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SUMMARY

Blimp1 (Prdm1), the key determinant of primordial
germ cells (PGCs), plays a combinatorial role with
Prdm14 during PGC specification from postimplan-
tation epiblast cells. They together initiate epigenetic
reprogramming in early germ cells toward an under-
lying pluripotent state, which is equivalent to embry-
onic stem cells (ESCs). Whereas Prdm14 alone
can promote reprogramming and is important for
the propagation of the pluripotent state, it is not
known whether Blimp1 is similarly involved. By using
a genetic approach, we demonstrate that Blimp1
is dispensable for the derivation and maintenance
of ESCs and postimplantation epiblast stem cells
(epiSCs). Notably, Blimp1 is also dispensable for
reprogramming epiSCs to ESCs. Thus, although
Blimp1 is obligatory for PGC specification, it is not
required for the reversion of epiSCs to ESCs and
for their maintenance thereafter. This study suggests
that reprogramming, including that of somatic cells
to ESCs, may not entail an obligatory route through
a Blimp1-positive PGC-like state.

INTRODUCTION

Expression of Blimp1, the key regulator of PGC specification, is

obligatory for the establishment of the germ cell lineage in mice

(Ohinata et al., 2005; Vincent et al., 2005). Blimp1 expression is

first detected in a few proximal postimplantation epiblast cells

at embryonic day (E) 6.25, which results in 30–40 founder

PGCs at E7.5 (Ohinata et al., 2005; Vincent et al., 2005). Blimp1

together with Prdm14 plays a critical role in early germ cells as

they induce repression of the somatic program, initiation of

PGC program-coupled epigenetic reprogramming, and re-

expression of pluripotency genes (Ohinata et al., 2005; Yamaji

et al., 2008). Thus, although PGCs are unipotent, they have an
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epigenetic state and other properties, such as active X chromo-

somes in female PGCs, which resemble key features of the inner

cell mass (ICM) of blastocysts and ESCs. The reversion and re-

programming of postimplantation epiblasts and epiSCs to re-

verted ESC-like cells (henceforth called rESCs) is accompanied

by similar epigenetic changes to those seen during PGC specifi-

cation and early germ cells (Hajkova et al., 2008; Surani et al.,

2007; Bao et al., 2009).

Recent studies have shown that Prdm14 has a role in the

maintenance of mouse ESCs partly through the repression of

differentiation (Ma et al., 2011), and it is also obligatory for the

persistence of pluripotency in human ESCs (Chia et al., 2010).

Furthermore, Prdm14 enhances epigenetic reprogramming of

human and mouse somatic cells to induced pluripotent stem

cells (iPSCs) (Chia et al., 2010; Nagamatsu et al., 2011).

Prdm14 acts in conjunction with Blimp1 to induce epigenetic re-

programming in PGCs and early germ cells (Yamaji et al., 2008),

suggesting that they play a combinatorial role in the germ cell

lineage. This, together with other observations, has led to

a notion that reprogramming in other contexts, including that

of somatic cells to a ground state of pluripotency seen in

ESCs, might entail a transition through a PGC-like state (Zwaka

and Thomson, 2005; Nichols and Smith, 2011; Nagamatsu et al.,

2011; Chu et al., 2011).

EpiSCs, which are derived from postimplantation epiblast

cells, inherit some of the key properties from them, including

an inactive X chromosome in female cells, which differ in many

other respects too, including their epigenetic state compared

to the ESCs derived from the ICM of blastocysts (Tesar et al.,

2007; Brons et al., 2007). Furthermore, epiSCs gain additional

DNA methylation at some loci, such as stella (Dppa3) and

Rex1, during their derivation from epiblast cells (Bao et al.,

2009). We showed previously that some epiSCs can undergo

PGC specification after expression of Blimp1 and Prdm14

accompanied by appropriate epigenetic reprogramming,

consistent with observations on PGCs in vivo (Hayashi and Sur-

ani, 2009). Furthermore, the reversion of epiSCs to rESCs in

response to leukaemia inhibitory factor (LIF)-Stat3 is similarly

accompanied by epigenetic reprogramming, X reactivation, re-

expression of pluripotency genes, DNA demethylation, and
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Figure 1. Derivation ofBlimp1–/– ESCs from

Blastocysts

(A) Summary of Blimp1�/� ESC derivations from

whole ICMs.

