
����������
�������

Citation: Guo, K.; Ye, H.; Chen, H.;

Gao, X. A New Method for Absolute

Pose Estimation with Unknown Focal

Length and Radial Distortion. Sensors

2022, 22, 1841. https://doi.org/

10.3390/s22051841

Academic Editor: Liang Zhang

Received: 4 February 2022

Accepted: 24 February 2022

Published: 25 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A New Method for Absolute Pose Estimation with Unknown
Focal Length and Radial Distortion
Kai Guo * , Hu Ye, Honglin Chen and Xin Gao

Northwest Institute of Nuclear Technology, Xi’an 710024, China; yxc0228@163.com (H.Y.);
chenhhll15@163.com (H.C.); glonor@163.com (X.G.)
* Correspondence: guokai@mail.nwpu.edu.cn; Tel.: +86-185-102-37517

Abstract: Estimating the absolute pose of a camera is one of the key steps for computer vision. In
some cases, especially when using a wide-angle or zoom lens, the focal length and radial distortion
also need to be considered. Therefore, in this paper, an efficient and robust method for a single
solution is proposed to estimate the absolute pose for a camera with unknown focal length and radial
distortion, using three 2D–3D point correspondences and known camera position. The problem is
decomposed into two sub-problems, which makes the estimation simpler and more efficient. The
first sub-problem is to estimate the focal length and radial distortion. An important geometric
characteristic of radial distortion, that the orientation of the 2D image point with respect to the center
of distortion (i.e., principal point in this paper) under radial distortion is unchanged, is used to solve
this sub-problem. The focal length and up to four-order radial distortion can be determined with
this geometric characteristic, and it can be applied to multiple distortion models. The values with
no radial distortion are used as the initial values, which are close to the global optimal solutions.
Then, the sub-problem can be efficiently and accurately solved with the initial values. The second
sub-problem is to determine the absolute pose with geometric linear constraints. After estimating the
focal length and radial distortion, the undistorted image can be obtained, and then the absolute pose
can be efficiently determined from the point correspondences and known camera position using the
undistorted image. Experimental results indicate this method’s accuracy and numerical stability for
pose estimation with unknown focal length and radial distortion in synthetic data and real images.

Keywords: radial distortion; absolute pose; unknown focal length; multiple radial distortion models;
single solution

1. Introduction

Retrieving the absolute pose of a camera from n 2D–3D point correspondences is
one of the key steps in computer vision and SfM (structure from motion) [1–6]. Many
approaches have been proposed to solve this problem, which are named PnP solvers [7–13]
when the intrinsic camera parameters are all known as prior knowledge. The difference in
the number of point correspondences makes both the ideas and the number of estimated
parameters of PnP solvers different. When there is no prior knowledge except the intrinsic
camera parameters, three 2D–3D point correspondences is the minimal subset, and these
are called P3P solvers [14–16] and they can solve all six degrees of freedom of the camera
pose. In practical applications, some intrinsic camera parameters may be unknown, and
accordingly, many methods are proposed to work with these cases. When the focal length
is unknown, a minimum of four 2D–3D point correspondences is required to estimate the
absolute pose, and these corresponding methods are called P4Pf solvers [17]. Theoretically,
one 2D–3D point correspondence can give two constraints, and hence eight unknown
parameters can be estimated with four 2D–3D point correspondences. This means that
another radial distortion parameter can be determined when the focal length is solved.
These corresponding methods are called P4Pfr solvers [18–21]. If there are five 2D–3D
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point correspondences, up to ten unknown parameters can be estimated. Hence, we
can solve three more unknown parameters besides the camera pose and focal length.
The three other unknown parameters may be three radial distortion coefficients, and the
corresponding methods are called P5Pfr solvers [9,17]. The three unknown parameters may
alternatively be the radial distortion coefficient and two parameters of the principal point.
The corresponding methods are called P5Pfrp solvers [17]. If there are at least six 2D–3D
point correspondences, all the intrinsic and extrinsic camera parameters can be estimated
linearly, which is known as Direct Linear Transform (DLT) [17,22].

