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Abstract

Gastrointestinal microbiome, containing at least 100 trillion bacteria, resides in the mucosal surface of human intestine.
Recent studies show that perturbations in the microbiota may influence physiology and link to a number of diseases,
including colon tumorigenesis. Colorectal cancer (CRC), the third most common cancer, is the disease resulting from
multi-genes and multi-factors, but the mechanistic details between gut microenvironment and CRC remain poorly
characterized. Thanks to new technologies such as metagenome sequencing, progress in large-scale analysis of the genetic
and metabolic profile of gut microbial has been possible, which has facilitated studies about microbiota composition,
taxonomic alterations and host interactions. Different bacterial species and their metabolites play critical roles in the
development of CRC. Also, microbiota is important in the inflammatory response and immune processes deregulation
during the development and progression of CRC. This review summarizes current studies regarding the association between
gastrointestinal microbiota and the development of CRC, which provides insights into the therapeutic strategy of CRC.
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Introduction

Colorectal cancer (CRC), including carcinogenesis of the colon
and rectum, is a major cause of incidence and mortality in the
world [1]. CRC has been ranked third in terms of cancer death,
causing near 500 000 deaths per year, and its incidence has been
a health care challenge worldwide [2,3]. Despite the progress
that has been made, CRC is still one of the deadliest cancer
types, with different molecular phenotypes and strong resis-
tance to therapies [4] and a very high mortality rate [5]. Thus,
there is an urgent need to identify risk factors/biomarkers for
CRC [6]. Recently, metagenome-wide association studies on fe-
cal samples have characterized microbial markers of CRC [7,8].

Furthermore, the causal impact of bacteria on cancer has been
recognized [9,10]. In this review, we will discuss the link be-
tween gut microbiota and CRC, as well as the potential
cancer therapeutic strategy by employing the regulations
involved.

Human gut microbiota and CRC

Due to new technologies that have allowed large-scale analysis
of the genetic and metabolic profile of the gut microbial com-
munity, we now have a better understanding of the composi-
tion and functions of the human gut microbiota [7,8,11–14].
There are at least 100 trillion bacteria that live in our gut
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system, i.e. gut microbiome. The human gut microbiota is a
complex ecosystem, with a biomass of about 1.5 kg. Moreover,
the compositions of microbes are various in different parts of
the gut, including ascending colon, distal colon, proximal ileum
and jejunum, and they are critical for normal functioning of our
homeostasis and health, including the digestion of food,
vitamin biosynthesis, behavioral responses and protection from
pathogens [15]. The majority of the endogenous bacteria in
healthy adults are representatively two phyla, Firmicutes and
Bacteroidetes, which account for approximately 90% of the micro-
bial system [16]. The microbiome can work with the host to pro-
mote health but can sometimes initiate or promote disease
[11,17,9].

Emerging evidence has shown that the dysbiosis of gut
microbiota can lead to alteration of the host physiology, result-
ing in the pathogenic processes of different diseases [18, 19].
Gut microbiota can promote the development and progression
of CRC by different processes, including the induction of a
chronic inflammatory state or immune response, altering stem
cell dynamics, the biosynthesis of toxic and genotoxic metabo-
lites, and affecting the host metabolism [20,21]. Here we will list
some of those roles in CRC tumorigenesis, focusing on inflam-
mation, immune response and metabolites.

Microbial species and cancer

As a part of the tumor microenvironment, gastrointestinal
microbiome participates in the development of a substantial
number of gastrointestinal tract malignancies [22,23]. Several
recent studies have implicated a link between dysbiosis of gut
microbiota and CRC [24,25].

Emerging evidence has indicated that these microbes may
induce inflammation, facilitate cell proliferation and provide a
microenvironment for host cells to alter stem cell dynamics and
produce metabolites that affect glycolysis or immune response
[20]. However, details about the contribution or the molecular
mechanism of the microbiome remain to be characterized [26].

Fortunately, the analysis of microbial composition and
diversity has been facilitated by the advancement of next-
generation sequencing technologies. By performing metagenomic
sequencing on fecal samples, Yu et al. show that specific species,
such as Fusobacterium nucleatum (F. nucleatum), Peptostreptococcus
stomatis and Parvimonas micra, are enriched in colorectal carci-
noma. The study confirms not only the associations between gut

microbiota and CRC, but also the involvement of specific members
of microorganisms in contributing to the development of CRC [7].
With conserved regions interspersed by specific variable regions,
the 16S ribosomal RNA (rRNA) gene has been the most widely ap-
plied molecular signature for the studies of the microbial commu-
nity. The 16S rRNA contains approximately 1500 base pairs and
comprises nine variable regions, which can be used for taxonomic
classification [27]. Studies have identified that several bacteria,
such as F. nucleatum, Escherichia coli (E. coli), Bacteroides fragiles (B. fra-
gilis) and Enterococcus faecalis, were increased in CRC patients [25],
whereas the Clostridiales, Faecalibacterium, Blautia and Bifidobacte-
rium were absent [24,28] (Table 1).

