took trip lasting more than 1 month during the 12 months preceding the

interview date (N = 6,969). To assess the presence of multicollinearity, variance inflation fac-

tors (VIF) are all relatively low, ranging from 1.00–2.17 (Table A in S1 File). We also examined

whether civil conflict followed seasonal patterns, since that coincident cycle could have threat-

ened identification by birth season. Nonparametric test demonstrated that there is no apparent

seasonality in the intensity of conflict in DRC (Figure A in S1 File).

Since the DHS data were not collected uniformly over time, children born in different

months were measured at different ages, and have consequently different levels of z score.

Data for the DHS surveys utilized here were collected mainly during June for the 2007 survey

and during December for the 2013 survey (Tables B and C in S1 File). The consequences of

age at measurement for identifying seasonal effects has been highlighted by [60], using a type

of diagram that we reproduced for each of the DRC survey rounds (Figures B and C in S1

File). These diagrams show the average age of measured children who were born in each

month, and their average HAZ score. Children born in July (January for the 2013 survey) were

the oldest when surveyed, and they also had the lowest average HAZ scores. Children born in

Table 6. Preferred difference-in-differences results, splitting the sample by presence of seasons.

(1) (2) (3) (4) (5) (6)

Variable Unit/type AliveSeasons AliveNo Seasons HAZSeasons HAZNo Seasons WHZSeasons WHZNo Seasons

Age spline 1 Spline -0.021*** -0.022*** -0.051 -0.135*** -0.098*** -0.101***

(0.000) (0.000) (0.220) (0.003) (0.000) (0.000)

Age spline 2 Spline -0.003*** -0.002*** -0.086*** -0.090*** 0.010*** 0.012***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Age spline 3 Spline -0.005 -0.003

(0.110) (0.254)

Short interval Binary -0.284*** -0.302*** -0.385*** -0.449*** -0.172*** -0.062

(0.000) (0.000) (0.000) (0.000) (0.001) (0.244)

Male Binary -0.117*** -0.126*** -0.029 -0.293*** -0.104* -0.038

(0.001) (0.000) (0.687) (0.000) (0.069) (0.457)

Conflict exposed Binary -0.043 0.036 0.139 0.249** -0.074 -0.062

(0.399) (0.547) (0.148) (0.038) (0.274) (0.509)

Jan.-June Binary -0.127** 0.079 -0.097 0.063 0.051 -0.093

(0.011) (0.210) (0.210) (0.573) (0.521) (0.355)

Jan.-June*Remote Interaction 0.128* -0.025 -0.329** -0.188 -0.034 0.132

(0.092) (0.747) (0.018) (0.177) (0.759) (0.263)

Constant Constant 0.158 0.537** 0.524*** 0.624***

(0.417) (0.020) (0.000) (0.000)

Observations N 17217 17297 4224 4211 4312 4319

R2 R2 0.290 0.299 0.083 0.077

The linear age splines are actually ‘time elapsed in months since birth’ for the mortality regressions. Born Jan.-June is actually born July-Dec. in Northern

hemisphere to account for inversion of seasons at the equator. Age splines control for child’s age at observation. Mortality regressions include mother fixed-

effects. Identification is possible here while including mother and community fixed-effects by interacting proximity with each child’s individual birth season.

Height and weight regressions include survey cluster fixed-effects. Conflict exposure is a binary indicator of whether there was civil conflict in a 1-degree

square of the child’s residence during the child’s year of birth. Errors clustered by DHS-cluster (v001). p-values in parentheses;

* p < .10,

** p < .05,

*** p < .01.

doi:10.1371/journal.pone.0168759.t006
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December were the youngest on average when surveyed, and therefore had the highest HAZ

scores. This effect is controlled for in our regressions using age splines, as recommended by

[60]. For an additional robustness test on survey timing we re-ran all regression models using

only the June data, and that had no appreciable difference relative to the data from other

months.

Perhaps the most important threat to our research design is nonrandom birth timing. The

frequency of births rises in March, April and May then has a long trough in July through

December. We do not know why the number of births rises in March, April and May. That

pattern could stem from a rise in conceptions during the dry “winter” (June, July and August),

or from seasonal patterns in miscarriage and neonatal mortality. The amplitude of the curve

is slightly lessened when measuring by “rain month”, implying that socioeconomic factors

involving calendar months may be more important than seasons.

