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Background: Esophageal squamous cell carcinoma (ESCC) is a gastrointestinal

malignancy with a poor prognosis. Although studies have shown metabolic

reprogramming to be linked to ESCC development, no prognostic metabolic biomarkers

or potential therapeutic metabolic targets have been identified.

Method: The present study investigated some circulating metabolites associated

with overall survival in 276 curatively resected ESCC patients using liquid

chromatography/mass spectrometry metabolomics and Kaplan-Meier analysis.

Tissue metabolomic analysis of 23-paired ESCC tissue samples was performed to

discover metabolic dysregulation in ESCC cancerous tissue. A method consisting of

support vector machine recursive feature elimination and LIMMA differential expression

analysis was utilized to select promising feature genes within transcriptomic data from

179-paired ESCC tissue samples. Joint pathway analysis with genes and metabolites

identified relevant metabolic pathways and targets for ESCC.

Results: Four metabolites, kynurenine, 1-myristoyl-glycero-3-phosphocholine

(LPC(14:0)sn-1), 2-piperidinone, and hippuric acid, were identified as prognostic

factors in the preoperative plasma from ESCC patients. A risk score consisting of

kynurenine and LPC(14:0)sn-1 significantly improved the prognostic performance of

the tumor-node-metastasis staging system and was able to stratify risk for ESCC.

Combined tissue metabolomic analysis and support vector machine recursive feature

elimination gene selection revealed dysregulated kynurenine pathway as an important

metabolic feature of ESCC, including accumulation of tryptophan, formylkynurenine,

and kynurenine, as well as up-regulated indoleamine 2,3-dioxygenase 1 in ESCC

cancerous tissue.
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Conclusions: This work identified for the first time four potential prognostic

circulating metabolites. In addition, kynurenine pathway metabolism was shown to be

up-regulated tryptophan-kynurenine metabolism in ESCC. Results not only provide a

metabolite-based risk score system for prognosis, but also improve the understanding

of the molecular basis of ESCC onset and progression, and as well as novel potential

therapeutic targets for ESCC.

Keywords: esophageal squamous cell carcinoma (ESCC), metabolomics, risk score, prognosis, diagnosis,

indoleamine 2, 3-dioxygenase 1 (IDO1), artificial intelligence

INTRODUCTION

Esophageal cancer (EC), a common gastrointestinal malignancy,
ranks as the sixth leading cause of cancer death worldwide
(1–3). EC is the fifth most common cancer and the fourth
leading cause of death in China (4). Esophageal squamous cell
carcinoma (ESCC) is the predominant histological subtype of
EC in China (5, 6). Surgical resection with lymphadenectomy
is the main treatment for ESCC (7). However, despite advances
in surgical management and multidisciplinary treatment of
ESCC, prognosis remains poor (8). Currently, tumor-node-
metastasis (TNM) staging system is used for ESCC prognosis,
even though staging components such as lymph node metastasis,
invasion depth, and differentiation are not obtained during
surgery but commonly determined postoperatively. Therefore,
there is an urgent need for non-invasive and convenient
biomarkers that may assist the clinical decision-making and
provide novel insights into tumorigenesis and biology of
ESCC (9).

Metabolic reprogramming is an oncogene-driven mechanism
that alters the metabolism of cancer cells. It supports tumor
proliferation and anabolic growth and is considered as an
essential hallmark of cancer (10). Metabolomics, in which
small-molecule metabolites are identified and quantified,
is the closest “omics” to phenotype (11). Compared to
other wide-ranging forms of analysis, metabolomics is more
sensitive to alterations of biochemical homeostasis, providing
comprehensive and direct information regarding cell status
and treatment response. Metabolomic analysis requires a little
sample material and preparation time (11). A growing body
of literature demonstrates that monitoring cellular metabolites
may not only provide promising biomarkers, but may also
help to identify involved biological processes (11–13). For
example, diagnostic and prognostic cancer biomarkers have been
recently investigated in lung, colorectal, and breast cancers by
different metabolomic approaches (14–16). Metabolomics, the
study of altered metabolites accompanying cancer-associated
metabolic reprogramming, is an emerging field that can
contribute to the identification of novel cancer biomarkers
and the discovery of potential drugs for prevention and
therapy (17).