Fusobacterium nucleatum (F. nucleatum)

Using quantitative PCR, 16S rDNA sequencing or FISH analysis,
increased abundance of symbiotic Fusobacterium spp. has been
observed in colorectal adenomas and cancer [29–33]. Castellarin
and colleagues uncovered the role that F. nucleatum, a Gram-
negative oral anaerobe, played in CRC by showing that F. nucle-
atum DNA is enriched in tumor tissue and correlates with
lymph node metastasis [29]. To evaluate the prognostic signifi-
cance of F. nucleatum DNA in CRC, Mima et al. detected the F.
nucleatum DNA in tissue of 1069 CRC cases and confirmed that
F. nucleatum DNA is associated with shorter survival in CRC pa-
tients [30]. Through a series of animal experiments and human
studies, Kostic et al. suggested that F. nucleatum can induce car-
cinogenesis through the inflammatory nuclear factor-kappab
(NF-kb) signaling pathway and by down-regulating anti-tumor
T cell-mediated adaptive immunity [32,34,35]. Using the APC
(Min/þ) mouse model treated with human isolates of F. nuclea-
tum, they also found that F. nucleatum induced tumorigenesis by
recruiting tumor-infiltrating myeloid cells, which facilitate can-
cer progression [32]. In other words, it creates a proinflamma-
tory environment to promote cancer growth. The Fap2 protein
of F. nucleatum can associate with TIGIT, an inhibitory receptor
present on natural killer (NK) cells and T cells, to inhibit NK cell
cytotoxicity [36]. Also, the adhesion and invasion of F. nucleatum
into epithelial cells were mediated by FadA adhesin, which
binds to E-cadherin and stimulates the beta-catenin pathway,
leading to the activation of proinflammatory and oncogenic sig-
nals [37]. Another study shows that Fad causes vascular endo-
thelial (VE)-cadherin to be away from cell–cell junctions,
thereby increasing the permeability of endothelial cells to allow

Table 1. Special bacterium related to colorectal cancer (CRC)

Microorganism Expression/role
in affecting CRC

Function

Enterococcus faecalis Driver Producing extracellular superoxide causing DNA breaks [160]
Shigella Driver Inflammation induction
Escherichia coli NC101 Driver Genotoxin production, synthesizing toxins cyclomodulins [44,45]
Bacteroides fragilis Driver B. fragilis toxin production; stimulating E-cadherin cleavage; inducing the Th17/IL-17

inflammatory response [52]
Streptococcus bovis " Chronic inflammatory response [161]
Helicobacter pylori " Producing multi-functional toxin VacA [162]
Fusobacterium nucleatum " Enriched in CRC; instigating inflammatory nuclear factor-kappa b (NF-kb) signaling

pathway [32,34]; triggering the Wnt signaling pathway [30,37]
Bifidobacterium Protective Reduced the b-glucuronidase activity [62]
Eubacterium rectale # Butyrate producer [163]
Clostridium septicum # Producing secondary bile acids [125]
Faecalibacterium prausnitzii # Generating butyrate [164]
Lactobacillus Protective Reducing production of lactic acid; activation of Toll-like receptors [165]
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bacteria to cross the junctions [38]. Furthermore, evidence from
Mima et al. indicated that F. nucleatum promotes tumor growth
by triggering the Wnt signaling pathway in colorectal carcinoma
cells or down-regulating CD3þ T cell-mediated adaptive immu-
nity [30]. These observations suggest that F. nucleatum facilitates
the tumorigenesis via several critical signaling pathways.
Further investigation is needed to unravel the interactive roles
and mechanisms of F. nucleatum on host immunity. However, as
a normal resident of the oral microflora, whether F. nucleatum is
a cause or consequence of CRC is still not clearly understood.

Escherichia coli (E. coli)

E. coli, a member of intestinal microbiota, is a Gram-negative
and facultatively anaerobic bacterium, which can be divided
into five phylogenic groups (A, B1, B2, D and E). Various studies
confirmed that pathogenic strains of E. coli played critical role in
colorectal tumorigenesis [39–42]. E. coli induced CRC in interleu-
kin 10 (IL-10)-deficient mice, suggesting that inflammation is
essential for the tumorigenesis [41].