All the above methods work in cases wherein the six camera pose parameters are all
unknown. When some camera pose parameters are known in advance, which allows us to
work with fewer degrees of extrinsic camera parameters, the problem can be simplified,
and more unknown parameters can be estimated with the same number of 2D–3D point
correspondences compared to the methods mentioned above. With the development of
technology, position and orientation devices are becoming cheaper, smaller and more
accurate, such as in the case of RTK and IMUs [12,23–25]. Hence, mounting these devices
on cameras is becoming increasingly popular in real scenarios. When the vertical direction
of the camera is measured by IMUs, two orientation parameters can be obtained, and many
corresponding methods are then proposed to estimate the camera pose or intrinsic camera
parameters using knowledge of the vertical direction [26–28].

The existing methods can be divided into two categories for camera pose estimation.
The first category estimates the relative pose from multiple views or two cameras [6,29–34].
The second category estimates the absolute pose from a single image [5,15,18–20,35]. In this
paper, we focus on the latter. To the best of our knowledge, most existing methods just use
the orientation parameters of the camera pose, taken as prior knowledge [12,23–28], and few
methods use the position parameters as prior knowledge [36,37], which has prompted us
to use the camera position for pose and partial intrinsic parameter estimation in this paper.
Hence, to estimate the camera pose, this paper focuses on a case wherein the camera position
is known. In addition, some of the above methods use an ideal pinhole camera without
distortion, and so we now need to estimate some intrinsic parameters, i.e., focal length and
radial distortion. This scenario usually arises when using a zoom lens with heavy distortion.
In practical applications, the focal length is often unknown (e.g., zoom lens or fisheye lens).
In missile range testing, for example, attitude measurement based on fixed cameras with
zoom and short focal lenses is an important test [37], and hence the radial distortion, focal
length and pose need to be estimated. In addition, with the increasing prominence of the
social security problem, visual monitoring cameras (VMC) are used widely. In general, the
position of the VMC is fixed, and the lens orientation can be changed. In these cases, the
focal length can be changed online, and a large field of view is required, which leads to
heavy radial distortion. If heavy distortion occurs, the camera’s pose cannot be estimated
directly because the 2D–3D point correspondences are invalid. In this case, radial distortion
must be taken into account [38,39]. There are many radial distortion models, such as the
traditional model, the division model, and others [40–43]. The traditional model was first
proposed by Brown in 1971 [44], and the division model was first proposed by Fitzgibbon in
2001 [34]. In the existing literature, the traditional model [45–48] and division model [49,50]
are widely used, and the division model is the most popular because it can result in simpler
equation systems [5]. Depending on the number of parameters, the radial distortion models
can be divided into one-parameter models [6,18,29,51–53], two-parameter models [22,54],
three-parameter models [35] and arbitrary parameter models [5,55]. According to the
existing literature, it has been demonstrated that distortion is mainly dominated by the
first two items [41]. Hence, most of the existing methods use a one-parameter model or a
two-parameter model, as is the case in this paper.

In this paper, three 2D–3D point correspondences are used to estimate the absolute
pose when the focal length and radial distortion of the camera are unknown. Since six
constraints can be given by three correspondences, this is the minimal subset for the
case. The problem in this paper is decomposed into two sub-problems, which makes the
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estimation simpler and more efficient. The first sub-problem is to estimate the focal length
and radial distortion. An important geometric characteristic of radial distortion, that the
orientation of the image point with respect to the center of distortion (i.e., the principal
point in this paper) under conditions of radial distortion is unchanged, is used to solve this
sub-problem. The focal length and up to four-order radial distortion can be determined
iteratively with this geometric characteristic, and can work with multiple distortion models,
such as the division model and the traditional model (Brown model). The values estimated
without considering the radial distortion can be used as the initial values for iteration,
and these are close to the global optimal solutions. Consequently, the sub-problem can
be efficiently and accurately solved with these initial values. The second sub-problem is
to determine the camera pose with geometric linear constraints after estimating the focal
length and radial distortion. Since undistorted images can then be given, we can obtain
valid 2D–3D point correspondences, and then camera pose estimation becomes simple.

The proposed method can be used for cases wherein a zoom lens or fisheye lens
is used, and the imaging position is set at a distance from the center of the image. The
experimental results indicate that our proposed method has higher accuracy and better
numerical stability for pose estimation from synthetic data and real images when focal
length and radial distortion are unknown.