Previous metabolomic studies have demonstrated various
metabolic alterations in patients with ESCC including
changes in amino acids, glucose, lipids, organic acids,
nucleotides, and fatty acids (18–21). Though many promising

serum/plasma metabolites have been found to be diagnostic
biomarkers for ESCC (18, 22, 23), no metabolite with
prognostic value has been identified, nor has a potential
metabolic therapeutic target been recognized. Gu et al.
found serum D-mannose to be a novel prognostic biomarker
for patients with esophageal adenocarcinoma (the main
histological subtype in the USA). Those results encouraged
us to investigate potential ESCC prognostic circulating
metabolites by a combination metabolomics and survival
analysis (24).

Despite the advantages of metabolomics, limitations for
clinical application need to be considered. Due to the dynamic
and sensitive nature of the metabolome, clinical metabolomic
studies in particular, must be designed based on a relatively
large sample size to reduce unwanted excessive variability,
and results validated by multiple models or sample types
(25). Thus, the aim of the present study was to discover
metabolic biomarkers and potential metabolic therapeutic
targets for ESCC with the following design improvements.
(1) Plasma metabolic profiling was conducted on a relatively
large sample size (n = 276). (2) Prognostic metabolites were
discovered by survival analysis. (3) Integrative bioinformatics
and metabolomics were used to discover metabolic features
and potential therapeutic target enzymes for ESCC (Figure 1).
Our results will assist clinicians in management of ESCC
patients, as well as contribute to an understanding of the
mechanisms underlying ESCC tumorigenesis, and possibly offer
novel therapeutic targets.

MATERIALS AND METHODS

Chemicals and Reagents
Acetonitrile (high-performance liquid chromatography (HPLC)
grade) and Methanol (HPLC) were purchased from Tedia (Ohio,
USA). Formic acid (HPLC) was purchased from Roe Scientific
Inc. (Delaware, USA). Distilled water was from Wahaha Group
Co., Ltd. (Hangzhou, China). L-kynurenine (purity > 98%),
L-tryptophan (purity > 98%), and hippuric acid (purity >

98%) were purchased from Sigma-Aldrich (Missouri, USA).
L-phenylalanine (purity > 98%), 2-piperidinone (purity >

98%), and LPC(14:0)sn-1 (purity > 98%) were purchased from
Aladdin Reagent Co. Ltd. (Shanghai, China). Rabbit anti-
indoleamine 2, 3-dioxygenase 1 (IDO1) polyclonal antibody
(13268-1-AP) was purchased from Proteintech Group, Inc.
(Hubei, China).
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FIGURE 1 | Flowchart of this study.

Study Patients and Samples
Group 1: the preoperative fasting plasma samples, using
the di-potassium salt of ethylenediaminetetraacetic acid as
anticoagulant, were collected from 276 patients recruited after
histopathologic confirmation of ESCC and radical resection
at Zhejiang Cancer Hospital (Hangzhou, China), from May
2010 to December 2012. Clinicopathological features and
preoperative biochemical parameters were obtained. Participants
were followed until December 2017, evaluating overall survival
(OS) from surgery to the date of death or of the last follow-
up visit. Group 2: a total of 23-pairs of matched cancerous
and normal tissue samples were used for tissue metabolomic
study. Normal tissues were collected from the distal edge of the
resected tissues, at more than 2 cm from the solid tumor border.
Group 3: a total of 31-pairs of matched cancerous and normal
tissue samples were assessed by immunohistochemistry (IHC).
All samples collected in this study were stored at −80◦C until
analysis. Demographic and clinicopathologic characteristics of
the patients are reported in Table 1.

The study protocol was performed in accordance with
the declaration of Helsinki, approved by the Research Ethics
Committee of Zhejiang Cancer Hospital, China, with written
informed consent obtained from all individuals.

Plasma-Based Metabolomic Analysis
Sample Preparation
Plasma samples were from Group1 (Table 1). Plasma samples
(50 µL) were thawed on ice and immediately mixed with 200
µL of ice-cold acetonitrile. After mixing by vortex for 1min,
the mixture was centrifuged at 16,200 g for 15min at 4◦C. The
supernatant (150 µL) was transferred into a fresh tube and
lyophilized. The residues were resuspended by adding 80 µL
of 25% acetonitrile in water and mixed by vortex for 1min.
After centrifugation at 16,200 g for 15min at 4◦C, 60 µL of the
supernatant was transferred into the sample bottle. A supernatant
aliquot of 10 µL was used for liquid chromatography-mass
spectrometry (LC-MS) analysis.

Quality control (QC) samples were prepared by pooling
the re-dissolved sample with an equal amount (15 µL) and
periodically analyzed throughout the complete analytical run to
monitor signal drift.