Based on the ability of E. coli to induce inflammation, Martin et
al. showed that the levels of E. coli increased in Crohn’s disease and
CRC patients [43]. Buc et al. found that the E. coli strains of the B2
phylogroup favored the colonization of colon cancer [44].
Moreover, recent studies show that pathogenic E. coli could synthe-
size toxins designated cyclomodulins, such as cytolethal distend-
ing toxins (CDT), cytotoxic necrotizing factor (CNF), cycle inhibiting
factor and colibactin, which were genotoxic or interfering with the
cell cycle [44–46]. CDT could induce DNA damage through DNase
activity [47]. In addition, two studies provide evidence that CDT
has carcinogenic potential in vivo [48,49]. Ge and colleagues demon-
strated that CDT could promote a NF-jB proinflammatory re-
sponse, resulting in hepatocarcinogenesis [50]. The prevalence of
cyclomodulin- and genotoxin-encoding genes in E. coli strains from
CRC patients confirms the link between E. coli and CRC.

Bacteroides fragilis (B. fragilis)

The anaerobe B. fragilis is a commensal bacterium in gut, which
can be classified into two subtypes: nontoxigenic B. fragilis
(NTBF) and enterotoxigenic B. fragilis (ETBF) [51–53]. Studies in-
dicate the inflammatory potential of ETBF and the contributions
of ETBF in CRC [53]. Infection of ETBF will increase Th17 and T
regulatory cells (Treg), resulting in early tumor development
[54]. B. fragilis toxin (BFT), a zinc-dependent metalloprotease
toxin, is involved in many colonic epithelial cell signal trans-
ductions, such as NF-jB, Wnt and mitogen-activated protein ki-
nase (MAPK) signaling pathways, thereby inducing the
production of inflammatory mediators that facilitate CRC devel-
opment [55]. In addition, murine experiments have demon-
strated the crucial roles of BFT and the Th17/IL-17 axis in ETBF
carcinogenesis [52], which could promote the differentiation of
myeloid cells into myeloid-derived suppressor cells, triggering
colon tumorigenesis by the pathogenic inflammation pathway
[56].

Bifidobacterium

Probiotics, some special bacteria existing in the gut, could exert
numerous beneficial effects on the host. The most common
types of probiotics are lactic acid bacteria (LAB), mainly the
Lactobacillus and Bifidobacterium genera, including other genera
such as Enterococcus, Streptococcus and Leuconostoc [57]. Gut
microbiome studies have confirmed the preventive and treat-
ment effects of theses probiotics in patients with inflammatory

bowel disease or CRC [58]. Furthermore, the ratio of
Bifidobacterium to Escherichia (B/E) is always used to indicate the
intestinal flora. The number of Bifidobacterium will decrease sig-
nificantly in CRC, while Escherichia increases [59]. Sivan et al.
showed that oral administration of Bifidobacterium alone can in-
fluence immune response against tumors in several different
mice models [60]. b-glucuronidase activity of gut bacteria reacti-
vates chemotherapeutic CPT-11 in the gut, causing diarrhea
during chemotherapy [61]. Drugs have been designed to inhibit
this undesirable b-glucuronidase activity in gut bacteria to en-
hance chemotherapeutic efficacy [61]. Bifidobacterium influences
the growth of CRC cells by reducing the glucuronidase activity,
although the detailed mechanisms remain to be further charac-
terized [62]. Together, it is possible that Bifidobacterium may also
enhance chemotherapeutic efficacy.

Lactobacillus

Lactobacillus is a genus of Gram-positive, facultative anaerobic
bacteria. Among many available probiotic strains, Lactobacillus
rhamnosus, widely used clinically, is well characterized in terms
of its anti-inflammatory role in modulating cytokine-producing
human dendritic cells [63]. Lactobacillus rhamnosus reduces the
expression of beta-catenin and the inflammatory proteins
NFkappaB-p65 and induces the expression of p53 and BAX [64].
Thus, treatment of L. rhamnosus as a prophylactic measure
could reduce the incidence and multiplicity of colon tumors,
through inducing cell apoptosis and inhibiting the inflamma-
tion [64]. Moreover, it has been demonstrated that Lactobacillus
administration to mice regulates the expression of Toll-like re-
ceptor 2 (TLR2), TLR4 and TLR9, especially TLR2, while it de-
creases the tumor incidence [65]. Lactobacillus rhamnosus GG
could enhance the intestinal epithelial barrier function in a
TLR2/cyclo-oxygenase-2-dependent manner [66,67]. The de-
tailed mechanistic regulations remain to be investigated.

Taken together, evidence suggests a contributory role for
microbiota in CRC development. Numerous pathogenic mecha-
nisms have been demonstrated, although not fully illustrated. A
burning question remains of whether microbial association
with cancer is the cause or the consequence. It is known that
several bacterial species have been identified and linked to colo-
rectal carcinogenesis, such as E. coli, Streptococcus bovis, B. fragilis,
Enterococcus faecalis, Fusobacterium spp. and Clostridium septicum
[25]. And it seems that Gram-positive Clostridiales, including
multiple members of Clostridium Group XIVa, are negatively
correlated with tumors [28]. Thus, there is accumulating evi-
dence that characteristic changes in the gut microbiome are as-
sociated with colorectal cancer development [23,68,69]. It is
expected that an altered community of gut microbes is associ-
ated with CRC development. Because the gut bacteria have a
modifiable nature, further studies may have potential implica-
tions for managing gut bacteria for CRC treatment.

