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Abstract

Rift Valley fever virus (RVFV) is an emerging viral zoonosis that is responsible for devastating outbreaks among livestock and
is capable of causing potentially fatal disease in humans. Studies have shown that upon infection, certain viruses have the
capability of utilizing particular cellular signaling pathways to propagate viral infection. Activation of p53 is important for
the DNA damage signaling cascade, initiation of apoptosis, cell cycle arrest and transcriptional regulation of multiple genes.
The current study focuses on the role of p53 signaling in RVFV infection and viral replication. These results show an up-
regulation of p53 phosphorylation at several serine sites after RVFV MP-12 infection that is highly dependent on the viral
protein NSs. qRT-PCR data showed a transcriptional up-regulation of several p53 targeted genes involved in cell cycle and
apoptosis regulation following RVFV infection. Cell viability assays demonstrate that loss of p53 results in less RVFV induced
cell death. Furthermore, decreased viral titers in p53 null cells indicate that RVFV utilizes p53 to enhance viral production.
Collectively, these experiments indicate that the p53 signaling pathway is utilized during RVFV infection to induce cell death
and increase viral production.
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Introduction

Rift Valley fever virus (RVFV) is a Phlebovirus in the family

Bunyaviridae that is transmitted primarily by mosquitoes and is

emerging as a serious viral zoonosis affecting both livestock and

humans. RVFV remains endemic in sub-Saharan Africa and has

caused major outbreaks throughout Africa in the last century and

recently in parts of the Arabic peninsula [1,2,3]. In animals, it is

usually transmitted through the bite of a mosquito. Transmission

to humans mainly occurs through close contact with infected

animal tissue or body fluids as well as through aerosolization [3,4].

In humans, it typically causes an acute mild febrile illness

resembling the flu. However, in a small percentage of patients it

results in serious clinical manifestations such as retinal lesions,

meningoencephalitis, hepatitis, severe hemorrhagic fever, and

death [1,2,3]. In livestock, RVFV causes vast economic devasta-

tion through both mortality of adult animals as well as an

extremely high rate of abortion and fetal deformities [5]. Of

particular concern are recent epidemiological surveys of RVFV

outbreaks in humans that have shown a higher percentage of

mortality among infected individuals, increasing from 2% to 45%,

suggesting the virus could be evolving mechanisms of increased

virulence and greater pathogenicity [6].

Not unlike other bunyaviruses in its family, RVFV is a single

stranded RNA virus with a tri-segmented genome; the large (L)

segment, Medium (M) segment and Small (S) segment [1]. The

viral RNA dependent RNA polymerase (L protein) is encoded on

the L segment [7], while the M segment codes for the precursor for

two glycoproteins, Gc and Gn, as well as the nonstructural

proteins, NSm (NSm2), 78 kDa (NSm1), and 73–75 kDa (NSm2-

Gn) [8,9,10,11]. The S segment codes for one structural protein,

the nucleocapsid protein, N, and a nonstructural protein called

NSs [12]. The nonstructural proteins are not essential for

replication of the virus; however they do play a significant role

in the pathogenesis of the disease in vivo [4]. NSs protein has been

established as a virulence factor due to its ability to suppress the

host’s immune response by counteracting the antiviral interferon

(IFN) response [13,14,15,16]. NSm has also been described as a

virulence factor through anti-apoptotic functions by blocking

caspase-3 and its downstream effectors, as well as initiator

caspases, caspase-8 and 9 [17].

Our previous studies using reverse-phase protein microarray

analysis (RPMA) indicated that p53 was phosphorylated on two

residues, Ser15 and Ser46 upon infection with the virulent strain of

RVFV (ZH-501) [18]. This indicates that the p53 pathway may be

activated upon infection with RVFV. The p53 tumor suppressor

protein is activated in response to genomic stress, such as DNA
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damage, and has been implicated in governing many cellular

processes such as cellular homeostasis, apoptosis, cell cycle arrest,

activation of DNA repair, and cellular senescence. p53 can achieve

these functions due to its role as a transcription factor, inducing or

repressing numerous target genes. p53 can also act in a non-

transcriptional manner through direct protein-protein interaction

[19]. When bound to murine double minute 2 (MDM2), its

negative regulator, p53 is targeted for degradation by the

proteosome. However, when genomic stress occurs, several post-

translational modifications occur, including heavy phosphorylation

of the N-terminus, that help to stabilize p53 and lead to its

accumulation. Phosphorylation can be initiated by DNA damage

response (DDR) protein kinases such as Ataxia-Telangiectasia

Mutated (ATM), ATM and Rad3-related protein (ATR), Check-

point Kinase 1 (chk1) and Checkpoint Kinase 2 (chk2) [20]. The

N-terminus contains the trans-activation domain (TAD), respon-

sible for the transcriptional regulation of the protein, and the C-

terminal domain of the protein is important for specific DNA

binding of p53 [21]. The phosphorylation at specific sites can

control the activity of the protein, either through its accumulation,

activity in the TAD, or through modulation of DNA consensus

sequences affinity [22]. The serine residues located in the TAD

(Ser9, 15, 20, and 37) are important for the transcriptional

regulation of the protein. Phosphorylation of Ser15 and Ser37 are

also important for the stability of the protein. Ser20 phosphory-

lation can enhance tetramerization, stability, and activity [23].