This paper is organized as follows. Section 2 presents the new method for camera
pose estimation when focal length and radial distortion are unknown. Section 3 presents
the results on numerical stability and noise sensitivity in the synthetic data and real images.
Section 4 presents the discussion. Section 5 presents conclusions.

2. Problem and Method Statement
2.1. Problem Statement

A standard pinhole camera model is used in this paper. This paper uses three 2D–3D
point correspondences and the known camera position to estimate the position with an
unknown focal length and radial distortion. Up to four-order radial distortion can be
estimated efficiently, and our proposed method can work with both the division distortion
model and the traditional distortion model. The geometric construction of our problem
without radial distortion is illustrated in Figure 1.
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Figure 1. The geometric construction of our problem without radial distortion. The red dashed lines
are the distances and their projections between each sets of two 3D points; the gray dashed line is the
focal length.

In Figure 1, Pi (i = 1, 2, 3) is the known 3D control point and pi is its 2D image projection
without radial distortion. pc is the principal point, which is the center of the image. OC is
the known camera position. Since the radial distortion exists, we obtain only the distorted
2D image point pd

i

(
ud

i vd
i

)
, and the undistorted 2D image point pi is unknown in real

scenarios. In this paper, our core work is to estimate the camera pose when the focal length
and radial distortion are unknown from the 3D control points Pi and the distorted 2D
image points pd

i .
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2.2. Radial Distortion and Focal Length Estimation

Many distortion models have been proposed in the existing literature, and for most
digital cameras, the main distortion is radial distortion. Two models are usually used for
radial distortion, which are respectively the division model and the traditional model. The
division model is written as

pi =
pd

i
1 + k1r2

i + k2r4
i + k3r6

i + · · ·
(1)

The traditional model is written as

pi = pd
i

(
1 + k1r2

i + k2r4
i + k3r6

i + · · ·
)

(2)

Here, ki is the radial distortion coefficient and ri = ‖pd
i ‖ is the distance between the

distorted 2D point pd
i and the center of distortion. The radial distortion is mainly dominated

by the first two items [41], and we hence only consider the two items in this paper. It can
be seen that no matter which model is used, the orientation of the image point with respect
to the center of distortion (i.e., the principal point in this paper) under radial distortion is
unchanged, and only the distance changes. This important and key geometric characteristic
of radial distortion has encouraged us to propose a new method to estimate the focal
length and radial distortion. According to these characteristics, the detailed geometric
construction of our problem with radial distortion is illustrated in Figure 2.
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Figure 2. Details of our problem with radial distortion. The green solid line is the distance between
the undistorted point pi and the center of distortion pc, which is denoted as xi. The black solid line is
the distance between the undistorted point pi and the camera position OC, which is denoted as yi.

In Figure 2, ∠p1Oc p2, ∠p2Oc p3, ∠p3Oc p1, are denoted as α1, β1, γ1 respectively, and
can be computed with triangles 4P1OcP2, 4P2OcP3, 4P3OcP1, as shown in Figure 1.
∠p1 pc p2, ∠p2 pc p3, ∠p3 pc p1 are denoted as α2, β2, γ2, respectively. Here, the principal
point pc and the distorted imaging points pd

i are known, but the undistorted imaging points
pi are unknown. Note that the orientation of the distorted image point with respect to the
center of the distortion is unchanged under the radial distortion, and therefore α2, β2, γ2
can be computed with4pd

1 pc pd
2,4pd

2 pc pd
3,4pd

3 pc pd
1, respectively. In the next step of the

derivation using our method, only the distances between the undistorted image points and
the center of distortion are used. These are unknown and need to be computed. Therefore,
the derivation does not involve the distortion coefficients and does not solve the distortion
coefficients directly.
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Let pcpi = xi and Ocpi = yi, and since 4p1pcp2 and 4p1Ocp2 have the common edge
p1p2, an equation by the cosine law can be given

y2
1 + y2

2 − 2y1y2 cos α1 = x2
1 + x2

2 − 2x1x2 cos α2 (3)