We tested whether seasonality in birth month confounded our results by measuring the

relationships between our binary season-of-birth variable against all the explanatory variables

in our dataset. These results suggest that the potential effect of endogeneity of birth timing did

not influencing our findings (Table D and Figure D in S1 File).

Falsification tests

In addition to the placebo region built into our main result, we also test our design against a

variety of placebo outcomes as in [63]. These are dependent variables with no plausible mecha-

nism by which they could have been caused by our independent variables of interest, so signifi-

cant correlations would be artifacts of the research design that might also have given rise to

our main result. The specific placebos we used here were: mother’s education, mother’s height,

father’s education, years that the household has lived in the interview location, the size of the

household (number of people), and the altitude in meters of the household’s location. Each of

these occurred before or independently of when the child was born, and is used here to test

whether our main results in Table 6 could be artifacts of the research design.

Fig 5 below provides a visual comparison of our main results with the placebo variables.

Each dot and bar shows the ATE point estimate with its 95 percent confidence interval, first

for the main results and then for the seven placebo tests. The chart has been cropped to show

coefficient estimates for effect sizes between -1.5 and +1.5, since the randomness around some

of the placebos resulted in such wide error bars that our outcomes of interest could no longer

be distinguished on the same chart. As it is, the chart shows that our precisely estimated nega-

tive effect on HAZ and WHZ is very different from the zero effects on any of the placebo out-

comes. If we had found an effect of child’s birth season on any of the placebo outcomes, the

validity of our identification strategy would have had to be questioned [64].

Conclusions

This article exploits temporal and spatial differences in health risks to measure nutrition

smoothing, defined here as the ability of a household or community to achieve similar out-

comes for children exposed to different seasonal conditions. Our setting is the Democratic

Republic of Congo (DRC), one of the world’s most impoverished countries whose vast expanse

straddles the equator, exposing households to differing degrees of seasonal rainfall variation,

and whose sparse urbanization and lack of infrastructure gives households very different dis-

tances to the nearest towns. In this context, we use naturally occurring randomness in the tim-

ing of conception and birth to construct a spatial difference-in-differences test of whether

households with easier access to markets and public services can use that to protect their
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children from seasonal fluctuations in malnutrition and disease. Future work with other kinds

of data could address which urban resources confer resilience to which seasonal risks.

An important feature of DRC is that children’s average health is not necessarily worst

where seasonal variation is most extreme. For example, being geographically isolated could

actually benefit households and children, as isolation and rugged terrain may protect them

from violence or disease outbreaks in more populated areas [65]. Furthermore, being located

near the equator may provide relatively uniform weather which is beneficial for growing

crops, but also impose worse disease conditions because there is no interruption to the repro-

ductive cycle of mosquitos [66]. Our research design takes account of these factors, building

on the literature described above to isolate seasonal fluctuations from other factors and test for

a protective effect of proximity to towns. Distance to urban resources may help explain why

we sometimes observe a limited influence of income or wealth on health and nutrition out-

comes [67]. As shown in this study, variation in environmental factors over time as well as

space plays a relatively large role in those settings than in places with greater access to markets

and services. The lack of nutrition smoothing also contributes to the extremely poor average

outcomes observed in the DRC [51, 68].

Health outcomes in this study are child mortality, heights and weights at the time of the

country’s 2007 and 2013 Demographic and Health Surveys (DHS). Our main result is that

households’ proximity to towns and markets does protect children from seasonal fluctuations

in health conditions at birth. For child height, the magnitude of gain from having above-

median proximity to urban areas is similar in magnitude to the gain from being two quintiles

Fig 5. Falsification test results. Notes: In areas with seasons: estimated average treatment effects for various "placebo" dependent

variables compared with Mortality, HAZ, and WHZ estimates. * indicates the ATE is significant at 10%, and ** 5%. Data shown are

coefficient estimates (in blue) and 95% confidence intervals for “average treatment effects” in our preferred specification (Table 6), for our

three dependent variables of interest followed by five ‘placebo’ variables for which no effect is expected of our ‘treatment’, due to the

absence of any plausible mechanism of action.

doi:10.1371/journal.pone.0168759.g005
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higher in the local wealth distribution. Results of this magnitude are large but plausible, and

help explain the rural-urban differences in health outcomes found in a wide variety of other

settings. We subjected our findings to a variety of robustness tests, including comparisons of

the estimated average treatment effect with similarly estimated coefficients in placebo regions

and for placebo outcomes, selection bias in birth timing and child mortality, and other possible

threats to identification.