Ser46 has been implicated in the induction of apoptosis through

the transcriptional regulation of p53AIP1 (p53 regulated apoptosis

inducing protein 1) [24]. Phosphorylation of the C-terminal end of

the p53 protein is important for sequence specific DNA binding

regulation, oligomerization state, nuclear localization and export,

as well as ubiqutination of the protein [25]. Phosphorylation at

Ser392, located in the C-terminus affects growth arrest, DNA

binding and transcriptional activation [26]. The differential

response to p53 phosphorylation is responsible, in part, for the

multifunctional nature of the protein.

p53 acts as a transcription factor to induce the regulation of

multiple genes. In doing so, p53 can control many different

cellular responses to stressors such as DNA damage. Transcrip-

tional targets of p53 regulating cell cycle arrest include 14-3-3s,

p21 and Reprimo. p21 regulates the progression of cells in the G1

phase of the cell cycle through binding to and inhibiting the

activity of CDK2 and CDK4. Activation of p21 by p53 leads to

G1 cell cycle arrest [27]. p53 regulation of DNA damage repair

induces the transcriptional targets Growth Arrest and DNA

Damage Inducible 45 (GADD45) and Proliferating Cell Nuclear

Antigen (PCNA), among others. The apoptotic pathway regulated

by p53 is activated through two major pathways, the extrinsic and

the intrinsic pathways and through both transcription dependent

as well as independent mechanisms [28]. The intrinsic pathway is

reliant on the activation of Bcl-2 family members, comprised of

both pro-apoptotic (Bid, Bax, Puma and Noxa) and anti-apoptotic

proteins (Bcl-Xl), which control the release of cytochrome c from

the mitochondria [29]. p53 induces the expression of many of the

Bcl-2 pro-apoptotic family members, activating the intrinsic

apoptotic mitochondrial pathway and promoting cell death.

The host’s response to a viral pathogen plays an important role

in the outcome of the infection. Viruses have been shown to utilize

host cellular signaling pathways to facilitate infection and viral

replication [30,31,32]. We have previously shown that p53 was

phosphorylated on Ser15 and Ser46 following infection with

RVFV ZH-501 [18]. Here we expand upon that data to

characterize additional phosphorylation events on p53. We find

that numerous Ser residues are phosphorylated following RVFV

infection and that these events are highly dependent on NSs. p53

transcriptional targets were examined and the apoptotic gene,

Noxa, was most highly upregulated following RVFV infection.

Interestingly, p53 null cells were resistant to RVFV induced cell

death and were not as efficient at viral production. These data

suggests that RVFV utilizes the p53 pathway to facilitate viral

production, possibly through the manipulation of the p53

dependent apoptotic pathway.

Materials and Methods

Cell Culture
Human small airway lung epithelial cells (HSAECs) were

obtained from Cambrex Inc., Walkersville, MD and maintained

in Ham’s F12 medium and supplemented with 1% penicillin/

streptomycin, 1% L-glutamine, 1% nonessential amino acids, 1%

sodium pyruvate, 0.001% of 55 mM b-mercaptoethanol (Gibco Cat

# 2195-023) and 10% Fetal Bovine Serum (FBS). Vero cells (ATCC

Cat # CCL-81), MDA-MB-231 human breast cancer cells (ATCC

Cat # HTB-26) and MCF-7 human breast adenocarcinoma cells

(ATCC Cat # HTB-22) were maintained in Dulbecco’s modified

minimum essential medium (DMEM) supplemented with 10% FBS,

1% penicillin/streptomycin and 1% L-glutamine. T47D (ATCC cat

# HTB-133) cells were maintained in RPMI medium supplemented

with 10% FBS, 1% penicillin/streptomycin and 1% L-glutamine.

A549 (ATCC Cat # CCL-185) cells were maintained in Ham’s F12

medium supplemented with 10% FBS, 1% penicillin/streptomycin

and 1% L-glutamine. HCT-116 human cancer cells and p53

heterozygous and null derivatives (p53+/+, p53+/2 and p532/2)

were maintained in McCoys 5A medium supplemented with 10%

FBS, 1% penicillin/streptomycin and 1% L-glutamine. All cell lines

were maintained in 5% CO2 at 37uC and in accordance with the

distributor’s guidelines.

Viruses
The MP-12 strain of RVFV, a live attenuated virus (LAV)

derivative of the ZH548 strain, was isolated from a patient with

uncomplicated RVFV infection in 1977. MP-12 was generated by

12 serial passages in MRC5 cells in the presence of 5-fluorouracil,

which induced a total of 25 nucleotide changes across the three

viral genome segments [33]. arMP-12-del21/384 (herein referred

to as arMP-12 DNSm) has a large deletion in the pre-Gn region of

the M segment and as a result does not express NSm, 78 kDa,

75 kDa, or 73 kDa proteins encoded by this region [9]. rMP-12-

NSdel (herein referred to as rMP-12 DNSs) completely lacks the

NSs ORF [34]. rMP-12 that has a C-terminal Flag-tagged NSs

inserted in place of the NSs ORF is referred to as rMP-12-NSs-

Flag [35].

Viral Infection
For experiments using RVFV MP-12 strain, cells were cultured

at a density of 16106 per well in 6-well plates. Cultured cells were

infected with MP-12 (attenuated strain of ZH548), rMP-12DNSs

or arMP-12DNSm viruses at the specified multiplicity of infection

(MOI). Cells were infected by overlaying a 400 ml suspension of

viral media on the cells and incubating them for 1 hour at 37uC at

5% CO2. Following the 1 hour incubation, the viral media was

removed and the cells were washed with phosphate buffered saline

(PBS) without Mg and Ca and replaced with 2 ml of cell specific

media. For cell viability assay infections, cells were plated at

2.56104 in a 96 well plate. The same procedure as described

above was used except a 25 ml suspension of viral media is used

and 200 ml of cell specific media is replaced after 1 hour
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incubation and washing. Cells were maintained at 37uC at 5%

CO2 until appropriate collection time.