Inflammation and immune responses

The interaction between microorganisms and the host immune
system frequently happens in the gastrointestinal area [70].
Inflammation, an adaptive response triggered by internal and
external stimuli, has become a hallmark of neoplastic transfor-
mation of epithelial cells and microbiome has roles in intestinal
inflammation [71], thereby furthering CRC development [72].
During the process of inflammation, the leukocytes in the hu-
man body changed accordingly. Macrophages, dendritic cells,
NK cells and neutrophils would produce reactive oxygen species
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(ROS) to cause DNA damage of intestinal epithelial cells, and
also increase levels of enzymes such as cyclooxygenase-2 (COX-
2). All these events are critical for the induction of mucosal tu-
morigenesis [73].

Inflammatory bowel disease (IBD), including Crohn’s disease
and ulcerative colitis, is a group of inflammatory disorders af-
fecting the colon and small intestine. It is well established that
patients with IBD have an increased risk of 10–15% of develop-
ing CRC [74]. Interestingly, Taurog and colleagues found that
the genetically modified animal model of IBD (B27 transgenic
rat) did not develop colitis when it was raised in a germ-free
(GF) environment [75]. Also, it has been reported that CD45RBlow

CD4þ T lymphocytes have IBD-inducing potential [76]. But its
ability to induce colitis in immune-deficient recipients was sig-
nificantly compromised when the CD45RBlow CD4þ T cells were
derived from GF mice [77]. Taken together, gut microbiota acts
importantly in affecting the host immunity, thereby regulating
the inflammatory process of IBD. Indeed, certain gut flora are
involved in pathogenic processes of IBD. Many studies have
demonstrated the role of E. coli in Crohn’s disease [78]. It has
been reported that ETBF, a member of the human commensal,
triggers the activation of epithelial signal transducers and acti-
vator of transcription 3 (STAT3) [79], which is a protein family
member that regulates the immune response. Significantly, the
disruption of the intestinal barrier will be followed by IBD and
CRC [80]. Citrobacter rodentium, one of the Gram-negative bacte-
ria mainly colonizing the surfaces of the cecum and colon, can
induce inflammation by the Th1/Th17 immune response [81].
Moreover, Clostridium clusters IV and XIVa have a critical role in
maintaining mucosal homeostasis and preventing IBD [82].
Other microorganisms, such as fusobactrium and mycobacterium,
were found to be increased in IBD [83,84]. Collectively, existing
evidence suggests microbiome dysbiosis may lead to CRC by in-
ducing inflammatory or immune response.

Pattern recognition receptors (PRRs) are a primitive part of
the immune system, which can sense microbiota through mo-
lecular structures, including the Toll-like receptors (TLRs), the
nucleotide-binding oligomerization (NOD)-like receptors (NLRs),
the RIG-I-like receptors, the C-type lectin receptors, the absent
in melanoma 2 (AIM2)-like receptors and the OAS-like receptor
[85]. TLRs, a class of proteins, are commonly expressed in senti-
nel cells such as macrophages and dendritic cells. Once the in-
testinal barrier is disrupted by microorganisms, TLRs will
recognize these microbes and induce the expression of some cy-
tokines, finally activating immune responses.

TLR signaling has been characterized in recent years. There
are two important TLR pathways: one dependent on myeloid
differentiation factor 88 (MyD88) adaptor proteins and the other
a TRIF-dependent pathway [86,87]. Most TLRs use MyD88 as the
downstream adapter, except TLR3. In the MyD88-dependent
pathway, once TLRs are activated, it will subsequently activate
the downstream factors, including NF-jB, MAPK and interferon
regulatory factors [87]. Previous studies revealed the role of
microbiota in TLR-dependent recognition in CRC [87].
Calcineurin (Cn), a phosphatase responsible for the activation of
the nuclear factor of the activated T cells (NFAT) family, is
highly expressed in CRC and has been implicated in tumor de-
velopment and metastasis [88]. In human CRC cells, after stimu-
lating TLR2 and TLR4 by gut bacteria, both intracellular Caþþ

and the DNA binding activity of NFAT are increased, which in
turn contributes to the tumorigenesis of CRC [88] (Figure 1). In
the Apcmin/þ/Myd88–/– mice model, the levels of pERK and c-Myc
are significantly decreased, which confirms the importance of
microbiota-MyD88-ERK signaling during the carcinogenesis of
intestinal epithelial cells (IECs) [89].