Further work such as [69] would be needed to distinguish among the possible causal mech-

anisms involved, for example to distinguish between the role of private markets and the use of

public services, and to identify the role of particular aspects of seasonal variation in dietary

intake or disease burdens. Incorporating data on the amenities available in different towns

would help distinguish which ones contribute most to nutrition smoothing in surrounding

areas. Different mechanisms may be protective against different shocks, but all rely on infra-

structure to link rural households with towns and cities where goods are traded and services

are provided. These results add a new dimension to the role of rural infrastructure and access

to towns. Interventions to lower households’ travel costs could help reduce their vulnerability,

in addition to the many well-known investments that target specific causes of malnutrition

such as improved diets, health care and reduced disease transmission.

Supporting Information

S1 File. Table A: Variance inflation factors (VIF). This table summarizes the variance infla-

tion factors of key determinants of HAZ and WHZ in the final merged dataset. All variable

definitions are as for Table 6. Table B: Timing of data collection for 2007 survey. Notes: This

table enumerates the timing of data collection for the 2007 Demographic and Health Survey

for the Democratic Republic of the Congo by month. Table C: Timing of data collection for

2013 survey. Notes: This table enumerates the timing of data collection for the 2013 Demo-

graphic and Health Survey for the Democratic Republic of the Congo by month. Table D:

Testing for endogeneity of birth timing, for whole sample and within climate zones. This

table shows results of a robustness test which measures any endogeneity of birth timing in the

data. The dependent variable is a binary indicator of birth during the Jan.-June wet season.

The regression was estimated using fixed-effects logit. All results include fixed effects for sur-

vey clusters (N = 840), with notation and variable definitions as in Table 6. p-values in paren-

theses; � p< .10, �� p< .05, ��� p< .01. Fig. A: Conflict incidents by month. Notes: This

figure was generated using the ACLED [60] for DRC. It aggregates the total count of conflict

events by month across 16 years (1997–2013) in the country. Fig. B: Mean age and HAZ at

time of survey by calendar month of birth, 2007 DHS, Notes: This figure is Fig 3 (pg. 39) of

[70] reproduced for 2007 DRC data. The line shows average HAZ on the right axis by the

child’s month of birth, and the bar shows their average age by month of birth on the left axis.

As detailed in Tables 7 and 8, over three-quarters of the 2007 DRC surveys were implemented

in June, and over three quarters of the 2013 DRC surveys were implemented in December. So,

children born in July (for the 2007 round) and January (for the 2013 round) are surveyed at

the oldest average age and have correspondingly lowest average HAZ scores. This ‘survey tim-

ing artifact’ effect is controlled for in our regressions using a flexible linear age spline, based on

the time path of HAZ and WHZ scores shown in Figs 1 and 2. Fig. C: Mean age and HAZ at

time of survey by calendar month of birth, 2013 DHS. Notes: This figure is Fig 3 (pg. 39) of

[70] reproduced using the 2013 DRC data. The line shows average HAZ on the right axis by

the child’s month of birth, and the bar shows their average age by month of birth on the left

axis. As detailed in Tables 7 and 8, over three-quarters of the 2007 DRC surveys were imple-

mented in June, and over three quarters of the 2013 DRC surveys were implemented in
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December. So, children born in July (for the 2007 round) and January (for the 2013 round) are

surveyed at the oldest average age and have correspondingly lowest average HAZ scores. This

‘survey timing artifact’ effect is controlled for in our regressions using a flexible linear age

spline, based on the time path of HAZ and WHZ scores shown in Figs 1 and 2. Fig. D: Timing

of births by calendar month and season. Notes: Data shown are the number of children ever

born in each month, as recorded across each DHS survey for DRC. The solid line refers to cal-

endar months, and the dashed line uses a seasonal adjustment by hemisphere, where dates

north of the equator are recorded as “January” for births in June, “February” for July, etc. In

our regressions, these “rain months” are aggregated into six-month periods, since as children

in higher latitudes who are born in the January-June period are more exposed to heavy rains

and subsequently poor health outcomes than those born in the rest of the year. As shown here,

more children were born in these adverse months than in July-December, as conception was

slightly more likely to have occurred during the dry winter season. This pattern suggests that

birth timing is either random or associated with factors other than variation in the child’s

health prospects.
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34. Victora CG, de Onis M, Hallal PC, Blössner M, Shrimpton R. Worldwide timing of growth faltering: revis-

iting implications for interventions. Pediatrics. 2010 Feb 10:peds-2009.