(B) Summary of ESC derivations from trypsinized

ICMs plated as single cells.

(C) Oct4 and Nanog immunostaining of

Blimp1�/�, Blimp1+/�, and Blimp1+/+ ESCs.

(D) Chimeras generated with Blimp1�/� ESCs

(dark agouti) injected into albino C57BL/6 blas-

tocysts.

See also Tables S1 and S2.
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repression of somatic genes (Bao et al., 2009; Hanna et al., 2009;

Yang et al., 2010; Greber et al., 2010). Thus, there are some key

shared features of epigenetic reprogramming of epiSCs during

PGC specification and during reversion to rESCs.

We previously excluded a possibility that rESCs may be

derived from dedifferentiating PGCs (Bao et al., 2009). However,

further evidence is required to exclude this likelihood unequivo-

cally, and particularly also a possibility that the reversion of

epiSCs to rESCs could involve a transition through a PGC-like

state, especially as they share some key features of epigenetic

reprogramming. If so, we would anticipate a key role for Blimp1

during the reversion of epiSCs to rESCs and possibly in other

instances of reprogramming of somatic cells to iPSCs in vitro.

Note that Blimp1 is at the same time also essential for differenti-

ation of some somatic cells later during embryogenesis (Robert-

son et al., 2007).

In this study we investigated whether Blimp1 is required for the

generation and maintenance of the ESC state. Our study shows

that whereas Blimp1 is obligatory for PGC specification, it is

dispensable during the derivation of ESCs and epiSCs, as well

as during the reversion of epiSCs to ESCs and their long-term

maintenance thereafter as self-renewing pluripotent stem cells.

Blimp1�/� ESCs are also capable of differentiating into somatic

cells in chimeras, and development as early postimplantation

embryos in tetraploid rescue experiments, but they cannot give

rise to the germ cell lineage.

RESULTS AND DISCUSSION

Assessment of the Requirement of Blimp1 for ESC
Derivation
First, we set out to test whether Blimp1 is essential for the

establishment of ESCs. To do so, we intercrossed mice hetero-

zygous for a Blimp1 mutant allele (Ohinata et al., 2005) and

retrieved 8-cell stage embryos. These embryos were cultured

in medium supplemented with the small molecules PD0325901

and Chir99021 (2i) to inhibit the protein kinase (Erk1/2) cascade
Cell Stem Cell 11, 110–
and glycogen synthase kinase, respec-

tively (Nichols et al., 2009; Ying et al.,

2008). After 3 days, all embryos formed

expanded blastocysts and hatched

from the zona pellucida. The ICMs were

isolated from expanded blastocysts by

immunosurgery and transferred to 2i

medium supplemented with LIF. The
outer trophectoderm cells from individual embryoswere retained

and used to genotype the respective epiblast. We found 8/40

embryos to be null for Blimp1 by trophectoderm genotyping (Fig-

ure 1A). These epiblasts were allowed to grow for a further 4 days

and primary colonies were expanded as ESC lines. Lines were

established from 7/8 embryos and each line was regenotyped,

which confirmed that 6/7 ESC lines were null for Blimp1 (Fig-

ure 1A). In a separate experiment, an ESC line was established

from each of 10 embryos, and one of these was shown to be

null for Blimp1 (Table S1 available online). These experiments

show that it is possible to derive ESC lines directly from

Blimp1�/� blastocysts. Note that the 2i conditions are not essen-

tial for the establishment of ESCs as shown by the fact that rever-

sion of epiSCs to rESCs occurred efficiently under classical

culture conditions with LIF and fetal calf serum (see later).