The ligand of TLR2 is bacterial peptidoglycans. The multi-
plicity and number of tumors in TLR2-deficient mice are signifi-
cantly increased when compared with the wild-type control

Figure 1. Influence of TLR signaling on carcinogenesis by microbiota. (A) Dysbiosis of the luminal microbiota, such as the increase of Fusobacterium, induces the expres-

sion of TLR4, which activates the calcium-dependent calcineurin and NFAT. In addition, once the TLR4 is activated, it leads to the activation of NF-jb, resulting in the

change of several miRNA expressions, including miR21. Finally, tumor growth is promoted. (B) TLR5 could recognize bacterium flagellin and induce the activation of

NF-jb, regulating the expression of some inflammation-associated cytokines. (C) Bacteroides fragilis produces polysaccharide A and suppresses anti-microbial immune

responses via TLR2 signaling, which promotes the inflammatory T-helper 17 responses whilst inhibiting the Foxp3þ regulatory T cells. TLR, Toll-like receptor; NF-jb,

nuclear factor jb; NFAT, nuclear factor of activated T cells; ILC3, Innate lymphoid cells 3.
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mice [90]. Previous studies have demonstrated that the interac-
tion between TLRs and commensal bacteria is essential for in-
testinal epithelial homeostasis [91], which is modulated by cell
proliferation and apoptosis in the crypts. However, the loss of
TLR2 has been shown to promote cell proliferation, inhibit cell
apoptosis, even induce the formation of abnormal crypt foci,
and activate IL-6 and STAT3s in early intestinal tumorigenesis,
suggesting that TLR2 acts as an important protective factor in
intestinal epithelial homeostasis [90]. Moreover, intestinal ho-
meostasis is also maintained by regulatory T cells, including
Foxp3þ Treg cells and IL-10-producing type 1 regulatory T (Tr1)
cells. Round and colleagues demonstrated that Bacteroides
fragilis could exploit the TLR2-dependent signaling pathway for
regulating the Foxp3þ Treg cells [92] (Figure 1). These data
suggest a pivotal TLR2-dependent impact on microbiota
homeostasis.

TLR4 is a transmembrane protein, which is well known for
its ability to bind with bacterial lipopolysaccharide, leading to
the activation of inflammatory genes expression through the
NF-KB signaling pathway (Figure 1). Based on mice models, Van
Helden et al. proved that Gram-negative bacteria could induce
DC migration by selectively activating TLR4, resulting in chronic
infections [93]. It has been shown that the binding of TLR4 and
MyD88 plays an important function in carcinogenesis by induc-
ing tumor cell proliferation, invasion and migration, escaping
from immunosurveillence and developing chemoresistance
[92]. In previous studies, Wang et al. found that, in patients with
CRC, high levels of TLR4 and MyD88 correlate with an increased
risk of liver metastasis and worse survival [94,95]. It has been
shown that overexpression of TLR4 will promote the activation
of NF-jb, which in turn induces COX-2 expression, a biomarker
of colorectal carcinogenesis [96] (Figure 1).

TLR9, another member of the TLR family expressed by nu-
merous immune cells, such as B lymphocytes, monocytes and
NK cells, could recognize unmethylated CpG sequences in DNA

molecules, especially bacterial DNA [87]. Recent studies show
that, under the condition of genotoxic stress, the level of TLR9
will increase in cancer cells [97]. However, the mechanisms of
TLR9 signaling in colonic tumorigenesis remain unclear.

Other receptors also integrate microbial signals to adjust
mucosal homeostasis in the human body. For example, NLRP6
is a member of the NLR family of receptors, expressed in IECs,
especially in goblet cells. Studies have shown that NLRP6, impli-
cated in inflammasome signaling, is essential for mucosal self-
renewal and proliferation. Indeed, compared to the wild-type
mice, the NLRP6-deficient mice are more susceptible to intesti-
nal inflammation and chemically induced colitis as well as tu-
morigenesis in the colon [98].

Immunotherapy, such as using checkpoint inhibitors, has
demonstrated clinical benefit in several types of cancer [99]. But
the detailed mechanism behind the treatment efficacy is not
well characterized. It is shown that optimal cancer immuno-
therapy responses depend on an intact commensal microbiota
that can modulate myeloid-derived cell functions in the tumor
microenvironment [100]. Also, the influence of microbiota on
host immunity has been reported to affect cancer immunother-
apy efficacy [101] (Figure 2). It was shown that increased gut
bacteria Bacteroidetes phylum is related to the host’s response to
the treatment of immunologic checkpoint blockade with mono-
clonal antibody ipilimumab [102], which blocks cytotoxic T-lym-
phocyte-associated antigen-4 (CTLA-4, a major negative
regulator of T-cell activation) signaling [103]. In addition, it is
shown that Bifidobacterium administration plus programmed
cell death protein ligand 1 (PD-L1)-specific antibody therapy can
block melanoma tumor growth in mouse models [60]. It remains
to be verified in human clinical trials for future clinical applica-
tion. It is therefore clear that understanding the inflammation
and immune mechanisms of microbial-dependent CRC will
open new avenues for cancer prevention and improving cancer
therapeutic strategies.