In Figure 2, Ocpc = f is the focal length, which is perpendicular to the plane p1p2p3.
Hence, according to the triangle 4Ocpcpi, an equation can be given by the Pythagorean
Theorem

f 2 + x2
i = y2

i (4)

Take Equation (4) into Equation (3), and rewrite it as

f 2 + x1x2 cos α2 =
√

x2
1 + f 2

√
x2

2 + f 2 cos α1

Similarly, the other two equations can be given f 2 + x2x3 cos β2 =
√

x2
2 + f 2

√
x2

3 + f 2 cos β1

f 2 + x3x1 cos γ2 =
√

x2
3 + f 2

√
x2

1 + f 2 cos γ1

(5)

We set xi
f to be equal to fi, and then a system of equations with three variables was

given, as follows. 
1 + f1 f2 cos α2 =

√
1 + f 2

1

√
1 + f 2

2 cos α1

1 + f2 f3 cos β2 =
√

1 + f 2
2

√
1 + f 2

3 cos β1

1 + f3 f1 cos γ2 =
√

1 + f 2
3

√
1 + f 2

1 cos γ1

(6)

The Levenberg–Marquardt (LM) algorithm [50] can be used to solve this system. It is
an iterative solver, and good initial solutions to fi are needed to obtain the global optimal
solutions. Choosing the initial solutions is one of the key steps in this paper. Here, when
we choose the initial solutions, the radial distortion is not considered. Then, the initial
solutions can be given by some existing methods [15,16]. The initial solutions without
radial distortion are used for Equation (6), and the fi can be computed iteratively. The
proposed method with these initial solutions can converge to the global optimal solution,
which will be shown in Section 3.

After obtaining the value of fi, the focal length and radial distortion coefficients can be
computed with different radial distortion models respectively, i.e., the division model and
traditional model.

(1) The division model. This two-parameter model is given by the formula

pi =
pd

i
1 + k1r2

i + k2r4
i

(7)

Here, kj (j = 1, 2) is the radial distortion coefficient and ri = xd
i = ‖pd

i ‖ is the distance
between the distorted point pd

i and the principal point. Then we can obtain

xi =
xd

i

1 + k1
(
xd

i
)2

+ k2
(
xd

i
)4 (8)

xd
i = ri =

√(
ud

i
)2

+
(
vd

i
)2 is known, and a system of polynomial equations can be

obtained with the fi computed by the LM algorithm
f1 f + f1r2

1·k1 f + f1r4
1·k2 f = r1

f2 f + f2r2
2·k1 f + f2r4

2·k2 f = r2
f3 f + f3r2

3·k1 f + f3r4
3·k2 f = r3

(9)
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For solving linearly, f, k1f, k2f are seen as the unknown parameters in Equation (9) and
then a system of linear equations can be obtained as

A1X1 = Y1 (10)

Here,

A1 =

 f1 f1r2
1 f1r4

1
f2 f2r2

2 f2r4
2

f3 f3r2
3 f3r4

3


X1 =

[
f k1 f k2 f

]T

Y1 =
[

r1 r2 r3
]T

(11)

The system can be solved linearly using X1 = A−1
1 Y1. Then the focal length and the

radial distortion coefficients are given respectively as follows:

f = X1(1)
k1 = X1(2)

X1(1)

k2 = X1(3)
X1(1)

(12)

(2) The traditional model. This two-parameter model is given by the formula

pi = pd
i

(
1 + k1r2

i + k2r4
i

)
(13)

Similarly, a system of linear equations can be obtained as

A2X2 = Y2 (14)

Here

A2 =

 f1 −r3
1 −r5

1
f2 −r3

2 −r5
2

f3 −r3
3 −r5

3


X2 =

[
f k1 k2

]T

Y2 =
[

r1 r2 r3
]T

(15)

Then, the focal length and the radial distortion coefficients are computed linearly, as
follows:

X2 = A−1
2 Y2 (16)

In this section, when the LM algorithm is used to solve the intermediate variable fi,
our method does not involve the radial distortion coefficients. This means that no matter
what radial distortion model is used, the focal length and distortion coefficients can be
solved linearly after obtaining the intermediate variable fi.