LC-MS Analysis
LC-MS analysis was conducted as previously described
(26). The Ultimate 3000 UHPLC system (Dionex, Idstein,
Germany), linked to a Q Exactive orbitrap mass Spectrometer
(Thermo Fisher Scientific, Bremen, Germany), was used.
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TABLE 1 | Demographic and clinicopathologic characteristics of study patients.

Parametersa Group 1b Group 2b Group 3b

n = 276 n = 23 (paired) n = 31 (paired)

Sex

Male 232 19 3

Female 44 4 28

Age

Mean age, yr 60.8 ± 7.1 59.7 ± 7.3 62.0 ± 6.7

BMI

Median(range) 22 (16-30) 22 (17-27) 22 (16-28)

Smoking habit

No 79 8 10

Yes 197 15 21

Alcohol consumption

No 88 10 10

Yes 188 13 21

Tumor thrombus

No 191 16 20

Yes 85 7 11

Neural invasion

No 153 16 21

Yes 123 7 10

Tumor grade

Well 15 1 3

Moderately 186 14 16

Poorly 75 8 12

N stage

0 101 11 12

1 99 8 13

2 49 3 5

3 27 1 1

T stage

1 12 3 4

2 49 3 3

3 213 17 24

4 2 - -

TNM stage

1 23 4 4

2 85 7 9

3 144 11 17

4 24 1 1

aN stage, T stage, and TNM stage were determined according to the American Joint

Committee on Cancer, 8th edition. bGroup 1: Preoperative plasma samples from 276

patients with ESCC were used for plasma metabolomics. Group 2: 23-pairs of matched

cancerous and normal tissue samples were used for tissue metabolomic study. Group

3: 31-pairs of matched cancerous and normal tissue samples were assessed by

IHC analysis.

Separation was performed on an ACQUITY UPLC HSS T3
column (2.1mm × 100mm × 1.8µm, Waters, MA, USA)
at 35◦C, with a mobile phase consisting of 0.1% formic acid
and acetonitrile. The gradient is reported in Table S1. Full
mass scan mode was used for all the samples and data-
dependent MS/MS acquisition mode was utilized for the

identification of QC samples. Detailed parameters are listed
in Table S2.

Metabolomic Analysis
Raw data were converted to mzXML format using
MSconvert program (http://proteowizard.sourceforge.net/
download.html). The R package XCMS (version 3.3.2) was
utilized for data preprocessing, including retention time
alignment, peak detection, and peak matching. R packageMetaX
(version 1.4.16) was used to remove peaks with more than 20% of
zero values in all samples or the peaks with coefficient of variation
values >30% in QC. Peaks were corrected with the QC-robust
LOESS signal correction algorithm. All the detected ions in each
sample were normalized to the sum of the peak area defined
as 100,000 (27). Thermo Scientific Compound Discoverer 3.0
software (Thermo Fisher Scientific, USA) combined with the
METLIN (http://metlin.scripps.edu) and the HMDB (http://
www.hmdb.ca/) databases were used for metabolite annotation
by comparison of MS fragmentation information. Standard
substances were used to verify prognostic metabolites.

Survival Analysis With Regard to Circulating

Metabolites
Once relative concentrations of circulating metabolites were
obtained by metabolomic analysis, Kaplan-Meier curves were
performed to identify associations between metabolite levels
and OS, with median split and log-rank test. Cox proportional
hazards regression test was also performed for each metabolite
to calculate the hazard ratio (HR) value. Factors with P-
values < 0.05 were considered to have prognostic significance.
Multivariate Cox proportional hazards regression was analyzed
to estimate independent and significantly prognostic circulating
metabolites. With the independently prognostic metabolites,
a risk score was derived by summation of each metabolite
level multiplying their corresponding coefficient according to Li
et al. (28).

Tissue-Based Metabolomic Analysis
Sample Preparation and LC-MS Analysis
Tissue samples were from Group 2 (Table 1). Approximately
20mg of tissue was transferred into a 1.5mL tube with immediate
addition of 400 µL of ice-cold methanol and two steel balls
(diameter: 2mm). Homogenization was performed with a
Tissuelyser (2min, 30Hz). After centrifugation at 16,200 g for
15min at 4◦C, 200 µL of the supernatant was transferred into a
fresh tube, to which was added with 200 µL of water followed
by lyophilization. Reconstitution, analysis protocols as well as
QC sample preparation were conducted by the same methods
used for plasma-based metabolomics. The LC-MS analysis and
metabolomic analysis protocols were the same as that for plasma-
based metabolomics.