Figure 2. Microbiome affects immunotherapy efficacy. (A) Anti-CTLA4 antibodies impair function of Treg and increase Bacteroides, thereby improving the anti-tumor re-

sponse mediated by immune checkpoint blockade (Anti-CTLA4). Antibiotics treatment can dampen the T-cell-mediated anti-tumor immune responses.

(B) Bifidobacterium promotes DC activation and subsequent anti-tumor T-cell responses of anti-PD-L1 therapy. CTLA4, cytotoxic T-lymphocyte-associated antigen-4;

Treg, regulatory T cells; DC, dentric cells; PD-L1, programmed cell death protein ligand 1.
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Metabolic role of gut microbiota

Gut microbiota can create genotoxic stress or metabolite in the
intestinal environment to facilitate genetic and epigenetic
changes that lead to cancer [104]. Glycolysis generates adeno-
sine triphosphate and nicotinamide adenine dinucleotide
(NADþ) for poly (ADP-ribose) polymerase (PARP) to repair DNA
damage and provide energy for multidrug resistance efflux
pumps to discard toxic chemotherapy agents. Thus enhanced
glycolysis can impact on drug resistance. It is known that die-
tary fiber by increasing the abundance of Prevotella can im-
prove glucose metabolism [105]. Barley kernel supplement or
high fiber leads to increased Prevotella in gut microbiota, which
subsequently protects against Bacteroides-induced glucose in-
tolerance [105]. Glucose intolerance can affect tumor growth
and may facilitate drug resistance [106,107]. CRC with KRAS or
BRAF mutations often up-regulates GLUT1, a gene encoding glu-
cose transporter-1 involved in glycolysis, to reprogram cancer
energy metabolism [108]. In addition, increased glycolysis also
enables the diversion of glycolytic metabolites into many other
important biosynthetic pathways that are important for cell
proliferation [109,110]. Thus, controlling gut microbiota or their
metabolites may be a useful strategy in reducing drug resis-
tance. It is therefore critical to illustrate interactions between
gut microbiota, metabolism and the host in terms of CRC devel-
opment. Several metabolites from microbiota are known to be
involved in CRC carcinogenesis (Table 2).

Fatty acid

It is well known that diet plays an important role in the carcino-
genesis of CRC. While high intake of processed meat induces an
increased risk of CRC, it has been shown that increased intake
of total dietary fiber can decrease the risk [111]. What is the role
of dietary fiber in decreasing cancer risk? The discovery of
short-chain fatty acids (SCFAs) (Figure 3), a kind of fatty acid
synthesized by gut microbiota, could bridge the knowledge gap.
SCFAs, such as acetate, propionate and butyrate, are products of
the fermentation of dietary fiber and are synthesized by various
microorganisms (Bacteroides, Bifidobacterium, Clostridium,
Lactobacillus, Prevotella, Propionibacterium and others). Clinical
studies have revealed that different compositions of gut micro-
organisms and SCFA levels may be linked to colorectal cancer
mortality differentials [112–114]. Recently, SCFAs can change
the global chromatin states, suggesting that gene expression
change and transcriptional effects due to SCFAs play an

important role in CRC development [115]. Butyrate attracts most
attention, as it can act as a biomarker of cancer risk during can-
cer progression. It has been recognized that butyrate can modu-
late the apoptosis, proliferation and invasion of several cancer
cell lines [116]. Butyrate could attenuate human colon cancer
cell proliferation and promote apoptosis by reducing c-Myc and
regulating p57 levels [117]. It also can induce apoptosis in colo-
rectal cancer [118]. Various evidences demonstrate the inhibi-
tory action of butyrate on inflammation and carcinogenesis.
Major actions include inhibiting the production of proinflam-
matory mediators [119], influencing on NF-kB activation and
histone deacetylation [120], and down-regulating Wnt signaling,
a pathway that is well known, as it will be constitutively acti-
vated in CRC [121]. Butyrate could reinforce different compo-
nents of the colonic defense barrier and decrease oxidative

Table 2. Metabolites involved in developing colorectal cancer (CRC)

Metabolites Mechanism action Microorganism Signaling in CRC

Short-chain fatty acids (Butyrate) Cell differentiation promotion, causing apopto-
sis, inhibiting tumor growth [116]. Histone
deacetylase (HDAC) inhibitor. Binds GPR109A
regulates gene expression, inflammation and
autophagy

Bifidobacterium Decreased in levels;
having the anti-
tumor activities

Deoxycholic acid Activating b-catenin and epidermal growth fac-
tor receptor (EGFR) signaling [132]

Clostridium Increased in levels;
acting through
FXR, PXR, VDR

Lithocholic acid Promoting cancer invasion and MAPK signaling
[136]

Bacteroides fragilis Increased in levels

Ursodeoxycholic acid Inhibiting the activation of COX-2 [146], blocking
Ras activation [147]

Decreased in levels

Bacterial toxin (Fragilysin) Activating the b-catenin nuclear signaling [157] Bacteroides fragilis Increased in levels
Trimethylamine-N-oxide (TMAO) Use L-carnitine or choline to produce TMAO [18] Clostridium Increased in levels

Figure 3. Bacterial metabolites affect inflammation and gene expression.