Western Blot Analysis
Cells were collected in lysis buffer: 1:1 mixture of T-PER

reagent (Pierce, IL), 26 Tris-glycine SDS sample buffer (Novex,

Invitrogen), 33 mM DTT, and protease and phosphatase inhibitor

cocktail (16Halt cocktail, Pierce)] and boiled for 10 min. Twenty-

five ml of cell lysates were separated on NuPAGE 4–12% Bis-Tris

gels (Invitrogen) and transferred to nitrocellulose or PVDF

membranes using the iBlot Gel Transfer apparatus (Invitrogen)

or either an overnight wet transfer at 70 mA or a 2 hr wet transfer

at 250 mA at 4uC. The membranes were blocked with previously

boiled 3% dry nonfat milk solution in 16 PBS +0.1% Tween

(PBS-T) for 1 hour at either room temperature or 4uC. The

primary antibodies were diluted in 3% milk solution at a 1:1000

dilution (with the exception of b-actin, 1:10,000 dilution) and

incubated overnight at 4uC. The membranes were then washed 3

times with PBS-T and incubated with secondary HRP-coupled

goat anti-rabbit and anti-mouse antibody diluted 1:10,000 in 3%

milk for 2 hours and then washed 5 times with PBS-T, 10 min

washes. The primary antibodies used were: anti-p53 (cat #9282,

Cell Signaling), anti-phospho-p53 Antibody Sampler Kit (Cat

#9919, Cell Signaling), HRP conjugated b-actin (Cat# ab49900-

100, Abcam), and anti-RVFV N (kind gift from Dr. Connie

Schmaljohn, USAMRIID). The western blots were visualized by

chemiluminescence using SuperSignal West Femto Maximum

Sensitivity Substrate kit (ThermoScientific) and a Bio Rad

Molecular Imager ChemiDoc XRS system (Bio-Rad).

Creation of Nuclear and Cytoplasmic Extracts
One million cells were resupended in 80 ml of Buffer A (10 mM

KCl, 10 mM MgCl2, 10 mM HEPES, 1 mM EDTA, 1 mM

DTT, 0.1% PMSF and EDTA-free complete protease inhibitor

cocktail) with 0.5% NP-40, and incubated for 10 minutes on ice.

Nuclei were centrifuged at 5,000 g for 5 minutes and the

supernatant saved as the cytoplasmic extract (CE) for further

analysis. Next, the nuclei were washed one time with 200 ml of

Buffer A with 0.5% NP-40 and the centrifugation step repeated.

The nuclei were then resuspended in 80 ml of Buffer B (450 mM

NaCl, 1.5 mM MgCl2, 20 mM HEPES, 0.5 mM EDTA, 1 mM

DTT, 0.1% PMSF and EDTA-free complete protease inhibitor

cocktail) and incubated on ice for 10 minutes. Finally, lysates were

centrifuged at 20,000 g for 10 minutes and the nuclear extract

found in the supernatant saved for further analysis.

Immunofluorescent Staining
HSAEC’s cells were grown on coverslips in a 6-well plate,

infected with MP-12 as described above and washed with ice cold

PBS (without Ca and Mg) then fixed with 4% formaldehyde. Cells

where permeabilized with 0.5% Triton X-100 in PBS for 20

minutes and then washed 2 times in PBS. The cells were then

blocked for 10 minutes at room temperature in 3% BSA in PBS.

Primary antibodies anti-p53 (Cat# 9282, Cell Signaling), anti-

RVFV N protein, anti-Flag (Sigma) diluted 1:1000, was incubated

in fresh blocking buffer at 37uC for 1 hour and washed 3 times for

3 min in 300 mM NaCl with 0.1% Triton X-100. Alexa Fluor 568

anti rabbit (Cat# A10042 Invitrogen) and Alexa Fluor 488 anti

mouse (Cat# A11001 Invitrogen) dilution 1:200, were used as a

secondary antibodies and treated in the same manner as the

primary antibody. DAPI, dilution 1:1000, was used to visualize

nuclei. Fluorescence microscopy was carried out using a Nikon

Eclipse 90i microscope.

Cell Viability Assay
Cells were cultured and infected as previously described at the

indicated MOI. At the appropriate time point a cell viability assay

using CellTiter-Glo Cell Luminescent Viability Assay (Promega)

was performed according to manufacturer’s protocol. Briefly, an

equal volume of room temperature media and CellTiter-Glo

reagent was added to the cells. The plate was shaken for 2 min on

an orbital shaker and after a 10 minute room temperature

incubation; the luminescence was detected using the DTX 880

multimode detector (Beckman Coulter).

Plaque Assay
Supernatants were collected from the p53+/+ and p532/2 cell

viability experiment at the 96 hr time point from the MOI of 0.1

and 5.0 samples and stored at 280uC. Vero cells were plated in 6

well plates at 16106 cells per well. When cells reached 90% to

100% confluency, they were infected as follows in duplicates for

each dilution. Viral supernatants are diluted 1:10 in complete

DMEM media from 1021 to 1028. Four hundred ml of each viral

dilution was added to the cells. After the one hour infection an

overlay of 3 ml of a 1:1 solution of 0.5% agarose in diH20 with 26
EMEM for plaque assays, containing 5% FBS, 1% L-Glutamine,

2% penicillin/streptomycin, 1% nonessential amino acids, and 1%

sodium pyruvate was added to each well, allowed to solidify and

incubated at 37uC at 5% CO2 for 72 hrs. After 72 hrs, cells were

fixed using 4% formaldehyde for 1 hr at room temperature. The

agar plugs were then discarded and fixed cellular monolayers were

stained with a 1% crystal violet, 20% methanol solution for

15 min, visualizing plaques. Averages were taken from duplicates,

with dilutions containing fewer than 5 or more than 100 plaques

being discounted. The viral titer was calculated as follows: pfu/ml

= average of 2 plaque counts 62.5 (dilution factor) 6 dilution.

Quantitative RT-PCR
HSAEC cells were grown in 6 well plates and infected with MP-

12 at an MOI 3.0 as described above. The cells were harvested at

24 and 48 hours P.I. in 350 ml of Buffer RLT + b-mercaptoeth-

anol. The RNA was extracted using RNeasy Mini Kit (Qiagen) in

accordance with manufacturer’s protocol. The RNA was DNAse

treated (DNase I-RNase-Free, Ambion) to remove any contam-

inating DNA. Two hundred ng of total RNA was used in a twenty

ml cDNA reaction using the iScript Select cDNA Synthesis kit

(BIO-RAD) in accordance with manufacturer’s protocol. For q-

PCR, the template cDNA was added to a 20 ml reaction with

SYBRH GREEN PCR master mix (Applied Biosystems) and

0.2 mM of primer. Refer to Table 1 for primer sequences. cDNA

was amplified (1 cycle 295uC for 10 min, 40 cycles- 95uC for

15 sec and 60uC for 1 min) using the ABI Prism 7000. Fold

changes were calculated relative to Actin using the DDCt method.