2.3. Camera Pose Estimation

The positions of undistorted points can be obtained according to the radial distortion
coefficients estimated in Section 2.2, and the positions of distorted points in the original
image. Then, the valid 2D–3D point correspondences can be obtained, and these are
illustrated in Figure 3.

In Figure 3, Oc-XcYcZc is the original camera frame and Ow-XwYwZw is the original
world frame. Two 2D–3D point correspondences can be used to estimate camera pose with
a known camera position, focal length and radial distortion, and then a single solution can
be obtained [37]. Alternatively, three 2D–3D point correspondences can be used to estimate
camera poses with a known focal length and radial distortion, and up to four solutions can
be obtained [15]. In this paper, to obtain the single solution directly, we use two 2D–3D
point correspondences to estimate camera pose, i.e., rotation matrix Rw_c and translation
vector Tw_c, written in red in Figure 3.
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Figure 3. Camera position estimation from the valid 2D–3D point correspondences and camera
position.

Here, we define a new camera frame Oc-Xc2Yc2Zc2 and a new world frame Oc-
Xw2Yw2Zw2. The new camera frame is defined as follows:

−−−−→
OcXc2 =

−−→
Oc p1

‖
−−→
Oc p1 ‖

−−−−→
OcZc2 =

−−→
OcXc2×

−−→
Oc p2

‖
−−→
OcXc2×

−−→
Oc p2 ‖

−−−−→
OcYc2 =

−−−−→
OcZc2 ×

−−−−→
OcXc2

(17)

Here,
−−→
Oc pi =

[
ui vi f

]
, which can be obtained after the radial distortion and

focal length have been estimated in Section 2.2. In the new camera frame, the Xc2 axis is the

vector
−−→
Oc p1, the Zc2 axis is perpendicular to the plane Ocp1p2, and the Yc2 axis is defined

by the right-handed coordinate system. Then, the point Pc in the original camera frame
Oc-XcYcZc can be transformed to point Pc2 in the new world frame Oc-Xc2Yc2Zc2 using

Pc2 = Nc2·Pc

Nc2 =
[ −−−→

OcXc2
−−−→
OcYc2

−−−−→
OcZc2

]T (18)

The new world frame is defined as follows:

−−−−→
OcXw2 =

−−→
OcP1

‖
−−→
OcP1 ‖

−−−−→
OcZw2 =

−−→
OcXw2×

−−→
OcP2

‖
−−→
OcXw2×

−−→
OcP2 ‖

−−−−→
OcYw2 =

−−−−→
OcZw2 ×

−−−−→
OcXw2

(19)

In the new world frame, the origin is the camera position Oc, which is known, the Xw2

axis is the vector
−−→
OcP1, the Zw2 axis is perpendicular to the plane OcP1P2 and the Yw2 axis is

defined by right-handed coordinate system. Then the point Pw in the original world frame
Ow-XwYwZw can be transformed to point Pw2 in the new world frame Oc-Xw2Yw2Zw2 using

Pw2 = Nw2·(Pw −Oc)

Nw2 =
[ →

OcXw2
→

OcYw2
→

OcZw2

]T (20)
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Obviously, the new camera frame and the new world frame coincide. Then, we assume
that point Pc in the original camera frame and point Pw in the original world frame are
the same point, and according to the definitions of the new camera frame and new world
frame, we can obtain the transformations between each two frames, as shown in Figure 4.
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Figure 4. The transformations between each pair of frames. The transformation written in red is what
needs to be solved in this section.

Then, the rotation matrix Rw_c and translation vector Tw_c can be obtained from
Figure 4, as follows:

Rw_c = N−1
c2 ·Nw2

Tw_c = −N−1
c2 ·Nw2·Oc

(21)

Pose estimation is thus finished.

3. Experiments and Results

In this Section, the numerical stability, noise sensitivity, computational speed and
robustness to camera position noise of our proposed method, using the division model and
traditional model, respectively, are thoroughly tested in the synthetic data, and compared
to the general solver used in [21] (Josephson’s method). Josephson’s method is fast and
numerically stable, and is the first method used to estimate camera pose with unknow focal
length and radial distortion from four 2D–3D point correspondences. Then, real images are
used to test the feasibility of our proposed method in real scenarios. From the experiments,
we can see that the results of the division model and the traditional model are basically the
same. As such, only the result of the division model is discussed in this section.