To test whether the Blimp1-null ESCs are in any way compro-

mised, we tested their colony-forming ability at the single cell

level. In this case, we obtained 11 embryos at E4.5 by crossing

Blimp1+/� heterozygous mice and repeated the procedure for

ESC derivation described above, except that the ICM from

each embryo was dissociated into single cells and then

dispersed onto a feeder layer in a 48-well culture dish. The colo-

nies in each of the wells were counted after 5 days. Two

embryos, which had small ICMs, produced no colonies. Cells

from the remaining 9 ICMs produced between 1 and 11 colonies

(Figure 1B), consistent with previous findings (Nichols et al.,

2009). Individual colonies were picked and multiple ESC lines

were established from each embryo, with the exception of

embryo 10, which produced only one primary colony. Each

ESC line was genotyped for Blimp1 and in every case lines

derived from the same embryo were of the same genotype

(data not shown). For example, all 4 ESC lines from embryo 5,

which produced 11 primary colonies, were Blimp1 null (Fig-

ure 1B), which is comparable with the maximum efficiency re-

ported previously (Nichols et al., 2009). This demonstrates that

the derivation of ESCs from Blimp1 mutant embryos occurs

efficiently and is not detectably compromised. Indeed, from 3
117, July 6, 2012 ª2012 Elsevier Inc. 111
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Figure 2. Reprogramming of Blimp1–/– EpiSCs to rESCs and Expression Analysis of Blimp1-null Pluripotent Stem Cell Lines

(A) Embryo at E6.5 generated from Blimp1�/� ESCs after injection into 4N teraploid host blastocyst. Epiblast tissue was divested of the proximal region (black

line). epi, epiblast; exe, extraembryonic ectoderm; epc, ectoplacental cone.

(B) Dissected epiblast tissue.

(C) Derivation of epiSCs from epiblast.

(D) AP staining in epiSCs.

(E) Derivation of rESCs from epiSCs.

(F) Uniform AP staining of rESCs.

Scale bars represent 200 mm.

(G and H) Number of Blimp1�/� rESCs from Blimp1�/� epiSCs of 129 inbred genetic background (G) and mixed genetic background (H).
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independent ESC derivation experiments, we have obtained

a total of 11 separate Blimp1-null ESC lines from 9 Blimp1-null

blastocysts. Blimp1-null ESCs, as well as control heterozygous

and wild-type lines, were immunoreactive for the key pluripo-

tency transcription factors Oct4 and Nanog (Figure 1C).

Next, we carried out a functional test on Blimp1�/� ESCs by

examining whether they can participate in forming chimeric adult

mice by injecting them into wild-type host blastocysts. We

observed extensive contribution of Blimp1�/� ESCs as judged

by their contribution to coat color. However, as expected, we

did not observe germline transmission in the absence of Blimp1

(Figure 1D; Table S2). We had similar results with rESCs (see

later). We conclude that pluripotent ESCs can be established

efficiently from embryos with homozygous genetic deletion of

Blimp1. We do not rule out that ESC derivation by alternative

strategies or from particular mouse strains may require Blimp1

activity. The ESC lines established here were of a mixed,

predominantly C57BL/6 and CBA, genetic background;

Blimp1-null ESCs of the permissive 129 homozygous genetic

background are phenotypically similar to that of the mixed

genetic background (data not shown). All these ESC lines are

indistinguishable from wild-type ESCs in culture. We have main-

tained Blimp1�/� ESCs for more than 30 passages both in 2i/LIF

conditions as well as in conventional cultures with fetal calf

serum (FCS) and LIF (with or without feeders) for more than

15 passages without detectable effects on the properties of

these ESCs.

Derivation of EpiSCs from Blimp1–/– Postimplantation
Epiblast Cells
We next asked whether it is possible to derive epiSC lines from

Blimp1�/� postimplantation epiblast cells. For this purpose, we

used established Blimp1�/� ESC lines (129 background) and in-

jected them into wild-type tetraploid host blastocysts, which

contribute almost exclusively to extraembryonic tissues,

including the visceral endoderm, while the donor ESCs

contribute to the embryo proper (Nagy et al., 2003).

Twelve embryos were isolated at E6.5 for the derivation of

epiSCs (Figure 2A). The epiblast tissue was dissected to remove

the most proximal region and the outer visceral endoderm (Fig-

ure 2B). The resulting cells were cultured in Activin A and bFGF

in a chemically defined serum replacement medium (henceforth

called CDM) on mouse embryonic fibroblasts feeders (MEFs) as

described previously (Bao et al., 2009). After 4–7 days, we de-

tected large colonies in 10/12 cultures with many alkaline phos-

phatase (AP)-positive cells (Figures 2C and 2D). We propagated

these epiSC colonies in CDM by collagenase treatment without

detectable morphological changes for at least 20 passages.