Results

p53 is Phosphorylated on Several Residues Following
Infection with RVFV

Phosphorylation plays a role in regulating many signaling

pathways. In response to DNA damage and stress stimuli, a series

of phosphorylation events take place, mainly on the N-terminus,

that contributes to the activation of p53 [25]. In addition, there are

a series of other specific serine sites of p53 within the TAD that

have been shown to regulate the activation of p53 in a specific

manner [36]. Previous studies have shown that p53 Ser15

phosphorylation is up-regulated upon infection with the RVFV

ZH-501 strain at low MOIs [18]. We were interested in

determining if additional p53 serine residues were phosphorylated

p53 in Rift Valley Fever Virus Infected Cells

PLoS ONE | www.plosone.org 3 May 2012 | Volume 7 | Issue 5 | e36327



following RVFV infection. First, we assessed the status of p53

Ser15 and Ser46 phosphorylation following infection with the live

attenuated vaccine strain of RVFV, MP-12. Results in Figure 1A

indicate that both residues were phosphorylated following MP-12

infection, indicating that the attenuated virus was performing

similarly to the virulent virus. In addition, our data indicated that

RVFV MP-12 infection induces phosphorylation of all p53 serine

sites examined. Residues Ser9, Ser20, Ser37, Ser15 were highly

phosphorylated beginning at 24 hours, whereas Ser46 was not

highly phosphorylated until 48 hours (Figure 1A). p53 Ser46 has

been implicated in the induction of apoptosis [24]; therefore the

delayed response could contribute to MP-12 induced apoptosis.

p53 Ser392, a residue known to contribute to both transcription

activation and DNA binding [26], was also phosphorylated in a

manner similar to that seen with N-terminal residues (Figure 1B).

Upon activation, reduced interaction between p53 and its negative

regulator MDM2 leads to accumulation of p53 where it is then

stabilized [37]. In agreement with this model, total p53

accumulation is apparent 24 and 48 hours post infection

(Figure 1B), coinciding with the phosphorylation pattern seen at

multiple serine sites of p53. RVFV nucleoprotein (N) expression

was also monitored following infection (Figure 1C). As controls,

the phosphorylation of p53 was assessed following infection with

UV inactivated MP-12 and following doxorubicin treatment

(Figure 1D). Doxorubicin treatment resulted in the phosphoryla-

tion of p53 on all residues examined. In contrast, we did not

observed phosphorylation or stabilization of p53 following

infection with UV inactivated MP-12. Collectively, these results

demonstrate that in response to RVFV infection, p53 is

phosphorylated on multiple serine residues, both in the N-terminal

and C-terminal.

p53 Localizes to the Nucleus Following Infection with
RVFV

In normal unstressed cells p53 is present in low amounts. This is

due in part to its ubiquitination at the C-terminal end by its

negative regulator MDM2 and its export from the nucleus to the

cytoplasm where it is degraded by the proteosome [38]. When

cells are stressed, p53 accumulates in the nucleus where it can

regulate its transcriptional targets [38] to induce events such as

apoptosis and cell cycle arrest. To visualize the distribution of p53

upon infection with RVFV, HSAECs were either mock infected or

infected with MP-12 (MOI 3.0) and collected 24 hours later. p53

was visualized after the cells were immunostained with anti-p53

and Alexa fluor 568 secondary antibody (red) via confocal

microscopy. The N protein of RVFV was visualized after staining

the cells with anti-N RVFV protein and Alexa fluor 488 secondary

antibodies (green). The nucleus was visualized by DAPI staining

(blue). Figure 2 shows that in uninfected cells, p53 expression is

low and appears evenly distributed throughout the cytoplasm with

only basal levels seen in the nucleus. Upon infection with MP-12

(visualized with the RVFV N protein), p53 expression is increased

overall and p53 localizes within the nucleus with slight distribution

within the cytoplasm. Interestingly, the nuclear p53 correlated

with RVFV infection, as detected by RVFV N. To confirm these

results, nuclear and cytoplasmic extracts were analyzed for the

expression of p53 in mock or MP-12 infected cells (Figure 2B).

Lamin and GAPDH western blot analysis confirmed the purity of

the fractions. Following MP-12 infection, p53 was found

predominantly in the nucleus (compare lanes 2 and 4). These

results show that MP-12 infection induces p53 nuclear localiza-

tion, presumably where it can regulate its transcriptional targets.

p53 Phosphorylation is Highly Dependent Upon the Viral
Protein NSs

Both the NSs and the NSm proteins of RVFV have been

described as virulence factors [12]. The NSs protein forms

filaments within the nucleus of infected cells and filament

formation is implicated in pathogenesis [39]. In addition, the

NSs protein has been shown to suppress the host’s immune

response [13,15,40]. The NSm protein has been described as

having anti-apoptotic functions by blocking the caspase pathway

[17]. Because of the importance of these viral proteins in the

virulence of RVFV, we wanted to determine whether they were

involved in the p53 phosphorylation events observed in Figure 1.

To this end we utilized two different viruses generated through

reverse genetics. arMP-12-del21/384 (herein referred to as arMP-

12 DNSm) has a large deletion in the pre-Gn region of the M

segment and as a result does not express NSm, 78 kDa, 75 kDa, or

73 kDa proteins encoded by this region [9]. rMP-12-NSdel (herein

referred to as rMP-12 DNSs) completely lacks the NSs ORF [34].

Vero cells were collected 24 hours after mock infection or infection

with MP-12, rMP-12 DNSs or arMP-12 DNSm. Western blot

analysis using anti-p53 total and anti-p53 Ser15 antibodies

(Figure 3A) show a very similar pattern of up-regulation with

MP-12 and arMP-12 DNSm infected cells. Ser392 phosphoryla-

tion of p53 was also increased in MP-12 and arMP-12 DNSm

infected cells at 24 hours (Figure 3B). There is a slight reduction of

p53 phosphorylation and p53 accumulation in the arMP-12

DNSm infected cells compared to the MP-12 infected cells. As

NSm is known to be anti-apoptotic, a loss of p53 signaling in

arMP-12 DNSm infected cells seems somewhat surprising.