Metabolomic Analysis
Relative concentrations of ion features were obtained from
metabolomic data with the same protocol as that for plasma-
based metabolomics. Unsupervised principal component
analysis (PCA) was conducted to assess the trends for all
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samples. Supervised partial least squares discriminant analysis
(PLS-DA) was performed to identify the most discriminating
ion features between ESCC cancerous tissues and non-cancerous
counterparts based on variable importance in projection (VIP)
values. Finally, ions with VIP> 1, Benjamini–Hochberg adjusted
p-value (FDR) < 0.05, and |log2(Fold change)| > 0.585 were
defined as differential ion features. Metabolite annotation
was performed using the above method. Receiver operating
characteristic (ROC) curve analysis was used to evaluate the
diagnostic significance of metabolites, in order to distinguish
ESCC cancerous and non-cancerous tissues.

Bioinformatic Analysis
The ESCC microarray dataset (GSE53625) was generated
using the Agilent-038314 CBC Homo sapiens lncRNA+mRNA
microarray V2.0 (http://www.genomics.agilent.com/) deposited
in the Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.
nih.gov/geo/) and processed as described previously (9). Briefly,
probe re-annotation was performed based on the previous study
(29). For genes with multiple probes, mean expression was
calculated and used. LIMMA (R package version 3.38.3) was
used to analyze differentially expressed genes (DEGs) and genes
with |log2(Fold change)| > 1 and FDR < 0.05 were considered
to be DEGs. The differential DEGs were further ranked by
support vector machine recursive feature elimination (SVM-
RFE) algorithm proposed according the Huang et al. (30).
Briefly, the SVM-RFE computes the ranking weights for all
DEGs and sorts the DEGs according to weight vectors as the
classification basis. SVM-RFE conducted an iteration process
of the backward removal of DEGs as follows: (1) use the
current dataset to train the classifier; (2) calculate the ranking
weights for all DEGs; (3) eliminate the DEG with the smallest
weight. The above iteration process repeats until there is only
one DEG remained in the dataset, and the implementation
result provides a list of DEGs in the descending order of
weight. Top 500 genes were selected as features for further
analysis. Additionally, the metabolic feature genes were obtained
through searching on KEGG (31). Then, pathway analysis
was conducted by searching genes and metabolites together
by KEGGMapper Search (https://www.genome.jp/kegg/mapper.
html). The metabolism pathway/module for both hits from gene
and metabolite was considered to be of potential importance.

IHC Analysis
Tissue sections (4µm thick) were dewaxed and rehydrated
through graded alcohols. IHC staining with IDO1 antibodies
was performed according to the manufacturer’s instructions. The
results were analyzed using a semiquantitative method (32), with
the immunohistochemical score calculated by multiplying the
percentage of positive cells by staining intensity.

Statistical Analysis
Statistical analysis was performed using SPSS 16.0 software
(USA) and R software (http://www.r-project.org/). Normality of
the variables was tested by Shapiro-Wilk normality test. Unpaired
Wilcoxon rank-sum test, and Kruskal-Wallis test were used
for comparison of two or more than two groups of data. The

correlation between circulating metabolites and other variables
was calculated by Kendall rank or Spearman’s rank correlation.
ROC analysis and ROC comparisons were performed by R
package pROC (version 1.15.3). A two-tailed p value < 0.05 was
considered statistically significant.

RESULTS

Identification of Circulating Prognostic
Metabolites for ESCC
For plasma-based metabolomic profiling study (Group 1), a
total of 4,121 metabolic features in electrospray ionization
positive mode and 3,046 in electrospray ionization negative
mode were extracted from the metabolomic data. A total of 129
ion features were annotated with metabolites (Tables S3, S4).
Survival analysis aided identification of four metabolites with
p values < 0.05: kynurenine, LPC(14:0)sn-1, 2-piperidinone,
and hippuric acid. Higher plasma levels of kynurenine,
2-piperidinone, and hippuric acid correlated with shorter
survival, while higher levels of LPC(14:0)sn-1 correlated
with longer survival (Figures 2A–D, Table 2). Moreover,
Multivariate Cox regression analysis of the four metabolites
indicated that kynurenine and LPC(14:0)sn-1 to be independent
factors suitable for metabolite-based risk score calculation
(Table 2).

These four prognostic metabolites were compared with
chromatograms and spectra of reference substances. A
representative identification of kynurenine is shown in
Figure S1, while the identification of the other three metabolites
is illustrated in Figure S2.