Notably, we obtained similar epiSC lines both from the inbred

129 and mixed genetic background. Both wild-type and

Blimp1-null epiSCs showed a similar morphology and could be

maintained in culture thereafter (Figures 2G and 2H).
(I) qRT-PCR analysis of Blimp1�/� epiSCs, ESCs, and rESCs. rESCs and ESC

fibroblasts (MEFs) were used as control. At least two, and usually three, biological

standard deviation of two technical replicates.

(J) Correlation heatmap generated after microarray analysis of the cell lines analy

included. Asterisk denotes rESC lines.

See also Figure S1 and Table S3.
Investigation of the Requirement of Blimp1 for
Reversion of EpiSCs to rESCs
After establishment of 10 Blimp1�/� epiSC lines, we tested their

ability to undergo reversion to rESCs by transferring them to

medium containing LIF and FCS as described previously (Bao

et al., 2009). After 12–30 days in culture, we started to detect

clusters of cells with a different morphology from the original

epiSCs. Subsequent culture of these cells was carried out after

disruption of the developing colonies by treatment with trypsin,

which is detrimental to the remaining epiSCs but promotes prop-

agation of ESC-like cells. With further passaging, we established

multiple Blimp1-null rESC lines (4/10) (Figures 2E and 2F). We

also derived Blimp1�/� epiSCs from Blimp1+/� heterozygous

intercrosses (Figures S1A and S1B). These too readily reverted

to give rESC lines, and notably the dynamics of reprogramming

was indistinguishable when compared with reversion of epiSCs

derived from Blimp1 heterozygous littermate (Figure S1C).

Next we analyzed the gene expression profile of Blimp1�/�

ESCs, epiSCs, rESCs, and heterozygous control lines by quanti-

tative RT-PCR (qRT-PCR). All lines expressed the pluripotency

factors Oct4 and Nanog (Figure 2I). EpiSC lines expressed low

levels of Klf2 and Klf4 and high levels of Fgf5 and Foxa2 (Fig-

ure 2I). In contrast, rESCs displayed a gene expression pattern

indistinguishable from ESCs, indicating successful reprogram-

ming. There was no obvious effect of loss of Blimp1 on the

gene expression profile of epiSCs, ESCs, or rESCs (Figure 2I).

Female Blimp1-null epiSCs also exhibited nuclear H3K27me3

foci, which is lost upon reversion to rESCs, consistent with the

reactivation of the inactive X chromosome that occurs as effi-

ciently in the absence of Blimp1 (Figure S1D).

Next we investigated the transcriptome of Blimp1-null plurip-

otent stem cells by microarray analysis. The rESC and ESC lines

clustered together, indicating successful transcriptional reprog-

ramming during the reversion process and were clearly distinct

from epiSCs (Figure 2J). Direct comparison between rESC and

epiSC lines showed 3,868 differentially expressed genes (false

discovery rate [FDR] adjusted p value < 0.01). ESCs cultured in

2i/LIF also formed a discrete cluster, suggesting a broad tran-

scriptional change in this condition, consistent with observations

in our laboratory (H.G.L. and M.A.S., unpublished observations).

However, there was no detectable effect on cells with a loss of

Blimp1 in any of the cell types we tested. Pairwise comparisons

between epiSCs showed a correlation of >0.96 between cells

with and without Blimp1, with fewer than 400 genes differentially

expressed in any single comparison (Figure S1E). Such small

variations are routinely evident even between heterozygous

epiSC lines, which are consistent with published data for wild-

type epiSCs (Figure S1E; Han et al., 2011). Furthermore,

comparisons between Blimp1-null ESCs (or rESCs) and control

lines revealed no differentially expressed genes, in either stan-

dard or 2i/LIF culture conditions (FDR adjusted p value < 0.01

for each comparison). These results indicate that Blimp1-null
s were cultured in FCS/LIF. Heterozygous cell lines and mouse embryonic

replicates were analyzed for each cell type and genotype. Error bars denote the

zed in (I). The same Blimp1�/� and Blimp1+/� ESCs cultured in 2i/LIF were also

Cell Stem Cell 11, 110–117, July 6, 2012 ª2012 Elsevier Inc. 113
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Figure 3. PGCs in Embryos Generated from

Blimp1–/– rESCs and control rESCs

(A) Chimeras generated with Blimp1�/� rESCs (dark

agouti) injected into C57BL/6 (black) blastocysts.