Table 1. Primer Sequences.

Primer Pair Forward Sequence 59-39 Reverse Sequence 59-39

Bax TGC TTC AGG GTT TCA TCC AG CGC GGC AAT CAT CCT CTG

Puma GGG CCC AGA CTG TGA ATC CT ACT TGC TCT CTC TAA ACC TAT GCA

Noxa GTG CCC TGG GAA ACG GAA GA CCA GCC GCC CAG TCT AAT CA

p21 CTG GAG ACT CTC AGG GCG AAA GAT TAG GGC TTC CTC TTG GAG AA

GADD45 TGC TCA GCA AAG CCC TGA GT GCT TGG CCG CTT CGT ACA

14-3-3s GGC CAT GGA CAT CAG CAA GAA CGA AAG TGG TCT TGG CCA GAG

MDM2 GTG AAT CTA CAG GGA CGC CAT C CTG ATC CAA CCA ATC ACC TGA A

p62 TGC AGG CAC AAC TAA CTT ACT TGA CTC ACA ACA AGG TCT TT

Actin GCC GGT CGC AAT GGA ACA AGA CAT GGC CGG GGT GTT GAA GGT

doi:10.1371/journal.pone.0036327.t001
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However, the mutant virus utilized also lacks the 78 kDa, 75, kDa,

and 73 kDa proteins which have unknown functions to date [9].

Specifically, the 78 kDa protein was unable to suppress apoptosis,

indicating that it has a function distinct from the anti-apoptotic

role of NSm [9]. These data suggest that the loss of one or more of

these proteins may have an influence on p53 signaling. In contrast,

cells infected with the rMP-12 DNSs strain, show a dramatic lack

of Ser 15 and Ser 392 phosphorylation and p53 accumulation at

24 hour. As controls for viral replication and protein expression,

western blot analysis for the N protein was performed (Figure 3B)

and the amount of released virus at 16, 24, and 48 hours post-

infection was analyzed (Figure 3C). MP-12 and rMP-12 DNSs

replicated at similar levels at all time points examined, however

arMP-12 DNSm displayed an increase in released virus as

compared to MP-12 and rMP-12 DNSs at 24 hours post-infection.

These results demonstrate a strong dependence on the NSs protein

for both the rise in p53 levels as well as the phosphorylation events

observed upon infection.

As p53 phosphorylation was dependent on NSs, we sought to

determine if NSs and p53 colocalized following RVFV infection.

To this end, HSAECs were either mock infected or infected with

MP-12 that has C-terminal Flag-tagged NSs inserted in place of

the NSs ORF (rMP-12-NSs-Flag) [35]. Cells were collected 24

hours post-infection and p53 and NSs visualized through confocal

microscopy. Figure 4 demonstrates that following rMP-12-NSs-

Flag infection, p53 expression is increased and highly nuclear in

nature, confirming the results presented in Figures 1, 2 and 3. NSs

filaments were observed in approximately 60% of all cells. Cells

with NSs filaments displayed nuclear abnormalities, such as

lobulated nuclei, as has recently been published by Mansuroglu et

al., 2010 [41]. p53 and NSs partially co-localize (white arrows) in

approximately 20% of cells visualized and this coincided with

strong p53 nuclear staining. Collectively, these results demonstrate

the increase in p53 phosphorylation and total protein levels are

dependent on NSs and that NSs and p53 partially co-localized

following RVFV infection.

RVFV Infection Induces the Up-regulation of p53
Targeted Genes

Given the function of p53 as a transcription factor, the question

arises as to whether RVFV infection results in increased p53

binding to various promoters and regulation of their transcription.

To determine if RVFV infection affects the induction of p53

transcriptional targets, quantitative RT-PCR was performed on

p53 regulated genes. The p53 target genes involved in apoptosis

that were analyzed are Bax, Puma and Noxa (Figure 5A–C). The

genes of interest known to be involved in cell cycle control that

were analyzed were GADD45, 14-3-3s, and p21 (Figure 5D–F).

In addition, the negative regulator of p53, MDM2 was analyzed

(Figure 5G). The results show that in response to RVFV infection

Figure 1. p53 is phosphorylated on several residues following infection with RVFV. A) HSAECs were either mock or MP-12 infected at an
MOI of 3.0. Cells were collected 6, 24 and 48 hours post infection and lysates were analyzed by western blotting for antibodies against p53 at the
residues indicated (Ser 9, Ser 20, Ser 37, Ser 46 and Ser 15). B) HSAECs infected in the same manner as Fig. 1A were collected at the time points
indicated and analyzed by western blotting for antibodies against total p53 and p53 (Ser392). C) HSAECs were treated in the same manner as Fig. 1A
and Fig. 1B and analyzed by western blotting for antibodies against the N protein of RVFV. D) HSAECs were infected with UV inactivated MP-12 (MOI
3.0) and collected at 24 and 48 hours post-infection. In parallel, HSAECs were treated with doxorubicin (1 mM) and collected at 24 hours. Cell lysates
were analyzed by western blot analysis as describe in panels A and B. Actin is used as a loading control in all panels.
doi:10.1371/journal.pone.0036327.g001
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a number of p53 target genes were up-regulated (Figure 5A–G).

Of the apoptotic genes, Noxa displayed the greatest fold induction

(almost 10 fold) as compared to the mock infected cells. Neither

Puma nor Bax demonstrated changes greater than 2 fold. 14-3-3s
and GADD45 were both increased by greater than 2 fold;

however, p21 transcriptional levels were not significantly altered.

MDM2 displayed an increase of almost 5 fold, further supporting

the observed p53 stabilization and accumulation following RVFV

infection. p62 expression was used as a control for transcription

since RVFV infection was recently found to induce p62

downregulation post-transcriptionally [42]. As has been previously

reported, p62 transcription was not altered following RVFV

infection (Figure 5H). These results indicate that transcriptional

targets of p53 involved in the apoptotic pathway and cell cycle

control are increased following RVFV infection, with Noxa being

significantly up-regulated.