35. Rocha Rudi, and Soares Rodrigo R.. "Water scarcity and birth outcomes in the Brazilian semiarid." Jour-

nal of Development Economics 112 (2015): 72–91.

36. Basu K, Wong M. Evaluating seasonal food storage and credit programs in east Indonesia. Journal of

Development Economics. 2015 Jul 31; 115:200–16.

37. Gajigo O, Schwab B. The rhythm of the rains: Seasonal effects on child health in The Gambia. 2012

Conference, August 2012 Aug 18 (pp. 18–24).

38. Moore SE, Fulford AJ, Streatfield PK, Persson LÅ, Prentice AM. Comparative analysis of patterns of

survival by season of birth in rural Bangladeshi and Gambian populations. International Journal of Epi-

demiology. 2004 Feb 1; 33(1):137–43. PMID: 15075159

39. Currie J, Schwandt H. Within-mother analysis of seasonal patterns in health at birth. Proceedings of the

National Academy of Sciences. 2013 Jul 23; 110(30):12265–70.

40. Chodick G, Flash S, Deoitch Y, Shalev V. Seasonality in birth weight: review of global patterns and

potential causes. Human Biology. 2009 Aug; 81(4):463–77. doi: 10.3378/027.081.0405 PMID:

20067370

41. Morduch J. Income smoothing and consumption smoothing. Journal of Economic Perspectives. 1995

Jul 1; 9(3):103–14.

42. Foster AD. Prices, credit markets and child growth in low-income rural areas. Economic Journal. 1995

May 1:551–70.

43. Bellemare MF, Barrett CB, Just DR. The welfare impacts of commodity price volatility: evidence from

rural Ethiopia. American Journal of Agricultural Economics. 2013 Jul 1; 95(4):877–99.

44. Burgess R, Donaldson D. Can openness mitigate the effects of weather shocks? Evidence from India’s

famine era. American Economic Review. 2010 May 1; 100(2):449–53.

45. Jensen R. Agricultural volatility and investments in children. American Economic Review. 2000 May 1;

90(2):399–404.

46. Rabassa M, Skoufias E, Jacoby H. Weather and child health in rural Nigeria. Journal of African Econo-

mies. 2014 Aug 1; 23(4):464–92.

47. Thai TQ, Falaris EM. Child schooling, child health, and rainfall shocks: Evidence from rural Vietnam.

Journal of Development Studies. 2014 Jul 3; 50(7):1025–37.

48. Pomeroy E, Wells JC, Stanojevic S, Miranda JJ, Cole TJ, Stock JT. Birth month associations with

height, head circumference, and limb lengths among peruvian children. American Journal of Physical

Anthropology. 2014 May 1; 154(1):115–24. doi: 10.1002/ajpa.22484 PMID: 24482290

49. Hillbruner C, Egan R. Seasonality, household food security, and nutritional status in Dinajpur, Bangla-

desh. Food and Nutrition Bulletin. 2008 Sep 1; 29(3):221–31. PMID: 18947035

50. Bertrand M, Duflo E, Mullainathan S. How much should we trust differences-in-differences estimates?

Quarterly Journal of Economics, 119(1): 249–275.

51. Masters WA, McMillan MS. Climate and scale in economic growth. Journal of Economic Growth. 2001

Sep 1; 6(3):167–86.

52. ICF International: Measure DHS 2008 & 2014, Demographic and Health Surveys: Democratic Republic

of the Congo 2007 & 2013.

53. Raleigh C, Linke A, Hegre H, Karlsen J. Introducing ACLED: An armed conflict location and event data-

set special data feature. Journal of Peace Research. 2010 Sep 1; 47(5):651–60.