(B) Summary of blastocyst injections.

(C and D) Comparison of PGCs detected by AP staining at

E8.5 in WT control (C) embryos, versus Blimp1�/� (D)

embryos, revealed migrating PGCs in wild-type embryos

(arrowheads) and only a few nonmigrating AP-positive

cells in Blimp1�/� embryos. al, allantois. Scale bar

represents 200 mm.

(E) Number of PGCs detected in control E8.5 embryos

(n = 6) and Blimp1�/� E8.5 embryos (n = 8) of 129 genetic

background Blimp1�/� rESCs.

(F) PGCs from control E8.5 embryos (n = 17) and mutant

rESC-derived E8.5 embryos (n = 12) of mixed genetic

background.

See also Figure S2.
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pluripotent stem cells at this stage are highly similar if not iden-

tical with normal ESCs, notwithstanding their inability to

contribute to the germline and some somatic tissues later in

embryogenesis.

Blimp1-null rESCs, like Blimp1-null ESCs, can contribute to

chimeras (Figures 3A and 3B), which provides functional proof

for complete reversion in the absence of Blimp1. Next we

checked whether Blimp1�/� rESCs contribute to the entire

developing embryo by using the ‘‘tetraploid rescue’’ experi-

mental approach (Nagy et al., 2003). We obtained comparable

E8.5 embryos from both normal and Blimp1�/� rESCs (Figures

S2A and S2B), indicating their potential for extensive differentia-

tion. Note that Blimp1 is important later for development of some

somatic cells and this will influence differentiation of Blimp1�/�

cells in some tissues in chimeras (Robertson et al., 2007), which

is in contrast to its role under consideration in this investigation

concerning pluripotency and reprogramming.

Next we examined the E8.5 embryos generated from ESCs in

tetraploid rescue experiments for the presence of PGC-like cells

by staining for AP (Lawson et al., 1999). We found a striking

difference in embryos generated from Blimp1�/� rESCs in which
114 Cell Stem Cell 11, 110–117, July 6, 2012 ª2012 Elsevier Inc.
we saw no AP-positive cluster at the base of the

allantois (6/8), except for fewer than 6 AP-posi-

tive cells near the base of the allantois in 2

embryos, which did not seem to be migrating

appropriately like authentic PGCs (Figures 3D

and 3E). By contrast, we observed normal clus-

ters of PGCs in control embryos (Figure 3C). We

previously demonstrated that AP-positive cells

in Blimp1 mutant embryos lack all the attributes

of authentic PGCs; instead, they have some

characteristics of neighboring somatic cells

with the expression of certain Hox genes,

absence of PGC markers, and lack of expres-

sion of key pluripotency genes such as Sox2,

and they undergo apoptosis after a lack of

proliferation (Ohinata et al., 2005). Similar

results were obtained with an independently

derived Blimp1�/� rESC line of mixed genetic

background (Figure 3F). These findings mirror
the phenotype of similar AP-positive aberrant cells observed in

Blimp1�/� embryos, obtained by heterozygous crosses, at the

same stage.

These results show that loss of Blimp1 does not prevent deri-

vation of epiSCs or their reversion to rESCs. The combined data

also show that Blimp1�/� rESCs are similar to control rESCs by

transcriptome analysis as they both contribute to adult chimeras,

except that the mutant cells cannot undergo specification into

PGCs and be transmitted through the germline; they may also

not contribute to some somatic tissues where Blimp1 is required

later in development as shown previously (Robertson et al.,

2007). Because rESCs can be derived from Blimp1-null epiSCs,

this provides evidence indicating that epigenetic reprogramming

inherent to the reversion process does not involve obligatory

dedifferentiation of PGCs, and importantly, unequivocally

excludes an obligatory transition through Blimp1-positive

PGC-like state.