Loss of p53 Results in Decreased RVFV Induced Death
Having characterized p53 as being activated following infection

with RVFV and Noxa as the most significantly up-regulated p53

target, we next sought to determine the influence of p53 on RVFV

induced cell death. For this, we utilized two p53 wild-type (WT),

A549 and MCF-7, and two p53 mutant (mt), MDA-MB-231 and

T47D, cell lines. The mt cell lines are breast cancer cells which

have high levels of mutated p53, mutated in the DNA binding

region. Cells were mock infected or infected with MP-12 (MOI 0.1

and 1.0) and cell viability assessed at 48 hours and 72 hours post

infection. At 48 hours post infection there was little to no loss of

viability in the p53 mt cells, whereas the p53 WT cells displayed

an MOI dependent loss in viability (Figure S1A). By 72 hours, p53

mt cells began to display a decrease in cell viability, but still to a

lesser extent than that of the p53 WT cells (Figure S1B). These

results demonstrate that p53 WT status results in a greater loss of

cell viability following RVFV infection.

To further characterize p53 as having a role in decreased cell

viability following infection by RVFV, we obtained HCT-116 cells

completely devoid of p53 (p532/2, null) as well as the WT

(p53+/+) and heterozygous (p53+/2) counterparts. Cell viability

assays were performed on each of the cell lines 96 hours after mock

infection or infection with MP-12 at the indicated MOIs. The

results are analogous to those obtained for the mutant cells lines.

Particularly at the higher MOIs (MOI 0.5–5.0), the p53 null cells

showed increased survival compared to the WT cell line after

Figure 2. p53 localizes to the nucleus following infection with RVFV. A) HSAECs were either mock infected or infected with MP-12 (MOI 3.0).
At 24 hours post infection the cells were washed in PBS without Ca and Mg, permeabilized with Triton X-100 and immunostained with anti-p53
primary antibody using Alexa-Fluor 568 secondary antibody and with anti-RVFV N protein antibody using Alexa-Fluor 488 secondary antibody. The
nucleus was stained with DAPI. B) HSAECs were mock infected or infected with MP-12 (MOI 3.0) and collected at 24 hours post-infection for the
creation of cytoplasmic and nuclear extracts, CE and NE. Western blot analysis was performed with antibodies against lamin, GAPDH, total p53 and
RVFV N protein.
doi:10.1371/journal.pone.0036327.g002
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RVFV challenge (Figure 6A). Interestingly, the heterozygous cell

line (p53+/2) show an intermediate increase in cell viability under

the same conditions. Figure 6B confirms through western blot

analysis that the expression of p53 in the p53 null cells is absent,

while the heterozygous cells show less p53 protein than the WT

p53 cells. It is interesting to note that the HCT-116 cells appear to

be inherently resistant to RVFV induced cell death, as at 96 hours

post-infection, 50% viability remained. Confocal microscopy

imaging of RVFV N protein indicated that only around 10% of

all cells were infected at 96 hours (data not shown). It is likely that

Figure 3. p53 phosphorylation following RVFV infection is NSs dependent. A) Vero cells were either mock infected or infected with MP-12,
rMP-12 DNSs or arMP-12 DNSm viruses at an MOI of 3.0. Cells were collected 24 hours post infection and western blot analysis was performed on the
cell lysates using antibodies against p53 (Ser15) and total p53. B) Cells were infected and processed as described in panel A. Western blot analysis was
performed for p53 (Ser20), and the N protein of RVFV. Actin was used as a loading control. C) Vero cells were infected with MP-12, rMP-12 DNSs or
arMP-12 DNSm viruses at an MOI of 3.0. Viral supernatants were collected at 16, 24 and 48 hours post-infection and released virus determined by
plaque assays. (*) indicates statistically significant difference (unpaired t-test) p,0.001. Error bars indicate standard deviation.
doi:10.1371/journal.pone.0036327.g003

Figure 4. p53 partial co-localizes with RVFV NSs. A) HSAECs were either mock infected or infected with rMP-12-NSs-Flag (MOI 3.0). At 24 hours
post infection the cells were washed in PBS without Ca and Mg, permeabilized with Triton X-100 and immunostained with anti-p53 primary antibody
using Alexa-Fluor 568 secondary antibody and anti-Flag protein antibody using Alexa-Fluor 488 secondary antibody. The nucleus was stained with
DAPI. Arrows indicate NSs Filaments and areas of p53/NSs colocalization.
doi:10.1371/journal.pone.0036327.g004
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by 96 hours most of the infected cells have undergone apoptosis

and the cells that remain are largely uninfected.

We sought to confirm these findings in a cell line that is more

susceptible to RVFV induced cell death. To this end, HSAECs

were infected with MP-12 at various MOIs (1, 3, 10) and cell

viability accessed at 48 and 72 hours post-infection (Figure 6C). At

72 hours and a MOI of 10, only 39% of cells remained viable.

Therefore, this time point was chosen to examine the influence of

p53 siRNA mediated knockdown on RVFV induced cell death. A

titration of negative control siRNA (siNEG) or p53 siRNA (sip53)

was performed to determine the optimal concentration of siRNA

to be utilized. All three concentrations of siRNA (50, 100, 200 nM)

resulted in a loss of p53 protein expression (Figure 6D). The mid

concentration (100 nM) was chosen for additional experiments as

it was effective at reducing p53 protein levels and the higher

concentration of 200 nM did not reduce p53 levels further at 48

hours post-transfection. Next, cell viability was assessed 72 hours

following MP-12 infection in cells that were transfected with

siNEG or sip53. Loss of p53 through siRNA knockdown resulted

in significantly less cell death following RVFV infection

(Figure 6E). These results demonstrate a direct correlation

between loss of p53 function and a greater resistance to RVFV

induced cell death, suggesting that p53 plays a role in RVFV

induced apoptosis.