3.1. Synthetic Data

A virtual perspective camera with radial distortion is synthesized. Its image resolution
is 1280 × 800 pixels and the center of the image is the principal point, i.e., the center of
distortion in this paper. Then, the 3D points of synthetic data are randomly generated in a
box of [−20, 20] × [−20, 20] × [180, 220], and the 2D image points of the synthetic data
are generated by projecting the 3D points using the virtual camera. Now we can randomly
generate 2D–3D point correspondences for testing the numerical stability, noise sensitivity,
computational speed and robustness to camera position noise of our proposed method.

3.1.1. Numerical Stability

Three 2D–3D point correspondences without noise are randomly generated for our
proposed method, and four are randomly generated for Josephson’s method. 50,000 trials
are performed independently, and the distributions of the log10 value of error in rotation,
focal length, radial distortion and reprojection are reported, as shown in Figure 5.
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From Figure 5, it can be inferred that the error distribution of our proposed method is
more concentrated compared to Josephson’s method. In addition, in terms of focal length,
radial distortion and reprojection, our proposed method has better numerical stability than
Josephson’s method. In terms of rotation, the performance of our proposed method is
almost the same as Josephson’s method.

3.1.2. Noise Sensitivity

Three 2D–3D point correspondences with zero-mean Gaussian noise are randomly
generated for our proposed method, and four are randomly generated for Josephson’s
method. The noise deviation level varies from 0 to 2 pixels. Then 50,000, trials are performed
independently, and the median values of error in radial distortion, focal length, rotation
and reprojection are reported, as shown in Figure 6.

Obviously, as the noise increases, so do the errors of the proposed method and Joseph-
son’s method. The proposed method has better numerical stability. In terms of the focal
length and rotation, the proposed method performs much better than Josephson’s method.
In terms of the radial distortion and reprojection, the proposed method performs slightly
better than Josephson’s method.
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3.1.3. Computational Speed

We test our proposed method on a 3.3 GHz two-core laptop. Three 2D–3D point
correspondences without noise are randomly generated for our proposed method and
four are randomly generated for Josephson’s method. Then, 50,000 trials are performed
independently, and the medians of the computational times of our proposed method and
Josephson’s method are 0.0768 s and 0.0743 s, respectively. It can be seen that our proposed
method is 3.4% slower than the general solver.

3.1.4. Robustness to Camera Position Noise

With our proposed method, the difference is that it uses the camera position as
prior knowledge, compared to the existing methods. The camera position is thus an
important parameter, and it is necessary to analyze the effect of camera position noise on
the performance of our proposed method. The camera position is generally given by RTK
or the total station in this paper, and the accuracy of both these measures is better than
3 cm [56]. This section adds zero-mean Gaussian noise onto the camera’s position, whose
noise deviation level varies from 0 to 3 cm. Then, 50,000 trials are performed independently,
and the medians of the relative error in rotation, distortion and focal length, as well as the
median of error in reprojection, are reported respectively in Figure 7.
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It can be seen in Figure 7a that the relative errors in radial distortion and focal length
are both close to zero. As described in Section 2, the problem is decomposed into two
sub-problems, and the first sub-problem is to estimate the focal length and radial distortion.
Hence, the camera position noise has almost no effect on the focal length and radial
distortion estimation.

The second sub-problem is to estimate the camera pose (rotation), and we can see in
Figure 7a that the relative error in rotation increases with the increase in camera position
noise. This means that camera position noise has an effect on camera pose estimation.
However, the maximum relative error of rotation is less than 0.9% when the camera
position noise is 3 cm, which indicates that we can still obtain good results for camera pose
even if there is camera position noise.

Furthermore, the relative error in rotation, radial distortion and focal length will fur-
ther affect the error in reprojection. It can be seen in Figure 7b that the error in reprojection
increases with the increase in camera position noise. From the previous analysis, we can
see that this is mainly caused by the error in rotation. Although the camera position noise
has an effect on the reprojection, the maximum error is less than 0.5 pixels, which indicates
our proposed method still performs well, even though the camera position noise is present.