In order to clarify the potential influence of demographic
factors on these prognostic circulating metabolites, multivariate
Cox regression was performed for each of the four metabolites
with age, sex, smoking habit, and alcohol consumption.
Result demonstrated that kynurenine (HR: 1.37, p = 0.040),
LPC(14:0)sn-1 (HR: 0.618, p = 0.00229), hippuric acid (HR:
1.423, p = 0.021) were independent prognostic factors,
while 2-piperidinone (HR: 1.35, p = 0.054) was not an
independent factor.

Potential Relationships Among Prognostic
Metabolites, Clinicopathologic Features,
and Biochemical Parameters
Analysis of the four circulating metabolites indicated that
kynurenine was significantly positively correlated with the
other three metabolites, while 2-piperidinone positively
correlated with hippuric acid (Table S5). The four metabolites
were assessed for correlations with clinicopathologic features
including sex, age, body mass index (BMI), smoking habit,
alcohol consumption, tumor grade, tumor thrombus, neural
invasion, T stage, N stage, and TNM stage. The following
biochemical parameters were also included in the correlation
analysis: glycyl proline dipeptidyl aminopeptidase (GPDA),
alanine aminotransferase (ALT), gamma-glutamyltransferase
(GGT), prealbumin (PA), albumin (ALB), triglyceride (TG),
total cholesterol (TC), low density lipoprotein cholesterol, high
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FIGURE 2 | Kaplan-Meier survival curves for ESCC patients stratified by the four circulating metabolites by a median-split. (A) Kynurenine; (B) LPC(14:0)sn-1; (C)

2-Piperidinone; (D) Hippuric acid. Log-rank test was used, p < 0.05 was considered significant.

TABLE 2 | Prognostic circulating metabolites in ESCC plasma.

Metabolites Features in LC/MS KMd Cox regressione

m/za RT (min)b Ionc p value p

value

HR (95%CI)

2-Piperidinone 100.07629 3.9 Positive 0.035 0.2 1.22 (0.90-1.67)

Kynurenine 209.09222 3.9 Positive 0.029 0.035 1.40 (1.03-1.91)

LPC(14:0)sn-1 468.30879 8.9 Positive 0.0026 0.0019 0.61 (0.45-0.84)

Hippuric acid 178.05156 5.2 Negative 0.02 0.11 1.29 (0.95-1.76)

am/z, mass/charge number; bRT, retention time; cmass spectrometer scan types; dKM,

Kaplan-Meier; eCox regression analysis of 2-piperidinone, kynurenine, LPC(14:0)sn-1 and

hippuric acid, and HR, hazard ratio.

density lipoprotein cholesterol. The results of this analysis
showed that: (1) Kynurenine levels were positively correlated
with N stage and GGT levels, while a negative correlation was
found with tumor grade and ALB levels. (2) LPC(14:0)sn-1
levels were positively correlated with GPDA, ALT, PA, and TG
levels, and negatively correlated with age. (3) 2-piperidinone
levels were positively correlated with GGT levels, BMI, and
alcohol consumption, while it was negatively correlated with TC
levels. (4) Hippuric acid levels were positively correlated with
GPDA levels and negatively correlated with GGT, ALT, and PA
levels (Table S6).

Metabolite-Based Risk Score Improves
Prognostic Performance
Cox proportional hazards regression analysis showed kynurenine
and LPC(14:0)sn-1 regression coefficients of 0.41 and −0.52,
respectively. A risk score was attributed to each patient by
adding the plasma level of each metabolite multiplied by the
corresponding regression coefficient: risk score = (0.409 × level
of kynurenine −0.522 × level of LPC (14:0)sn-1) (28). The risk
score of all cases was calculated according to this formula and
the patients were stratified into low-risk and high-risk groups,
by applying the median-split method. Risk score efficiently
stratified ESCC risk (Figure S3) independent of TNM or N stage
(Table S7).

Area under the curve (AUC) of ROC curves for 5-year
survival status prediction was calculated and compared using
the method established by DeLong et al. (33). When combined
with the risk score staging classification, the prediction accuracy
of the conventional TNM stage and N stage was significantly
improved from 0.650 (95% confidence interval (CI): 0.583-
0.718) to 0.692 (95% CI: 0.628-0.756; p = 0.015), and from
0.665 (95% CI: 0.599-0.731) to 0.694 (95%CI: 0.630-0.750; p =

0.042), respectively (Figures 3A,B). Moreover, log-rank analysis
of Kaplan-Meier curves related to the metabolite-based risk
score groups demonstrated that the calculated risk score was
able to significantly improve the prediction of clinical outcome
in patients with ESCC, classified according to the stages TNM
II (p = 0.028), TNM III (p = 0.008), N1 (p = 0.024), and
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FIGURE 3 | Metabolite-based risk score improves prognostic performance for ESCC patients. (A) Combination of risk score with TNM stage (B), or with N stage (G)

significantly improved the predictive accuracy of 5-year survival rate. ESCC cases classified according to TNM II (C), TNM III (D), N1 (F), and N2 (G) stages were

significantly stratified by risk score. Cases from N0 (E) showed a trend for stratification by risk score. DeLong test for AUC in ROC curves and log-rank test for

Kaplan-Meier survival curves were assessed, p < 0.05 was considered significant.