RVFV Production is Decreased in p53 Null Cells
Next, we assessed the amount of viral production in the

presence or absence of p53. Plaque assays were performed using

viral supernatants collected at 96 hours from the p53 WT (p53+/

+) and p53 null (p532/2) cells infected with MP-12 (MOI 0.1 and

5.0). The p53 null cells showed an average viral titer of

3.96106 pfu/ml at an MOI of 0.1 (Figure 7). This is decreased

more than a log as compared to the viral titers of 6.16107 pfu/ml

obtained from the p53 WT cells. At the higher MOI (5.0), the

decrease in viral titer was more dramatic in the p53 null cells with

nearly a two log difference compared to the p53 WT cells. These

results demonstrate that lack of p53 results in less RVFV being

produced.

Discussion

Like all viruses, RVFV employs the host’s cellular machinery to

complete its lifecycle. Identifying particular host cellular networks

that aid in viral propagation is important for further understanding

of the viral lifecycle as well as in the development of novel

therapeutics to combat infection. Given the importance of p53 in

the regulation of many cellular processes such as growth arrest,

DNA damage repair, and apoptosis, it would seem logical that

Figure 5. RVFV infection induces the Up-regulation of p53 target genes. HSAECs were either mock infected or infected with MP-12 (MOI
3.0). Cells were collected at 24 hours post infection. RNA was extracted using Qiagen’s RNeasy Mini Kit. After cDNA synthesis, qRT-PCR was performed
on the samples using the primers shown (Bax, Puma, Noxa, GADD45, 14-3-3s, p21, MDM2 and p62) (Panels A–H). Actin was used to normalize the
samples. (*) indicates statistically significant difference (unpaired t-test of triplicates) p,0.05. Error bars indicate standard deviation.
doi:10.1371/journal.pone.0036327.g005
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RVFV would develop mechanisms to utilize components of these

pathways for its benefit.

The activation of the p53 pathway following RVFV infection is

evident in the consistently up-regulated phosphorylation observed

at every serine phosphorylation site examined, both in the TAD

and the C-terminal domain. This universal phosphorylation is

interesting given the specific functions each residue seems to

exhibit. As previously mentioned, Ser15 and Ser20 are important

in the activation and stability of p53, while Ser46 plays a role in

apoptosis. Ser392, located in the C-terminal domain, is important

for DNA binding and transcriptional activation and is also highly

phosphorylated. In addition to the individuality of each residue’s

function, is the fact that these residues can be phosphorylated by

several different kinases [36]. Recent work from our laboratory

indicates that RVFV infection causes opposing activation of ATM

and ATR pathways, where ATM and chk2 phosphorylation are

up-regulated at 24 hours post-infection, whereas ATR phosphor-

ylation is down-regulated [43]. These data indicated that following

RVFV infection, the p53 pathway may be at least partially

activated through an ATM-chk2 specific signaling cascade;

however, there are likely additional upstream kinases contributing

to the robust p53 phosphorylation. ATM and chk2 activation

following RVFV were shown to be responsible for the RVFV

induced S phase arrest [43]. Cell cycle arrest can be transient to

provide time for the cell to repair itself prior to proceeding into the

next phase of the cell cycle or if the insult is considered too great

(as in the case of RVFV infection), apoptosis can be initiated.

Although apoptosis can be initiated through other mechanisms,

phosphorylation of p53 at Ser46 is considered to be a primary

determinant of apoptotic induction through the p53 pathway [44].

Figure 6. Loss of p53 provides resistance to RVFV induced cell death. A) HCT-116 p53+/+, +/2, and 2/2 cells were mock infected or
infected with MP-12 (MOI 0.1, 0.5, 1.0, and 5.0). Cell viability was determined 96 hours post-infection by CellTiter-Glo Assay (Promega). Viability of the
infected cells was calculated relative to the mock infected cells (100%) (average of triplicates shown). (*) Indicates statistically significant difference
(unpaired t-test of triplicates) p,0.05. Error bars indicate standard deviation. B) Western blot analysis of uninfected whole cell lysates from HCT-116
p53+/+, +/2, and 2/2 cells probed with anti-p53 total and actin antibodies. C) HSAECs were either mock infected or infected with MP-12 (MOI 1, 3,
or 10). Cell viability was determined 48 and 72 hours post-infection by CellTiter-Glo Assay (Promega). Viability of the infected cells was calculated
relative to the mock infected cells (100%) (average of triplicates shown). D) HSAECs were transfected with negative control siRNA (siNEG) or siRNA
targeting p53 (sip53) at 50, 100, or 200 nM using attractene’s fast-forward method. Twenty-four hours post-transfection, cells were infected with MP-
12 and collected 24 hours post-infection. Cell lysates were analyzed by western blot analysis for total p53 and actin. Lane 1 is a mock infected and
untransfected control. E) HSAECs were transfected with siNEG or sip53 (100 nM) by attractene’s fast-forward method. Twenty-four hours post-
transfection cells were mock infected or infected with MP-12 (MOI 10). Cell viability was determined 72 hours post-infection by CellTiter-Glo Assay
(Promega). Viability of the infected cells was calculated relative to the mock infected cells (100%) (average of triplicates shown). (*) Indicates
statistically significant difference (unpaired t-test of triplicates) p,0.01. Error bars indicate standard deviation.
doi:10.1371/journal.pone.0036327.g006
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Interestingly, phosphorylation of p53 at Ser46 is not up-regulated

until 48 hours post infection, when apoptotic signaling occurs in

HSAECs [45]. Specifically, we have previously shown that in

HSAECs, even at a relatively low MOI (0.002) at 48 hours post

infection, RVFV causes an increase in effector caspases 3, 6 and 7

and an increase in the sub G1 population, indicative of apoptosis

[18]. In addition, our studies indicate that loss of p53 results in cell

being more resistant to RVFV induced cell death. Given the

importance of the NSs protein in the virulence of RVFV, it is not

surprising that the phosphorylation of at least two residues of p53

(Ser15 and Ser392), as well as total p53 accumulation within the

cell, are dependent on NSs. NSs localizes to the nucleus forming

large filaments, which are responsible for a high incidence of

nuclear anomalies and known chromosome cohesion and segre-

gation defects [41]. Based on these properties, it would be

plausible that NSs dependent DNA damage is occurring and

contributing to the activation of p53 through the DDR pathway.