Bacterial metabolites, including SCFAs, interact with GPR41, GPR43 and

GPR109A on host cells. Butyrate interacts with GPR109A, promoting the differen-

tiation of Treg and activating macrophages and CDþ T cells to induce IL10 and

TGFb, thereby blocking inflammation. Butyrate and propionate, after being

transported into host cells, cause HDAC inhibition, resulting in hyperacetylation

of histones. The HDAC inhibition leads to cell cycle arrest, apoptosis induction

and angiogenesis suppression. SCFAs, short-chain fatty acids; GPR, G protein-

coupled receptor; Treg, regulatory T cells; IL10, interleukin 10; TGFb, tumor

growth factor b; HDAC, histone deacetylase.
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stress [122]. Strategies, such as the consumption of probiotics
and prebiotics, have been designed to stimulate the
Bifidobacterium species and butyrate-producing bacterial species
for maintaining intestinal homeostasis, since the beneficial ef-
fects of SCFAs have been reported. It is likely that the identifica-
tion of mechanisms underlying butyrate may also be useful as a
therapeutic strategy in the future.

Secondary bile acids

A wealth of evidence has demonstrated that high-fat diets are
associated with increased risk of CRC [123]. Indeed, bile acid me-
tabolism from high-fat diets is critical for this risk. Bile acids,
kinds of steroid acids found in the bile, facilitate cholesterol
elimination in the liver and absorption of lipids in the intestine.
Primary bile acids such as cholic acid (CA) and chenodeoxy-
cholic acid (CDCA) are synthesized by the liver, mainly via the
classic pathway starting with cholesterol 7a hydroxylase
(CYP7A1) [124]. Most primary bile acids are involved in entero-
hepatic circulation, while there are still about 5% that escape
and enter the gut cavity, from which the secondary bile acids
such as deoxycholic acid (DCA) and lithocholic acid (LCA) are
produced by anaerobic microorganisms in the colon [125]. This
step is catalysed by an important bacterial enzyme, 7a–dehy-
droxylase [125]. Human gut microbiota carrying out 7a-dehy-
droxylation has been shown to belong to the genus Clostridium,
which are members of the Firmicutes. Insulin resistance has
been shown to promote the increase of CA and DCA [126].
Famesoid X Receptor (FXR), an important receptor of bile acids,
is not only involved in the regulation of lipid metabolism by
influencing the gut microbiota, but also promotes glycogen syn-
thesis and inhibits gluconeogenesis [127–129]. The FXR has been
implicated as a tumor suppressor. APC mutation leads to the si-
lencing of FXR expression as a consequence of increasing CpG
hypermethylation of the FXR gene, which in turn causes in-
creased expression of Myc and COX-2 [130]. The detailed mech-
anistic regulation remains to be further studied. However, there
is considerable evidence supporting the role for FXR in modulat-
ing CRC tumorigenesis [130,131]. These studies show that bile
acids have an important role in human body metabolism.
Taken together, it is evident that the gut microbiota induces the
carcinogenesis of CRC by affecting bile acids.

DCA, one metabolite of the gut microbiota, has been known
as a significant contributor to the development of CRC. There is
evidence indicating that DCA could modulate intracellular sig-
naling and gene expression [132]. DCA can induce cancer stem-
ness by regulating the muscarinic 3 receptor/Wnt signaling
pathway [133]. It can also induce the expression of the orphan
nuclear receptor Nur77 [134]. Elevated Nur77 is observed in a
majority of human colon tumors to promote tumor growth and
survival by serving as a mediator of the Wnt and AP1 signaling
pathway [134]. Kong and colleagues showed that DCA would
down-regulate the expression of miR-199a-5p in CRC [135]. miR-
199a-5p can target CAC1, which contributes to carcinogenesis in
patients with CRC, for degradation and functions as a tumor
suppressor in colorectal cancer. Thus, DCA contributes to CRC
tumorigenesis by decreasing miR-199a-5p expression and/or
increasing the expression of CAC1.