3.2. Real Images

The preceding section tested our proposed method on synthetic data, and this section
will test our proposed method on real images. Two approaches are employed to show the
performance of our proposed method. First, we use an image from the internet [57] that is
widely used for camera calibration. This image has heavy distortion, as shown in Figure 8.

In this image, a checkerboard is inserted that has many straight lines, which will be
bent under heavy distortion, as shown in Figure 8a. Then, three corners of the checker-
board are selected to estimate the camera pose, focal length and radial distortion with
our proposed method. According to the results of our proposed method, we can obtain
undistorted images as shown in Figure 8b. Intuitively, it can be seen that these lines revert
to straight lines, which indicates our proposed method achieves good performance even
under heavy distortion.

The first approach shows the performance intuitively, rather than quantitatively.
Hence, another approach is employed to test our proposed method with quantitative
evaluation on real images. The real images are captured by two cameras (MV-CS016, the
CMOS is IMX296 of Sony) with a wide-angle lens (LM6JC, the focal length is 6 mm), which
gives the real images heavy distortion. Given that the further a point is from the center
of the image, the heavier the distortion will be, some control points are placed near the
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edges of both images, and hence their projections have heavy distortion. The case is useful
for testing the performance of our proposed method on radial distortion. The images are
illustrated in Figure 9.
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Three 2D–3D point correspondences are selected to estimate the camera pose, focal
length and radial distortion by our proposed method. In this way we can obtain the
undistorted images and valid 2D–3D point correspondences. In real scenarios, the ground
truths of the camera pose, focal length and radial distortion are all unknown. Hence, we
cannot test our proposed method directly on real images. However, the ground truths of the
3D control points given by a total station (NTS-330R, measuring precision better than 0.5 cm)
are known. Hence, we can use the information to test our proposed method indirectly on
real images. The measured values of these control points can be obtained by binocular
vision, the accuracy of which is determined by the camera pose, focal length and radial
distortion estimated via our proposed method. Binocular vision uses two cameras to obtain
a three-dimensional coordinate, and this is the common three-dimensional measurement



Sensors 2022, 22, 1841 13 of 17

method. It can solve a problem wherein one camera cannot obtain depth information [58].
Accordingly, the accuracy of the measured values can reflect the performance of our
proposed method.

We compute all the control point positions using binocular vision with our proposed
method and Josephson’s method to obtain the errors between the measured values and the
ground truths. The mean relative errors of our proposed method and Josephson’s method
are 0.27% and 0.34%, respectively, which indicate that our proposed method achieves a
better performance on real images. In addition, the mean relative error of our proposed
method is very low, and this indicates that our proposed method can obtain good results
on real images.

Similarly, we can obtain the mean reprojection error of the control points. The reprojec-
tion error is affected by the estimation of focal length, radial distortion and absolute pose,
hence it can also reflect the performance of our proposed method. The mean reprojection
with our proposed method is 0.21 pixels, and it is 0.29 pixels with Josephson’s method,
which indicates our proposed method achieves better performance. This is consistent with
the results derived from synthetic data, and shows our proposed method performs well on
both synthetic data and real images.

4. Discussion

This paper proposes a new method for absolute camera pose estimation when the focal
length and radial distortion are unknown, from only three 2D–3D point correspondences
and a known camera position. Up to four-order radial distortion can be estimated. The
proposed method is especially suitable for cases wherein wide-angle and zoom lenses are
used. The differences and advantages of the proposed method will be discussed in the
following section.