However, our recently published work indicated that RVFV

infection does not induce DNA damage [43], as expected. Our

data also demonstrated a partial co-localization of NSs and p53

specifically on NSs filaments. Current studies are investigating the

possibility of NSs interacting with p53 directly or as part of a larger

protein complex present on NSs filaments. It is also possible that

NSs is not interacting with p53, but rather acting in conjunction

with other host proteins upstream of p53 to induce p53

phosphorylation and stabilization.

Our quantitative RT-PCR results show a general up-regulation

of p53 transcriptional targets upon infection with RVFV. This is

interesting considering that the NSs protein of RVFV has been

shown to target the general transcription factor TFIIH to suppress

host transcription [46]. Specifically, NSs can interact with the p44

subunit of TFIIH at specific sites to form filaments and reduce

levels of the p62 subunit of TFIIH [42]. While these proteins are

reduced, they are not completely degraded upon infection with

RVFV and may allow for transcriptional activation of selected

genes. In addition, the p53 TAD interaction with the p62 subunit

was shown to be enhanced by phosphorylation at Ser46 of p53

[47]. Given that Ser46 phosphorylation is up-regulated upon

infection, perhaps this increased affinity for p62 could compensate

for the reduced levels of p62. p53 also interacts with TFIID,

another basal transcription factor, providing another potential

mechanism for p53 regulated transcriptional activation [48].

The manipulation of the p53 pathway has been demonstrated in

numerous viral infections [49]. For chronic cancer causing viruses,

such as human papilloma virus (HPV) and human T-cell leukemia

virus 1 (HTLV-1), p53 inhibition by viral proteins contributes to

transformation [50,51,52,53]. Specifically the HPV E6 protein

induces the degradation of p53, while the HTLV-1 Tax protein

has multiple proposed mechanisms of p53 inactivation, including

sequestration of transcriptional cofactors CREB binding protein

(CBP) and p300 [50,51,52,53]. For acute viral infections, p53

inactivation is often times postulated as a means to subvert the

anti-viral response and/or as a mechanism to inhibit apoptosis to

allow sufficient time for efficient viral replication [49]. However,

there are viruses that cause activation of p53 to enhance their

replication. For example, West Nile Virus (WNV) capsid protein

induces nuclear accumulation of p53 and prevents it from

associating with MDM2, resulting in p53 stabilization [54]. In

WNV infected cells, the p53 transcriptional target, Bax, was up-

regulated and contributed to apoptosis [54]. Interestingly, p53 null

cells displayed decreased apoptosis and viral replication, indicating

that p53 enhances WNV replication [54]. In addition, viral

activation of p53 can lead to efficient viral release and

dissemination through promoting apoptosis [55]. Similar to

WNV infection, we observed an increase in apoptosis and RVFV

production in p53 WT cells. We hypothesize that p53 activation

by NSs is important for the induction of apoptosis and viral release

at later stages of viral infection. Conversely, RVFV NSm protein

serves an anti-apoptotic role, functioning to balance the pro-

apoptotic p53 signaling, allowing a delay in apoptosis until efficient

viral replication can proceed.

It is important to note that a recent publication by Verbruggen

et al. demonstrated a lack of p53 activation by the orthobunyavirus

La Crosse [56]. In this study, other markers of the DNA damage

response pathway, such as phosphorylation of histone H2A.X,

degradation of RNA polymerase II, and transcriptional activation

Figure 7. RVFV production is decreased in p53 null cells. HCT-116 p53+/+ and 2/2 cells were mock infected or infected at the indicated MOIs
(0.1 and 5.0). At 96 hours post infection viral supernatants were collected and cells were used in a Cell Viability Assay (Figure 4b). Plaque assays were
performed in triplicates using the supernatants and the average viral titers (pfu/ml) of the triplicates are shown. (*) Indicates statistically significant
difference (unpaired t-test of triplicates) p,0.05, or (**) p,0.01. Error bars indicate standard deviation.
doi:10.1371/journal.pone.0036327.g007
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of pax6 were observed. These findings were also dependent on the

La Crosse viral protein NSs, which has similar functions to RVFV

NSs including transcriptional inhibition and interferon antagonism

[56,57]. La Crosse NSs while being found in the nucleus does not

form filaments. RVFV infection also induces histone H2A.X

phosphorylation and a number of other classical DNA damage

responsive proteins [43]. Therefore, these recent findings indicate

a clear distinction between the host signaling induced by La Crosse

NSs and RVFV NSs, namely the modulation of the p53 pathway.

This is not entirely surprising as the two viruses have evolved

distinct mechanism to facilitate interferon antagonism [58]. These

data suggest that these viruses may also utilize distinct pathways

for the induction of apoptosis, with RVFV cell death being

influenced by p53.

The overall conclusions of this research points to a role of the

p53 pathway in the induction of RVFV induced apoptosis. Upon

infection of RVFV, p53 is activated as supported by the amplified

phosphorylation of p53 on multiple sites and the localization of

p53 within the nucleus. The lack of p53 results in a greater

resistance to RVFV induced cell death as well as a decrease in viral

production. RVFV infection corresponds to an increase in both

cell cycle regulator genes and pro-apoptotic genes of the intrinsic

apoptotic pathway controlled by p53. Further research is needed

to uncover the exact mechanism by which RVFV utilizes the p53

pathway for efficient viral production.

Supporting Information

Figure S1 p53 mutant cells are more resistant to RVFV
induced cell death. p53 WT (A549 and MCF-7) and p53 mt

(MDA-MB-231 and T47D) cells were plated at 25,000 cells per

well in a 96 well plate. Cells were mock infected or infected with

MP-12 (MOI 0.1 and 1.0). Cell viability was determined at A) 48

or B) 72 hours post-infection by CellTiter Glo Assay (Promega).

Viability of the infected cells was calculated relative to the mock

infected cells (100%) (average of triplicates shown). (*) Indicates

statistically significant difference (unpaired t-test of triplicates)

p,0.01. Error bars indicate standard deviation.
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