Conclusion
Blimp1 is obligatory for PGC specification but it does not appear

to be required for the derivation or the maintenance of
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Blimp1 is not essential for the derivation and the maintenance of pluripotent

ESCs or epiSCs. Reprogramming of epiSCs to rESCs, which is accompanied

by epigenetic changes such as DNA demethylation and X reactivation that are

also detected in the early germline, can also occur in the absence of Blimp1. By

contrast, Blimp1 is critical for PGC specification and epigenetic reprogram-

ming in early germ cells, which is mechanistically unrelated to the re-

programming of epiSCs to rESCs that does not entail an obligatory route

through a PGC-like state.
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pluripotent ESCs or ofBlimp1�/� epiSCs. Importantly,Blimp1�/�

epiSCs can undergo appropriate epigenetic reprogramming and

reversion to rESCs in response to LIF-STAT3 signaling. This is

a very stringent test for whether or not Blimp1 is essential, since

reversion entails X reactivation and DNA demethylation; this

occurred in the presence of LIF-serum and did not require 2i

culture conditions. Reprogramming of Blimp1-null epiSCs to

Blimp1�/� rESCs conclusively excludes their transition through

a Blimp1-positive PGC-like state. Because PGC specification

and establishment of the germline is impossible without Blimp1,

it is reasonable to conclude that reversion of epiSCs to rESCs

does not transit through an equivalent PGC-like state.

Blimp1 and Prdm14 together are critical for epigenetic reprog-

ramming during specification of PGCs and early germ cells. Re-

programming in early germ cells shares some key features with

the reversion of epiSCs to rESCs. However, our study shows

that reprogramming of epiSCs to rESCs, and possibly of somatic

cells to iPSCs, does not require Blimp1, although PRDM14

appears to be essential for the maintenance of human and

potentially mouse ESCs but not the mouse epiSCs (Chia et al.,

2010; A.G. and M.A.S., unpublished observation). By contrast,

Blimp1 is not required for the derivation and maintenance of

mouse ESCs or epiSCs. Indeed, Blimp1 is rapidly downregu-

lated during reprogramming of normal PGCs to pluripotent
embryonic germ cells (EGCs), suggesting that Blimp1 is critical

for the maintenance of unipotent germ cells, but it may restrict

reversion to a pluripotent state because EGCs are equivalent

to ESCs (Durcova-Hills et al., 2008; Leitch et al., 2010). Thus,

PGC specification from epiblasts and epiSCs on the one hand

and reversion of epiSCs to rESCs on the other (Figure 4) serves

as a good model to gain novel insights on diverse mechanisms

underlying epigenetic reprogramming in different contexts.

EXPERIMENTAL PROCEDURES

Embryos

Timed natural matings were used for all experiments, where noon of the day

when the vaginal plugs of mated females were identified was scored as

E0.5. MEFs were obtained from E13.5 fetuses from the MF1 strain. Animal

studies were authorized by a UK Home Office Project License and carried

out in a Home Office-designated facility.

Derivation of Mouse ESCs from Blimp1–/– Blastocysts

ESC lines were derived essentially as described previously (Nichols et al.,

2009). For single-cell deposition experiments, single-cell suspensions from

each trypsinized ICM were dispersed in one well of a 48-well plate containing

HS-27 feeders (available from ATCC). 2i/LIF medium comprises N2B27 basal

medium (Stem Cells Inc.) supplemented with 1 mM PD0325901, 3 mM

CHIR99021 (Signaling Technologies, University of Dundee), and mouse LIF

(10 mg/ml, University of Cambridge Department of Biochemistry).

Production of E6.5 Epiblast in Tetraploid Host Blastocysts

Two-cell stage embryos (E1.5) from F1 (C57BL/6 3 CBA) matings were

collected by flushing oviducts; these were subjected to electrofusion to create

tetraploid (4N) host blastocysts (Nagy et al., 2003). Typically 15–20 Blimp1�/�

ESCs were injected into tetraploid host blastocyts, which were transferred to

E2.5 pseudopregnant recipients, and examined at E6.5.

Blimp1–/– EpiSC Derivation and Culture

EpiSCs were derived from E6.5 epiblasts by culturing on MEFs in N2B27

medium containing human activin A (20 ng/ml; Peprotech), bFGF (12 ng/ml;

Invitrogen), and KSR (20%; Invitrogen) (Bao et al., 2009). The cells were

passaged every 3 days as described previously. When the colonies increased

in size, they were dissociated with collagenase IV (1mg/ml; Invitrogen) until the

establishment of epiSCs after about 10 passages.