N2 (p = 0.022; Figures 3C,D,F,G), while for N0 classification
a statistically non-significant (p = 0.086) trend to stratification
based on the risk score was observed (Figure 3E).

Tissue-Based Metabolomics Reveals
Altered Kynurenine Pathway in ESCC
Both PCA and PLS-DA analysis with the extracted 4,856 ion
features showed a significant metabolic shift between ESCC
cancerous and normal tissues (Figures 4A,B), with a total
of 1,697 differential ion features were selected (Figure 4C).
There were 26 differential metabolites were annotated
that could significantly separate the cancerous and normal

tissue samples (Figure 4D). However, analysis identified only
kynurenine and LPC(14:0)sn-1 of the four prognostic circulating
metabolites. Significantly higher levels of kynurenine and
LPC(14:0)sn-1 were observed in cancerous tissues compared
with normal counterparts (Figures 4E,F). Interestingly, when
other molecules involved in tryptophan-kynurenine metabolism
were investigated, the levels of tryptophan and formylkynurenine
were also found to be higher in cancerous tissues (Figures 4G,H).
Although hippuric acid was not detected by tissue metabolomic
analysis, phenylalanine, a potential parent metabolite of hippuric
acid, was found at higher levels in cancerous tissues (Figure 4I).
ROC curve analysis showed that tissue formylkynurenine
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FIGURE 4 | Changes in metabolites between ESCC cancerous (CT) and normal tissues (NT). (A) PCA and (B) PLS-DA analysis with all ion features. (C) Differential ion

features were defined as |log2(Fold change)| > 0.585 and FDR < 0.05. (D) Heatmap analysis with 26 differential metabolites. Accumulation of kynurenine (E),

LPC(14:0)sn-1 (F), tryptophan (G), formylkynurenine (H), and phenylalanine (I) was observed in ESCC cancerous tissues compared to normal equivalents. ROC

curves of these metabolites showed the potential diagnostic value for ESCC (J).
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levels had the best diagnostic performance (max AUCROC:
0.957), followed by kynurenine (AUCROC:0.947), LPC(14:0)sn-
1 (AUCROC: 0.875), phenylalanine (AUCROC: 0.856), and
tryptophan (AUCROC: 0.762) (Figure 4J). Taken together, tissue-
based metabolomics inferred altered kynurenine pathway to be
the most significant feature of ESCC.

IDO1 Up-Regulation in ESCC
After LIMMA differential expression analysis, a total of 2,856
DEGs were screened (Figure 5A). After SVM-RFE ranking,
the top 500 genes were then selected as feature genes,
including 46 metabolic genes (Figure 5B). The 46 metabolic
feature genes were able to separate the cancerous and normal
tissues (Figure 5C). Pathway analysis of both the 46 DEGs
and the above 26 metabolites identified the top 10 metabolic
pathways, in which fatty acid degradation ranked first in
total hits/gene hits, and tryptophan metabolism had the
most metabolite hits (Figure 5D). By module analysis, two
potential modules, kynurenine pathway (metabolite: tryptophan,
formylkynurenine, kynurenine, and gene: IDO1) and pyrimidine
biosynthesis (metabolite: uridine monophosphate (UMP) and
uridine diphosphate (UDP); gene: CMPK2), were identified by
criteria (1) with both gene and metabolite hits, and (2) direct
interaction between gene and metabolite (Figure 5E). Based
on these results: (1) Kynurenine in plasma was associated
with OS of patients with ESCC. (2) Significant accumulation
of tryptophan, kynurenine, and formlykynurenine was found
in ESCC cancerous tissue. (3) Upregulation of IDO1 mRNA,
which was the 209th feature in the 2856 DEGs by SVM-RFE
ranking, and the 18th one in the 46 metabolic feature genes,
was found in cancerous compared to normal tissues with a high
level of statistical significance (Figure 5F). Consistent with these
observations, IHC analysis demonstrated significantly higher
levels of IDO1 in cancerous tissues compared to paired normal
counterparts (Figures 5G,H). Collectively, kynurenine pathway
is an important metabolic feature of ESCC, with IDO1 as a
potential therapeutic target.