4.1. Difference and Advantage

Estimating camera pose or some intrinsic parameters (i.e., focal length and radial
distortion in this paper) from 2D–3D point correspondences is an important step in com-
puter vision. For absolute pose estimation, the position of a 3D point in the world frame
must be known first, which is difficult in practical applications. Hence, using fewer 2D–3D
point correspondences is the aim of researchers, and is also why we are undertaking the
work in this paper. Although it is difficult to obtain the absolute position of a 3D point
in a world frame, it is easier to obtain the absolute position of a camera using position-
ing devices (e.g., IMU, RTK and total station). This is also the reason why our proposed
method can use fewer 2D–3D point correspondences compared to traditional methods.
Most of the traditional methods used for determining the camera pose, focal length and
distortion estimation are based on the projection matrix, which is used to obtain a system
of polynomial equations, and estimate the unknown parameters directly. In addition, most
methods use the division distortion model to simplify the system. The difference in this
paper is that the system of polynomial equations is obtained from the geometry of the
photogrammetry, not the projection transformation, as in the traditional methods used
for radial distortion estimation. An important geometric characteristic of radial distortion
is that the orientation of the image point with respect to the center of distortion (i.e., the
principal point in this paper) under radial distortion is unchanged, and this is then used
to obtain a system of polynomial equations, which is the most interesting point of our
proposed method. Lastly, the LM algorithm is used to solve the intermediate variables,
and does not solve the radial distortion directly. This means that no matter what radial
distortion model is used, the focal length and distortion coefficients can be solved linearly
after obtaining the intermediate variables. It can be seen that the major difference between
the proposed method and the traditional methods is that the former starts with geometry,
and the latter starts with projection transformation.

Since values with no radial distortion are used as the initial solutions, our proposed
method returns only one solution, but up to four are returned by Josephson’s method, and it
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thus needs an extra constraint to disambiguate the multi-solution phenomena. In addition,
the initial solutions of the LM algorithm in our proposed method are the values of the
non-distorted model. Since the initial solutions are close to the truth values, they are highly
likely to converge on the global optimal solution. Then, we carry out a simulation and an
experiment in Section 3, and the results show the feasibility of our proposed method.

Our proposed method uses some known extrinsic parameters, i.e., camera position in
this paper, which means the camera’s position is an essential factor for numerical stability
and noise sensitivity. The camera position is given with high precision by RTK or total
station, and hence has a low error of 0–3 cm. As described in Section 3.1.4, our proposed
method has good robustness to camera position noise. The good robustness is the reason
why our proposed method achieves better performance in terms of numerical stability and
noise sensitivity. Furthermore, a good initial solution is utilized, and this can be given by
using the general PnP solvers without distortion, which cannot access the globally optimal
solution. In this paper, the good initial solution is the main reason why our method has
better numerical stability and noise sensitivity. Last, the solving process mainly involves
a linear solution, except for the intermediate variable. This is another reason why our
proposed method has lower error, as described in Section 3.1.2.

Since our proposed method achieves better performance in terms of numerical stability
and noise sensitivity, and the camera position is given with high precision by a total station,
we can obtain good results in the measurement of point position and reprojection for
real images.

However, the major drawback of our proposed method is that it is 3.4% slower than
the general solver. This drawback is caused by the low iteration step size. If we increase
the step size to increase the computational speed and make our proposed method come
close to the general solver in accuracy, our method will be 17.6% faster than the general
solver. It can be seen that the reason our proposed method is slightly slower, as described
in Section 3.1.3, is that this improves its accuracy. In practical applications, depending on
the need for accuracy, we can change the step size of the iterations to increase or decrease
the computational speed.

4.2. Future Work

In this paper, the iteration step size of the LM algorithm makes a profound impact
on the computational speed and accuracy. Currently, our proposed method chooses the
step size based on experimental experience. Hence, the work that we will do in the
future will establish a method for adapting the iteration step size, which will choose the
most appropriate step size automatically in order to balance the relationship between
computational speed and accuracy.

5. Conclusions

We have proposed a new method to estimate the camera pose, focal length and radial
distortion simultaneously using three 2D–3D point correspondences. This method has
two key features that enable it to obtain a single solution efficiently and accurately. The
first key feature is that the important geometric characteristic of radial distortion, which
is the orientation of the image point with respect to the center of distortion under radial
distortion, is unchanged, and this is used to solve our problem. Then, the focal length
and up to four-order radial distortions can be determined iteratively with this geometric
characteristic, and applied to multiple distortion models. The second feature is that the
values with no radial distortion are the initial values, which are close to the global optimal
solutions. This means that our problem can be efficiently and accurately solved with the
initial values.

The experimental results indicate that our proposed method performs well in terms
of numerical stability and noise sensitivity for synthetic and real data. It is particularly
suitable for cases wherein a wide-angle or zoom lens with heavy distortion is used.
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