Reversion of Mouse Blimp1–/– EpiSC to rESC Lines

Blimp1�/� epiSCs (�passage 20) were treated with collagenase for 8 min at

room temperature and transferred to a dish with feeders and standard ESC

medium (1,000 U/ml LIF, 20% FCS in DMEM/F12 medium). After 12 to

30 days, colonies of 100 to 200 mm diameter were detected, within which

we detected clusters of cells with a different morphology. These cultures

were dissociated by trypsin into single-cell suspension and passaged on

feeders and standard ESC medium. ESC-like cell were detected several

days later and established as mutant or control rESCs.

Alkaline Phosphatase Staining

AP staining of epiSCs and rESCs was carried out according to manufacturer’s

instructions (Roche). In brief, the cells were fixed in 4% paraformaldehyde for

10 min and stained overnight at room temperature. AP staining of PGCs was

performed as described previously (Lawson et al., 1999).

Quantitative Real-Time PCR

Total RNA was extracted with the RNeasy Mini Kit (QIAGEN) with DNase treat-

ment. 500 ng of total RNA were used for cDNA synthesis with Superscript III

(Invitrogen) and random hexamer primers (Invitrogen). qRT-PCR reactions

were set up with Sybr Green JumpStart Taq ReadyMix (Sigma) and 1 mM of

forward and reverse gene-specific primers (see Table S3 for primer

sequences). Amplification was performed with an ABI Prism 7000 Sequence

Detection System (Applied Biosystems) at 95�C for 10 min, 40 cycles of
Cell Stem Cell 11, 110–117, July 6, 2012 ª2012 Elsevier Inc. 115
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95�C for 15 s and 60�C for 1 min, followed by a melting curve. Mean threshold

cycles were determined from two technical replicates by the comparative Ct

method and expression levels were normalized to GAPDH.

Microarray Analysis

Total RNA was prepared with the RNeasy Mini Kit (QIAGEN) with DNaseI treat-

ment. Eluted RNA concentration was determined by spectrophotometry. After

RNA quality control with the Bioanalyzer, the samples were processed and

hybridized to IlluminaMouseWG-6 v2.0 Expression BeadChips by Cambridge

Genomic Services, who also performed data quality control. Raw data were

loaded into lumi (Du et al., 2008) and then divided into subsets to be analyzed.

The data were transformed by variance stabilization (VST) (Lin et al., 2008) and

normalized with quantile normalization. Comparisons were performed by

limma (Smyth, 2004) and the results corrected by false discovery rate (FDR).

Microarray data are presented as a correlation heatmap that depicts the corre-

lation between samples.

Immunostaining

Cells were briefly washed with PBS and fixed in 4% paraformaldehyde in PBS

for 15 min at room temperature. Cells were permeabilized for 30 min with 1%

BSA and 0.1% Triton X-100 in PBS. Antibody staining was carried out in the

same buffer at 4�C overnight. The slides were subsequently washed three

times in PBS, 1% BSA, and 0.1% Triton X-100 (5 min each wash), incubated

with secondary antibody for 1 hr at room temperature in the dark, and washed

once for 5 min in PBS, 1% BSA, and 0.1% Triton X-100 and twice for 5 min in

PBS. The slides were then mounted in Vectashield with DAPI (Vector Labora-

tories) and imaged with a BioRad Radiance 2100 confocal microscope.

Primary antibodies used were mouse monoclonal Oct4 (BD Biosciences,

1:200), rabbit polyclonal Nanog (Abcam, 1:200). All secondary antibodies

used were Alexa Fluor highly crossed adsorbed (Molecular Probes).

Detection of PGC-like Cells

We injected Blimp1�/� rESCs derived from Blimp1�/� epiSCs into tetraploid

host blastocysts and transferred them to E2.5 recipients. E8.5 embryos

were isolated and PGC-like cells were counted after AP staining. The reprog-

rammed rESCs derived from epiSCs with Oct4-DPE-GFP reporter were used

as a control.

ACCESSION NUMBERS

The microarray data are available in the Gene Expression Omnibus (GEO)

database (http://www.ncbi.nlm.nih.gov/gds) under the accession number
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