DISCUSSION

The present study revealed that circulating kynurenine,
LPC(14:0)sn-1, 2-piperidinone, and hippuric acid were
prognostic factors for ESCC. A kynurenine and LPC(14:0)sn-1
based risk score significantly improved the prediction accuracy
of the current TNM staging system in ESCC. Up-regulated
tryptophan pathway metabolism, including the accumulation
of tryptophan, formylkynurenine, and kynurenine, as well as
increased expression of IDO1, were identified as the most
significant metabolic features of ESCC.

Circulating-metabolite-based prognostic models have
previously been shown to have its promising clinical applications
in several cancers, such as glioblastoma (34), non-small cell lung
cancer (35), and esophageal adenocarcinoma (24). However,
the previous metabolomic studies of ESCC solely focused on
the diagnostic value of the metabolites and rarely assessed their
prognostic significance. This study is the first to investigate
the prognostic value of plasma metabolites in ESCC and

found several metabolic biomarkers as well as established
a metabolite-based risk score for ESCC. For this study, a
combination of circulating metabolomic profiling and survival
analysis was used to develop a prognostic approach for ESCC,
which identified the kynurenine and LPC(14:0)sn-1 based risk
score to have prognostic significance for ESCC. By use of the
risk score, ESCC patients were stratified by risk within the
same TNM stage (TNM II and III) or the same N stage (N1
and N2). As such, the risk score may assist clinical decision-
making, leading to a better prognosis for ESCC patients. It
is important to note that due to the limited sample size of
TNM subgroups, TNM I (n =23) and TNM IV (n = 24),
it was unavailable to evaluate its risk stratification for these
subgroups. Further, for N0 classification, a trend based on risk
score was observed that was not statistically significant (p =

0.086) (n = 101). Future analysis with larger cohorts is essential
to determine the clinical significance of the risk score for
these subgroups.

Kynurenine was the most interesting circulating biomarker
identified by this study. It is one of the main metabolites
of tryptophan metabolism, which is related to immune
homeostasis, and is correlated with cancer initiation and
development (12). Previously, Cheng et al. found the ratio of
kynurenine/tryptophan in plasm to be significantly increased in
ESCC, and correlated with lymph node metastasis. However,
the relationship between kynurenine levels and their survival
outcome were not considered (18). To the best of our knowledge,
our study is the first to identify circulating kynurenine as a
prognostic factor for ESCC, in which higher levels of kynurenine
were correlated with poorer OS, and higher N stage and
tumor grade levels. Our study and the previous study by
Cheng at al. collectively indicate that circulating kynurenine is
a promising unfavorable prognostic biomarker for ESCC. The
negative correlation of kynurenine levels with survival outcomes
is consistent with the immune suppressor role of kynurenine in
cancers, in which many cancers enhance kynurenine levels by
up-regulating IDOs activity, resulting in escape from immune
clearance (36).

Our tissue-based metabolomics revealed up-regulated
kynurenine pathway is a significant feature of ESCC,
including the accumulation of kynurenine, tryptophan, and
formylkynurenine. Significant accumulation of tryptophan and
kynurenine in ESCC was reported previously by Tokunaga et al.
(23) and Zhang et al. (22), respectively, with this study the first
to identify up-regulated formylkynurenine in ESCC. The fold
change of formylkynurenine in ESCC was 11.9 and displayed the
best diagnostic performance in this study. Formylkynurenine
is the direct metabolite of tryptophan mediated by IDO, with
increased accumulation of formylkynurenine resulting in the
production of the immune suppressive metabolite, kynurenine
(fold change of 5.7), in ESCC cancer tissue. Therefore, up-
regulated kynurenine pathway not only explained (at least
partially) the increased serum kynurenine levels in ESCC
patients reported by Cheng et al. (18), but also implied an
important role for kynurenine in ESCC progression. In addition
to the metabolite level, our bioinformatics analysis and IHC
staining analysis demonstrated the key rate-limiting enzyme,
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FIGURE 5 | IDO1 expression in ESCC. (A) Volcano plot of 2856 DEGs with |log2(Fold change)| > 1 and FDR < 0.05 for transcriptomic data from 179 paired ESCC

tissue samples from GEO microarray data (GSE53625), red dot: up-regulated gene, blue dot: down-regulated gene. (B) Schematic diagram for feature metabolic