Another secondary bile acid produced by gut flora is LCA,
which is also proved to be an endogenous CRC promoter.
Farhana et al. found that both DCA and LCA could promote the
generation of cancer stem cells [133]. What is more, LCA can
also induce the expression of urokinase-type plasminogen acti-
vator receptor (uPAR), which can affect cancer invasion, block

inflammatory signals and promote the activation of MAPK sig-
naling pathways in human colon cancer cells [136]. In addition,
secondary bile acids have been found to modulate colon carci-
nogenesis, including the induction of cell proliferation by acti-
vating epidermal growth factor receptor (EGFR) pathway
signaling [133,137–139], inducing DNA damage, causing oxida-
tive or nitrosative stress [140,141], apoptosis, mutation, activa-
tion of protein kinase C pathway in epithelial cells [142],
regulating of membrane permeability and gene transcription
[140].

Interestingly, there is another bile acid, ursodeoxycholic acid
(UDCA), whose chemical structure is similar to DCA. Although
structurally similar, UDCA and DCA play different roles in the
pathological process of CRC [143]. While DCA acts to promote
the development of CRC, previous studies identified that UDCA
would suppress the tumorigenesis of CRC [144]. Thus, UDCA
may be used as a chemoprevention agent in the future. Khare et
al. demonstrate that UDCA inhibits the activation and expres-
sion of COX-2 in the azoxymethane (AOM) model [145–148].
COX-2 induces carcinogenesis in colon cells. In addition, UDCA
can prevent the effects that DCA exerted in the human colon
cancer cells, including DCA-induced extracellular signal-
regulated kinase (ERK) and Raf-1 kinase activity and the activa-
tion of EGFR [149]. Taken together, elucidating the mechanisms
involved in bile acids, especially UDCA, may help in identifying
a strategy for the prevention of colorectal cancer.

Trimethylamine-N-oxide (TMAO)

Trimethylamine (TMA), an intestinal microbial-dependent me-
tabolite of red meat and fat, reacts with flavin monooxygenase
(FMO), leading to the production of Trimethylamine-N-oxide
(TMAO), an intestinal microbial metabolite involved in CRC de-
velopment (Table 2). Omnivorous human subjects produce
more TMAO when compared with vegans or vegetarians, since
L-carnitine, a TMA in red meat, is processed by gut microbiota
to produce TMAO [150]. This explains, at least in part, why vege-
tarian diets lead to an overall lower incidence of CRC [151].

Research data have revealed that TMAO links to the risk of
cardiovascular diseases (CVDs) [150,152]. Wang et al. confirmed
the link in both mice and humans [153]. They performed metab-
olomics studies to identify specific metabolic profiles in plasma,
and showed that TMAO can act as a biomarker for increased
CVD risk. Dietary supplementation of mice with TMAO pro-
motes atherosclerosis [153]. Since CRC is similar to CVDs in risk
association with red meat or fat intakes, the link between CRC
and TMAO is possible. Indeed, study to detect the relationship
between plasma factors of choline metabolism and CRC risk
demonstrates that TMAO is the potential indicator of CRC [154].
Xu et al. performed a genome-wide analysis and concluded that
TMAO correlates with CRC development [155], although the ge-
netic pathway that links TMAO to CRC remains to be
characterized.

In addition, there are many CRC-related metabolites pro-
duced by gut microbiota, including the bacterial toxin. For ex-
ample, the fragilysin synthesized by Bacteroides fragilis could
hydrolyse the extracellular domain of E-cadherin and activate
the b-catenin nuclear signaling, which is closely related to Myc
induction and CRC development [156,157]. The role of other bac-
terial toxins warrants further investigation.

Also, butyrate and niacin are bacterial products as a result of
the fermentation of dietary fiber in the colon. They bind to
GPR109A (Niacr1), a receptor for butyrate and niacin, to sup-
press intestinal inflammation and carcinogenesis [158], thereby
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mediating the beneficial effects of gut microbiota. Basically,
Niacr1 signaling promotes anti-inflammatory activities in mac-
rophages and dendritic cells, and instigates induced differentia-
tion of Treg cells and IL-10-producing T cells [158]. Taken
together, investigating the metabolic role of microbiota in the
development of colon cancer can provide insight into how to
take care of the diet for preventing CRC.

Conclusions

Collectively, it has been shown that gut microbiota play a key
role in the tumorigenesis of CRC in different ways, especially
under the dysbiosis condition. The presence of certain bacteria
species has an impact on the risk and development of CRC. It is
then critical to investigate how the gut microbiome changes
during the development of CRC and whether these changes can
contribute to drug resistance or affect treatment efficacy.
Investigating gut microbiome changes during tumorigenesis
will provide promising insights into diagnostic tools, bio-
markers and therapeutic intervention strategies for CRC. It is
obvious that there are potentials for developing diagnostic tests
based on the analysis of gut microbiota, which will offer im-
proved accuracy, safety and non-intrusiveness and patient
compliance. Study of microbiome dysbiosis will facilitate clini-
cal application in CRC patient care.

Conflict of interest statement: none declared.
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