Nutrition Smoothing

PLOS ONE | DOI:10.1371/journal.pone.0168759 January 3, 2017 20 / 21

http://www.ncbi.nlm.nih.gov/pubmed/11331725
http://www.ncbi.nlm.nih.gov/pubmed/15075159
http://dx.doi.org/10.3378/027.081.0405
http://www.ncbi.nlm.nih.gov/pubmed/20067370
http://dx.doi.org/10.1002/ajpa.22484
http://www.ncbi.nlm.nih.gov/pubmed/24482290
http://www.ncbi.nlm.nih.gov/pubmed/18947035


54. Food and Agriculture Organization of the United Nations (FAO), 2014, GEONETWORK. Multipurpose

Africover Databases on Environmental Resources (MADE) (GeoLayer).

55. E. S. R. I. "ArcGIS, Version 10.1." Redlands (CA): ESRI. 2013.

56. Gordis L. Epidemiology, 4th edition. Saunders Elsevier. 2009, page 249.

57. Greene WH. Econometric Analysis, 7th edition. Prentice Hall. 2012, pages 98–99.

58. World Bank. Climate Research Unit (CRU). Climate Change Knowledge Portal. http://sdwebx.

worldbank.org/climateportal/index.cfm?page=country_historical_climate&ThisRegion=

Africa&ThisCCode=COD. Accessed April 2014.

59. Buckles KS, Hungerman DM. Season of birth and later outcomes: Old questions, new answers. Review

of Economics and Statistics. 2013 Jul 1; 95(3):711–24. doi: 10.1162/REST_a_00314 PMID: 24058211

60. Panter-Brick C. Seasonal growth patterns in rural Nepali children. Annals of Human Biology. 1997 Jan

1; 24(1):1–8. PMID: 9022902

61. Cummins JR. “On the Use and Misuse of Child Height-for-Age z-score in the Demographic and Health

Surveys”. Working Paper, University of California, Davis, 2013.

62. StataCorp. Stata Statistical Software: Release 12. College Station, TX: StataCorp LP. 2011.

63. Leigh A, Neill C. Can national infrastructure spending reduce local unemployment? Evidence from an

Australian roads program. Economics Letters. 2011 Nov 30; 113(2):150–3.

64. Jones AM. Identification of treatment effects in Health Economics. Health Economics. 2007 Nov 1; 16

(11):1127–31. PMID: 17935264

65. Nunn N, Puga D. Ruggedness: The blessing of bad geography in Africa. Review of Economics and Sta-

tistics. 2012 Feb 1; 94(1):20–36.

66. Reiner RC, Geary M, Atkinson PM, Smith DL, Gething PW. Seasonality of Plasmodium falciparum

transmission: a systematic review. Malaria Journal. 2015 Sep 15; 14(1):1.

67. Vollmer S, Harttgen K, Subramanyam MA, Finlay J, Klasen S, Subramanian SV. Association between

economic growth and early childhood undernutrition: evidence from 121 Demographic and Health Sur-

veys from 36 low-income and middle-income countries. Lancet Global Health. 2014 Apr 30; 2(4):e225–

34. doi: 10.1016/S2214-109X(14)70025-7 PMID: 25103063

68. Ulimwengu J, Roberts C, Randriamamonjy J. Resource-Rich Yet Malnourished: Analysis of the demand

for food nutrients in the Democratic Republic of Congo. Washington: IFPRI Discussion Papers. 2012

Jan.

69. Mulmi P, Block SA, Shively GE, Masters WA. Climatic conditions and child height: Sex-specific vulnera-

bility and the protective effects of sanitation and food markets in Nepal. Economics and Human Biology.

2016 Dec 31(23):63–75.

Nutrition Smoothing

PLOS ONE | DOI:10.1371/journal.pone.0168759 January 3, 2017 21 / 21

http://sdwebx.worldbank.org/climateportal/index.cfm?page=country_historical_climate&amp;ThisRegion=Africa&amp;ThisCCode=COD
http://sdwebx.worldbank.org/climateportal/index.cfm?page=country_historical_climate&amp;ThisRegion=Africa&amp;ThisCCode=COD
http://sdwebx.worldbank.org/climateportal/index.cfm?page=country_historical_climate&amp;ThisRegion=Africa&amp;ThisCCode=COD
http://dx.doi.org/10.1162/REST_a_00314
http://www.ncbi.nlm.nih.gov/pubmed/24058211
http://www.ncbi.nlm.nih.gov/pubmed/9022902
http://www.ncbi.nlm.nih.gov/pubmed/17935264
http://dx.doi.org/10.1016/S2214-109X(14)70025-7
http://www.ncbi.nlm.nih.gov/pubmed/25103063