gene selection process. (C) Heatmap with 46 feature metabolic genes, NT: normal tissue, CT: cancerous tissue. (D) Top 10 metabolism pathways with both hits for

gene and metabolite (cpd). (E) Significantly altered metabolic modules with both hits for gene and metabolite, UMP, uridine monophosphate; UDP, uridine

diphosphate. (F) mRNA expression of IDO1 was significantly increased in ESCC cancerous tissues compared to normal counterparts. (G) IHC analysis of IDO1 protein

expression showing significant up-regulation in cancerous tissues compared to normal counterparts. (H) Representative IHC staining of IDO1 in cancerous and

matched equivalents, Magnification: 400×.
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IDO1, to be significantly up-regulated in ESCC, which could
be a potential therapeutic target for ESCC. Recently, Liu et al.
found that kynurenine could up-regulate PD-1 expression on
tumor infiltrating T cells through the IDO-kynurenine-AhR
pathway (37). The significant accumulation of kynurenine in
ESCC suggests that IDO1 inhibitors in combination with other
immunotherapies (such as anti-PD-1/anti-PD-L1) may be useful
as future therapeutics for ESCC.

LPC(14:0)sn-1, another prognostic circulating metabolite, is a
form of lysophosphatidylcholine, in which a phosphorylcholine
moiety occupies a glycerol substitution site. Since there are
co-existence of LPC(14:0)sn-1 with myristic acid at the C-1
position (sn-1) and LPC(14:0)sn-2 with myristic acid at C-2
position (sn-2) in plasma and these two LPC(14:0)s have the same
molecular weight and similar retention time by chromatography,
it is crucial to identify LPC(14:0)sn-1 with standard compound.
Xu et al. previously reported the down-regulation of plasma
LPC(14:0) in ESCC, but they did not clarify the exact position
of myristic acid in LPC(14:0) since the study only employed
database searches. We believe our study is the first to identify
LPC(14:0)sn-1 as a potential prognostic biomarker for ESCC.
In the previous study by Xu et al. LPC(14:0) was shown to
be a diagnostic plasma metabolite for ESCC. Our study for
the first time identified the prognostic potential of circulating
LPC(14:0)sn-1 for ESCC in that patients with higher levels had
longer OS. Our tissue-based metabolomic analysis detected a
significant accumulation of LPC(14:0)sn-1 in cancerous tissue,
indicating up-regulated lipidmetabolism in ESCC (at least within
the lysophosphatidylcholine metabolism pathway). Kamphorst
et al. demonstrated cancer cells to directly uptake and use
lipids from circulation by macropinocytosis (38, 39). We
propose that alterations in circulating LPC(14:0)sn-1 might be
associated with enhanced lipid consumption by cancer cells.
However, the reason why ESCC patients with lower LPC(14:0)sn-
1 have poorer OS is unknown, and further study is needed
to explore the potential biological functions of LPC(14:0)sn-1
in ESCC.

2-piperidinone and hippuric acid are the other two prognostic
circulating metabolites only detected in plasma in this study. 2-
piperidinone was previously found to be decreased in plasma
of patients with ovarian cancer (40), but first identified
in ESCC. Hippuric acid is formed by the conjugation of
benzoic acid with glycine and it is an end-product of
phenylalanine metabolism (41). Since increased uptake of
phenylalanine was observed in ESCC cancerous tissues, a
potential relationship between phenylalanine metabolism and
changes in circulating hippuric acid can be postulated. However,
neither 2-piperidinone nor hippuric acid were detected by
tissue analysis, which suggests that the two metabolites may
not have originated from cancer cells. The detailed origin
and biological activity of these two metabolites requires
further investigation.

Nevertheless, limitations of this study must be considered.
First, the biological activity of the four circulating prognostic
metabolites, in particular kynurenine and LPC(14:0)sn-1, has not
been clarified. Additionally, there are limitations in metabolite
annotation and identification, which is a common problem for

all metabolomic studies. Future efforts are required to resolve this
issue for the entire field.

In conclusion, after identification of potential candidates
for circulating prognostic metabolites, and validation by risk
score based on plasma levels and correlation coefficients,
kynurenine and LPC(14:0)sn-1 were identified as two circulating
metabolite biomarkers with prognostic potential. The identified
risk score significantly improved prediction accuracy of
the TNM staging system and allowed better stratification
of ESCC clinical risk. This study demonstrated kynurenine
pathway dysregulation in ESCC, which was accompanied by
upregulation of IDO1. These observations provide novel insights
into the molecular mechanisms of ESCC tumorigenesis
and the possible identification of therapeutic targets
for ECSS.
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